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We present a simple result in single-machine scheduling theory. Namely, the 
number of tardy jobs in a sequence which is optimal with respect to total tardiness 
is no greater than the number of tardy jobs in the earliest due date sequence. This 
provides a bound for solutions to the total tardiness problem on a single machine 
found using branch and bound, dynamic programming or the decomposition method. 

1. Introduction 

We consider a set of n single-operation jobs where each job j has a certain 
processing time tj and due date dj known in advance. For a job j in a sequence, its 
tardiness Tj is given by Tj = max{Cj - dj' O}, where Cj is the job's completion time. 
If Tj = 0 then j is said to be early, otherwise it is tardy. For any given sequence S, the 
total tardiness T of S is given by T = L Tj. The total tardiness problem for a single 
machine is to find a sequence of jobs which minimises the total tardiness for the set 
of jobs. Such a sequence will be referred to as an optimal sequence. A sequence is 
in earliest due date (EDD) order if, for all jobs i and i, i is sequenced before job j when 
di < dj, Of, when dj = dj and ti < tj. A sequence is said to be in shortest processing 
time (SPT) order if for all jobs i and j in sequence, i is sequenced before j when 
tj < tj. 

In a review article, Koulamas (1994) surveys the theoretical results for the 
single machine total tardiness problem. The two major developments in the area are 
the dominance results derived by Emmons (1969) and the decomposition method 
introduced by Lawler (1977). In addition, a number of simply stated and easily 
proved results are discussed. Two of these are: 
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Result 1. The shortest processing time (SPT) sequence is optimal if it yields a 
sequence where all the jobs are tardy. 

Result 2. The earliest due date (EDD) sequence is optimal if it yields a sequence 
where at most one job is tardy. 

These simple results are used in various solution strategies and in particular by Potts 
and Van Wassenhove (1987), where they propose a modification to the 
decomposition principle and incorporate it into a decomposition dynamic programming 
algorithm for solving the total tardiness problem. 

In section 2 of this paper, Proposition 1 presents a simple relationship between 
the number of tardy jobs in an optimal sequence and the number of tardy jobs in the 
EDD sequence. The relationship is of some interest in its own right and it leads to 
some immediate applications. As far as can be ascertained, the relationship has not 
been previously reported, although it does have an intuitive appeal. Result 2 follows 
from Proposition 1 as a corollary and a second corollary follows using Result 1. In 
Section 3 an application of Proposition 1 is made to providing a bounding condition 
for solving the total tardiness problem by way of branch and bound algorithms, 
dynamic programming or the decomposition method. Finally, Section 4 contains 
some concluding remarks, which place the result of the paper in context with other 
simple results in scheduling theory. 

2. The Proposition 

The central result of this paper is proved later in this section. It can be stated 
as follows. 

Proposition 1 

The number of tardy jobs in a sequence which is optimal with respect to total 
tardiness is less than or equal to the number of tardy jobs in the EDD sequence. 

It is easy to give examples where the number of tardy jobs in each sequence 
is the same. Indeed, Result 2 above, gives circumstances which are sufficient for the 
EDD sequence to be optimal with respect to total tardiness. Example 6 of Baker 
(1974, p.289) has the following processing times and due dates: 

j 
t· 

d· J 

1 
89 

408 

2 
64 

359 

3 
105 
362 

4 
124 
467 

5 6 
64 100 

394 479 

7 
107 
328 

8 
78 

442 

The associated EDD sequence is 7,2,3,5,1,8,4,6 which has 4 tardy jobs. The 
sequence 7,5,3,2,1,8,6,4 gives the optimal value of 478 for total tardiness and also 
has 4 tardy jobs. 
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It is also possible that the number of tardy jobs in an optimal sequence is very 
much lower than the number of tardy jobs in the EDD sequence. Consider for 
example, a sequence of n jobs in which each job has the same processing time t, and 
where the due dates are d1 = d2 = t and di = (i-1)t for i 3,4, ... n. Then the job 
sequence 2, 3, ... n,1 is optimal and has only one tardy job. By comparison the EDD 
sequence 1, 2, 3, ... n (which is also optimal) has n-1 tardy jobs. 

Koulamas (1994) cites a result of Lawler as implying that all on time jobs in 
an optimal solution are sequenced in EDD order. This clearly is not an accurate 
statement as the following three-job example shows: 

j 
t· 
d. 

