
The Fine Structure of Threefold Directed Triple Systems. (*) 

Salvatore Milici (*), Gaetano Quattrocchi (*) 

Dipartimento di Matematica, Universita' di Catania, 

viale A. Doria 6, 95125 Catania, Italy .. 

Abstract. The fine structure of a threefold directed triple 

system is the vector where c. is the number of 
" 

directed triples appearing precisely -L times in the system. We 

determine necessary and sufficient conditions for a vector to be 

the fine structure of a threefold directed triple system. 

1. Introduction. A A-fold triple system of order V, denoted 

TS(V,A), is a pair (V,A) where V is a v-set and A is a collection 

of 3-subsets (called blocks or triples) of V, such that each 2-

subset of V is contained in exactly A triples. 

A A-fold directed triple system of order v, denoted DTS(V,A), 

is a pair (V,B) where V is again a v-set while B is a collection 

of ordered 3-subsets (called directed or transitive triples) of V, 

such that each ordered pair of distinct elements of V is contained 

in exactly A directed triples. We note that each directed triple 

contains 3 ordered 2-subsets and the ordered 2-subsets contained 

in the directed triple (a,b,c) are (a,b), (a,c) and (b,c). A 

directed triple system is also called a transitive triple system 
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in the literature. It is well-known that there exists a DTS(V,A) 

if and only if either A=1,2 (mod 3) and v=O,l (mod 3), or A=O (mod 

3) and v:;t:2 [ 1]. 

These definitions permit A and ~ to contain repeated triples 

and repeated directed triples respectively. For each i=1,2, ... ,A, 

let ~i denote the set of (directed) triples appearing i-times in 

(~) A. Let l~il=cL" Then iCi is the number of i-times repeated 

(directed) triples contained in the multiset i~i (the union of i 

copies of ~i)' It is easy to verify that the number of (directed) 

triples contained in a (DTS(V,A) ) TS(V,A) is 

(c
1
+2C

2
+·· .+Ac A=AV(V-1)/3) C

1
+2c

2
+ ... +Ac A=AV(V-1)/6. 

Designs with repeated blocks have interesting applications in 

statistics [6J, so the structure of repeated (directed) triples in 

(directed) triple systems has been widely studied. Lindner and 

Rosa [8 J implicitly determined the possible number of repeated 

triples in a TS(v,2) for v=1,3 (mod 6). Rosa and Hoffman [11] 

later extended this determination to the case v=0,4 (mod 6). 

Lindner and Wallis [9], and independently Fu [7 J determined the 

possible number of repeated directed triples in a DTS(v,2). 

For A>2, the following questions concerning repeated 

(directed) blocks arise: 

1) Determine the possible support sizes, or number of 

distinct (directed) blocks, in a (DTS(V,A» TS(V,A). Remark that 

this question is to determine the possible values for the sum 

C
1
+C

2
+ ... +c A' This problem is completely solved: see [1] and its 

references for TS(V,A) and [10] for DTS(V,A). 

2) Given a (DTS(V,A» TS(V,A), the fine structure of the 
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system is the vector where c. is the number of 
{. 

(directed) triples repeated exactly L times. It is a very 

interesting problem to produce necessary and sufficient conditions 

for a vector to be the fine structure of a (DTS (v, t..» TS (v, t..) • 

This problem is solved for TS (v, 3), [2] and [3]. 

Our aim in this paper is to determine the fine structures for 

DTS (v, 3) . 

Put 

{ v(v-l) if v=O, 1 (mod 3) 

s(v) 
V(:;1)-2 if v=2 (mod 3). 

since any two of {C
1

,C
2
'C

3
} determine the third, we follow 

[2] by adopting the following notation for the fine structure: 

(t,s) is said to be the fine structure of a DTS(v,3) if c
2
=t and 

c
3
=s(v)-s. We first need to know the pairs (t,s) which can 

possibly arise as fine structures. We use the notation DFine(v) 

for the set of fine structures which actually arise in DTS (v, 3) 

systems. For every v~3, we define 

DAdm(v)= 

{(t, s) o::s:t::s:s::s:s(v), s*l, (t,s)~{(l,2),(l,3)}} 

if v=O, 1 (mod 3) 

{ (t, s) O::s:t::s:s::s:s (v), S*O, 1,2,3,4,5 if v=2 (mod 3) 

Main theorem. DFine(v)=DAdm(v) for every v~8. DFine(3)={(O,O), 

(0,2), (2,2)}, DFine(4)=DAdm(4)\{ (0,2), (O,3)}, DFine(5)=DAdm(5), 

DFine(6)=DAdm(6)\{(0,2), (0,3), (0,4), (1,4)}, DFine(7)=DAdm(7)\ 
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{(O,3), (1,4), (O,S)}. 