J 

1 
5 
10 

2 
3 
9 

3 
12 
17 

Here, sequences 1-2-3 and 2-1-3 are both optimal but only one has its early jobs in 
EDD order. The result is more accurately stated in the following Lemma and can be 
proved directly. 

lemma 

Let S be a sequence of jobs. From S we can obtain a sequence S' such that 
no job is more tardy in S' than it was in S, and every pair of early jobs in S' is in EDD 
order. If S happens to be optimal with respect to total tardiness then so is S' and the 
number of tardy jobs in both sequences will be the same. 

Proof of lemma 

Let j and k be two early jobs in S such that dk > dj but k is sequenced before 
j. Let F be the time at which j finishes in S and let I be the (possibly empty) set of 
jobs between k and J in S. Create a new sequence S' by moving k so that it starts 
when j finishes (see Figure 1). Since j was early in S we have F ~ dj < dk, which 
shows that both j and k are early in S/, as they were in S. The only other jobs which 
have moved are those in I, which are each completed at a strictly earlier time in S' 
than they were in S. It follows that no job has greater tardiness in S' than it had in 
S. 

S k 

S' 
k 

Figure 1 
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We repeatedly apply the above procedure to pairs of early jobs which are not 
in EDD order. Since no pair will be swapped twice we must eventually reach the 
sequence S' claimed in the theorem. Notice that the tardiness of S' is no greater 
than the tardiness of S. It follows that if S happens to be optimal then so is S' and 
every job will necessarily have exactly the same tardiness in S' as it had in S. In 
particular, the number of tardy jobs is unaltered. 

Proof of Proposition 1 

Let S be an optimal sequence. By the lemma we may assume that all early 
jobs in S are in EDD order. Observe now that S has the property, P, that every pair 
of jobs in S is in either EDD or SPT order. If P were not true of S then a direct 
swap of two jobs which violated P (at least one of which must be tardy) would 
reduce the tardiness of the sequence and hence breach optimality. The property P 
will be preserved throughout our proof, since the only alterations we make to the 
sequence will be to interchange consecutive jobs to put them into EDD order. 

Of the jobs in S that are not in EDD order with their predecessor, let j be the 
job with the earliest starting time. (If no such job exists, we are done). Consider a 
process which repeatedly swaps j with its predecessor until such time as j is in EDD 
order with its predecessor. The only way the number of tardy jobs can be decreased 
by this process is if j is initially tardy and becomes early, while no early job becomes 
tardy. Assume this happens. 

Examine the case of j swapping with a tardy job i. Suppose that before the 
swap we have a sequence S' in which i starts at time C'. Since i is tardy 
dj < C' + ti' The fact that we are swapping i and j means they are not in EDD order, 
so property P tells us di > dj and ti ~ tj. Hence dj < C' + tj which shows that j will 
be tardy after the swap. Therefore there is no problem unless j gets swapped with 
an early job. 

Let k be the first early job with which j is swapped. Suppose that just prior 
to swapping j and k we have asequence S" in which k starts at time C". Note that 
k will become tardy unless dk ~ C" + tk + tj' so we may as well assume this is the 
case. 

Examine what happens if k is the first job with which j is swapped. Note that 
this means j occupies the same position that it held originally in S, and k is starting 
no earlier in the sequence now than it was in S. The upshot is that in our original 
sequence S, moving k into position immediately after j would have violated 
optimality, since this would have made j finish earlier, while no other job increased 
its tardiness. (Job k would remain early by assumption). 

If k is not the first job j is swapped with, then during the process j gets 
swapped with a tardy job m and then (immediately) gets swapped with k. By our 
choice of j we know that dk ~ dm. Since m is tardy we know that dm < e" + tk 
+ t m . Also since m and j were not in EDD order, property P tells us that tm ~ tj. 
Thus dk < e" + tk + tj' which is a direct contradiction of our earlier assumption. 
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Hence the process of moving j to its 'correct' position does not decrease the 
number of tardy jobs. If there are n jobs in S then by applying this process at most 
n-1 times we obtain an EDD sequence which has at least as many tardy jobs as our 
original optimal sequence, which proves the proposition. 

We illustrate the process of obtaining the EDD sequence from an optimal 
sequence with a simple example. Table 1 shows Example 1 from Baker (1974, 
p.289). The processing times and due dates of the eight jobs are given. An optimal 
sequence for total tardiness is listed, and is followed by appropriate interchanges 
which finally place the sequence in EDD order. At each stage the total tardiness and 
number of tardy jobs nt is displayed. 

4 
1 
1 
1 
1 
1 
1 
1 

earlier. 

Forming the EDD sequence from an Optimal sequence using example 1 of 
Baker (1974). 

j 1 2 3 4 5 6 7 8 
t· 121 147 102 79 130 83 96 88 
dj 260 269 400 266 337 336 683 719 

Sequence Changes nt rT 

1 6 3 5 7 8 2 Optimal 2 755 
4 6 3 5 7 8 2 1 and 4 2 755 
4 6 5 3 7 8 2 3 and 5 3 768 
4 6 5 3 7 2 8 8 and 2 4 807 
4 6 5 3 2 7 8 7 and 2 5 786 
4 6 5 2 3 7 8 3 and 2 5 831 
4 6 2 5 3 7 8 5 and 2 5 848 
4 2 6 5 3 7 8 6 and 2 6 859 

The final sequence is EDD 

We present two corollaries of the proposition. Corollary 1 is Result 2 stated 

Corollary 1 

The EDD sequence is optimal if it produces a sequence which has at most one 
job tardy. 

Corollary 1 follows immediately from the result of Jackson (1955) that the 
EDD sequence minimises the maximum tardiness of a set of jobs on a single machine. 
An alternative proof can be constructed using Proposition 1 and its Lemma. 
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Proof 

An EDD sequence with no tardy jobs is obviously optimal. If the EDD 
sequence has one tardy job then by the Proposition, an optimal sequence has one or 
no tardy jobs. If any sequence has no tardy jobs then by the Lemma the EDD 
sequence has no tardy jobs. Thus we may assume that every optimal sequence has 
one tardy job. Using the Lemma, the n-1 early jobs in each optimal sequence can be 
rearranged to be in EDD order. Noting that the tardy job is necessarily in EDD order 
with its (early) successor, we see that the one tardy job will not be in EDD order with 
its predecessor unless the EDD sequence is optimal. 

Assume the EDD sequence is not optimal. In an optimal sequence 5 with all 
early jobs in EDD order, let job m be the tardy job, necessarily not in EDD order with 
its immediate predecessor j. Now interchange jobs j and m and note that j assumes 
the position it occupies in an EDD sequence 5', If j is not now tardy then the 
interchange has reduced the total tardiness and we have a breach of the optimality 
of S. If j is now tardy then it must be the sole tardy job in S'. But j has the same 
completion time now as m had in S, and dm ::;; dj by assumption. It follows that the 
total tardiness of 8' is no greater than that of S, and hence S' must be optimal. 

Corollary 2 

The EDD sequence has all jobs tardy, if the SPT sequence has all jobs tardy. 

Proof 

If the SPT sequence has all jobs tardy, then by Result 1, the SPT sequence is 
optimal with respect to total tardiness. By Proposition 1, the number of tardy jobs 
in the EDD sequence is at least as great as the number of tardy jobs in any optimal 
sequence. Thus the EDD sequence has all jobs tardy. 

Corollary 2 can also be proved directly using a simple adjacent pair-wise 
interchange argument. 

3. An Application 

The Proposition proved in this paper has application in providing a bound on 
computations in branch and bound methods, dynamic programming and the 
decomposition method for solving the total tardiness problem. Branch and bound 
algorithms rely on the computation of strong lower bounds for testing generated 
solutions from the branching process. These bounds are usually in terms of values 
of total tardiness which are close to optimal and in some implementations are 
obtained through good heuristic procedures and in others from values of total 
tardiness already attained by partial schedules. 

Proposition 1 allows for a bound relating to the number of tardy jobs, which 
can supplement other bounding procedures. For a given set of jobs, the number of 
tardy jobs in the EDD sequence is easily calculated. Candidate partial solutions for 
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the total tardiness problem can be eliminated from consideration, if the number of 
tardy jobs in the partial solution exceeds the number in the EDD sequence. This is 
particularly effective when the solutions are built up through the assignment of jobs 
to the last positions in sequence. The associated checking procedure need not begin 
until candidate partial solutions have a number of jobs assigned to the end of the 
sequence equal to the number of tardy jobs in the EDD sequence. The process thus 
eliminates those candidate partial solutions still within the current total tardiness 
bounds, but which already have an excess of tardy jobs. Potts and Van Wassenhove 
(1985) give considerable detail ofthe extensive bounding procedures they use in their 
branch and bound algorithm for the total weighted tardiness problem. The simple 
bounding procedure suggested by Proposition 1 complements the techniques used 
in their algorithm in relation to the total (unweighted) tardiness problem. 