In section 2, we prove that DFine(v)~DAdm(v) and we establish 

some necessary conditions for v=4,6,7. In section 3, we introduce 

recursive standard constructions. In section 4, we describe the 

determination of fine structures for small values of v, then we 

combine all the results to prove the Main Theorem. 

2. Necessary conditions. 

Let (V,B) be a DTS(v,3). Sometimes we will call blocks the 

directed triples of B. For each XEV, let B(x) denote the multiset 

* * of blocks in B
1
u2B

2 
containing x and let d(x)=IB(x)l. Let (V ,B ) 

denote the partial threefold directed triple system such that 

* * * V ={XEV I d(x»O} and B =B
1
u2B

2
• For each aEV define the multiset 

* V(a) in the following way: if XEV , x*a, and x appears in exactly 

3n directed triples of B(a), then put n copies of x in V(a). Let 

* Pn be the number of elements XEV with d(x)=3n. 

Lemma 2.1. If x*y, d(x)=d(y)=3, then IB(x)nB(y)I=O. 

Proof. See Lemma 2.2 of [10], • 
It is easy to prove the following Lemma. 

Lemma 2.2. * If d(x)=3 then there are y,ZEV such that B 
2 

contains either (x,y,z) or (y,z,x) and the directed pair (z,y) 

* appears in three directed triples of B , Moreover c
2 

~ P
l

, 
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Lemma 2.3. It is (0,2)EDFine(3), (O,2)<iDFine(v) for v=4,6 

and (1,2)<iDFine(v) for every v=O,l (mod 3). 

Proof. Suppose that (t,2)EDFine(v). Then c +2c =6 and 
1 2 

Pl+2P2=6. It follows that (P
1
,P)E{(6,0), (4,1), (2,2), (0,3)}. It 

is easy to eliminate the cases (P
1
,P

2
)E{ (6,0), (4,1) } . From 

(P 1 'P2 ) (2,2) it follows c =2 
2 ' 

and from (P 1 'P 2 ) (0,3 ) it 

either * follows c =0 or c =2. Then (1,2)<iDFine(v) • Let V ={0,1,2} 
2 2 

* * * and :B ={120, 102, 210, 021, 201, 012}. Clearly (V,B) is a 

DTS (3,3) such that (0,2) EDFine (3). Moreover it is easy to check 

that there is not a partial threefold directed triple system 

verifying (P
1
,P)=(0,3) and not isomorphic to (V*,B*). Since for 

* * v=4,6 there is not a DTS(v,3) that embeds (V ,B ), it follows that 

(O,2)<iDFine(v) for v=4,6. I 

Lemma 2.4. It is (O,3)<iDFine(v) for v=4, 6, 7 and 

(l,3)<iDFine(v) for every v=O,l (mod 3). 

Proof. Suppose (t,3)EDFine(v), t~l. From Lemma 2.2 it 

follows Pl~l. 

solutions: (P
1
,P

2
,P

3
)=(1,4,0), (0,3,1). Lemma 2.2 eliminates the 

case (1, 4 , ° ) . 
* Let (P

1
,P

2
,P

3
)=(0,3,1), V ={1,2,3,4}, d(1)=d(2)=d(3)=6 and 

* d(4)=9. At first suppose t=l. Clearly if a directed triple of B 

meets the ordered pair 4, L,jE{ 1, 2, 3}, then jL does not appear 

* in any directed triple of :B • Suppose 12 appears in the two times 

repeated block 0, then one of the following cases arises: (i) 

0=124, (ii) 0=142, (iii) 0=412 (we denote the directed triple 

* * (a,b,c) by abc). Case (i): We can suppose either 412EB or 142EB . 
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* * Then 324, 432, 342EB . The remaining blocks of B contain 34 one 

time repeated, 43 two times repeated and 13 three times repeated. 

It is easy to see that this is impossible. Similarly we can 

eliminate the cases (i) and (ii). 

* At last suppose t=O. Let 'B ={124, 142, 412, 341, 431, 314, 

234, 423, 243}. It is easy to verify that there is not a partial 

threefold directed triple system such that (Pl,P2)=(O,3) and not 

* * isomorphic to (V ,'B ). Since for v=4,6,7 there is not a DTS(v,3) 

* * that embeds (V ,'B ), it follows that (O,3)~DFine(v) for v=4,6,7 .• 

Lemma 2.5. It is (O,4),(1,4)~DFine(6), (1,4)~DFine(7). 

Proof. Suppose (t, 4) EDFine (v), v=6, 7 and t:sl. 