In a similar way, Proposition 1 can be used as a bound in dynamic 
programming solutions to the total tardiness problem, The proposition allows for 
curtailed enumeration of those partial solutions which already contain a number of 
tardy jobs in excess of the number contained in the EDD sequence. This reduces 
subsequent computation time and more importantly reduces storage requirements. 

A further application of Proposition 1 can be made as a supplementary 
bounding condition to the optimising procedure known as the decomposition method 
of Lawler (1977). We briefly outline this method before indicating the application of 
Proposition 1. Re-number the jobs so that d 1 :::;; ... :::;; dn and ti :::;; ti + 1 whenever 
dj = di + 1, for i = 1, .. ,' n-1. A total tardiness problem is said to decompose with 
job j in position k, where j:::;; k, if there exists an optimal sequence in which jobs 
1, ... , j - 1, j + 1, ... , k are sequenced before job j and in which jobs k + 1, ... , n are 
sequenced after job j. The principal result of the decomposition method is due to 
Lawler (1977): If tj = maXi {til with j chosen as large as possible, then the total 
tardiness problem decomposes with job j in position k for some k belonging to the set 
0, .. ,' n}. 

The problem is then effectively split into two subproblems which can be 
solved separately, or, the result can be applied recursively to further decompose the 
original problem into smaller, more manageable problems. Other results of Lawler and 
also of Potts and Van Wassenhove (1982) help restrict the search for an optimal 
choice of k. In practice, the original problem is often further decomposed until the 
subproblems can be solved by a suitable dynamic programming algorithm or perhaps 
by a branch and bound algorithm. Trivial subproblems are solved using Result 1 or 
Result 2 mentioned earlier, or by complete enumeration. A detailed description of the 
method is contained in the text by Blazewicz et at (1994, p.86). 

The result contained in this paper could be used to eliminate some candidate 
solutions during the decomposition method in the following way: For each 
subproblem to be solved by say dynamic programming, the number of tardy jobs in 
the EDD sequence associated with the subproblem can be calculated and used as a 
bound on candidate solutions to the subproblem as they are developed. 



4. Concluding Remarks 

This paper presents a simple result in the theory of single-machine scheduling. 
Proposition 1 established that the number of tardy jobs in any sequence which is 
optimal with respect to total tardiness, cannot be greater than the number of tardy 
jobs in the corresponding earliest due date (EDD) sequence. Section 3 outlines an 
application of the result to providing a bound for solutions to the total tardiness 
problem involving branch and bound methods, dynamic programming or the 
decomposition method. 

Proposition 1 is consistent with other elementary results in the theory of single 
machine scheduling. The relationship between Proposition 1, Result 1, Result 2 and 
Corollary 2 has already been remarked upon. Emmons (1969) shows that if the SPT 
and EDD sequences are identical, then that sequence is optimal with respect to total 
tardiness. Clearly in this case, the number of tardy jobs in the EDD sequence is equal 
to the number of tardy jobs in the optimal sequence, consistent with Proposition 1. 
Again, in the special case where a given set of jobs has a common due date, it is 
easy to show that the SPT sequence gives both the minimum value of the number 
of tardy jobs and the minimum value of the total tardiness. As a common due date 
is involved, the sequence in SPT order is, by default, in EDD order and so the number 
of tardy jobs in the EDD sequence is identical to the number of tardy jobs in the 
optimal sequence, again consistent with Proposition 1. In the case where all jobs 
have the same processing times, it is easy to prove that the EDD sequence gives the 
optimal value of the total tardiness and hence the same number of tardy jobs as the 
optimal sequence. 

A natural question to ask is whether the number of tardy jobs in the SPT 
sequence is in any way related to the number of tardy jobs in an optimal sequence 
apart from the way implied in Result 1. Such a relationship is not intuitively obvious 
and experimental investigations have not been fruitful in uncovering any pattern, but 
further research may prove worthwhile. 

The article by Koulamas (1994) reveals the relatively small number of simple 
theoretical results in single-machine scheduling theory, but the usefulness of many 
that are available. This paper highlights a simple relationship between two measures 
of effectiveness for the single machine and indicates a practical application. 
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