Lemmas 2.1 and 2.2, the equation P
1
+2P

2
+3P

3
+4P

4
=12 has the 

following solutions: 

PI P2 P3 P4 

(1 ) 1 1 3 0 

(2 ) 1 4 1 0 

(3 ) 0 0 4 0 

(4 ) 0 3 2 0 

(5 ) 0 6 0 0 

(6 ) 0 4 0 1 

(7 ) 1 2 1 1 

(8 ) 0 1 2 1 

At first suppose v=6. Let V= {O, 1, ... ,5 } . Since 1'B)=6, it is 

* * easy to see that IV 1::::5. Moreover IV 1=5 implies that d(x)::::6 for 

* every XEV Therefore the cases (1) , (3) , ( 7) and (8 ) are 

impossible. 
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Case (2): Let d(0)=3 and d(I)=9. If I~V(O) then by Lemma 2.2, t~2. 

Suppose that 12 meets a block of P(O). By Lemma 2.2, the directed 

* triples containing 21 are in P Then it is impossible to 

construct P3 containing exactly four triples meeting 0, two 

triples meeting 1 and three triples meeting 2. 

Case (4): Let d(I)=d(2)=d(3)=6 and d(4)=d(S)=9. Then p* contains 

triples meeting the ordered pairs 4S and S4. This implies that 

(V,B3) has triples meeting 04, 40, OS and SO. Therefore P 
3 

contains a triple meeting 1, 2 and 3. Suppose it is 123. Then P * 

contains triples meeting two of the following three ordered pairs 

21, 31 and 32. This is impossible. 

Case (S): The following possibilities arise: j) V(I)={2,2,3,3}. 

Then IB31>6i jj) V(I)={2,2,3,4}. Then t~2; jjj) V(I)={2,3,4,S}. 

Let b
I

, b2 and b
3 

denote the directed triples of P(l) meeting 2. 

If b EB 
3 1 

then V(2)={1,3,4,S}. 

impossible. If b
1
EP

l 
and b 2=b3EP2 then t~2. 

Therefore d(0)=3, 

* * Case (6): Let V\V ={1} and let 0 be the element of V such that 

d(0)=12. Clearly both the directed pairs 01 and 10 are in blocks 

of B
3

" This is impossible. 

Let v=7, V={0,I, ... ,6} and suppose (1,4)EDFine(7) To 

eliminate cases (1), (3), (S), (7) and (8) proceed as for v=6. 

Case (2): Let d(0)=3 and d(I)=9. If 1E:V( 0) then by Lemma 2.2, 

t~2. Suppose that 12 meets a block of B (0). By Lemma 2.2, the 

* directed triples containing 21 are in B Suppose that 3EV ( 2 ) . 

Then there are b
I

, b2EB3 such that 1, 3Eb
1 

and 2, 3Eb
2

• It follows 

t~2. 

Case (4): Let d(I)=d(2)=d(3)=6 and d(4)=d(S)=9. If each block 
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meeting both 4 and 5 contains the same element XE{ 1.,2,3}, then 

t~2. To complete the proof we can proceed as in the analogous case 

for v=6. 

* * * Case (6): Let V ={0,1, ... ,4} and d(0)=12, Obviously (V ,'B ) can 

not be the union of two sub-DTS(3,3). Then for every ordered pair 

* ~,jEV \ {O}, appearing in some directed triple * of 'B the 

ordered pair ¥ is not contained in any block * of 'B • Suppose 

Then either 102E'B or 012E'B . In the first case there 
1 1 

* are three directed triples of 'B containing 01. Then 1'B21~2. It is 

easy to see that also the case 012E'B
1 

implies 1'B21~2. Similarly we 

can eliminate the cases 'B
2
={102} and 'B

2
={012}. I 

Lemma 2.6. (O,5)ttDFine(7). 

Proof. Let (V, E) be a DTS (7,3) having the fine structure 

(0,5) . Since, by Lemma 2.2 it is P =0 1 I 
the equation 

P2 P3 P4 Ps 

(1 ) 5 0 0 1 

(2 ) 1 3 1 0 

(3 ) ° 5 0 0 

(4 ) 4 1 1 0 

(5 ) 6 1 0 0 

(6 ) 3 3 0 0 

It is trivial to eliminate cases (1), (2) and (3). 

To eliminate the remaining cases we prove at first the 

* * following Proposition (P): There is not a partial (V,E) 

satisfying one of (4), (5) or (6) and such that: i) there is a 
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* directed triple alEB meeting 12, d(1)=d(2)=6; ii) the directed 

triples of B(l) meet five distinct elements. 

* In fact the ordered pair 12 meets other two elements of B , say a
2 

and a
3

• Suppose aEa
2 

and (3Ea
3

• Let 3Eal , by i) it is a:t:3 and (3*3. 

If a={3 then both the ordered pairs a2 and 2a appear in directed 

* triples of B. By i) this is impossible. If a*(3 then 

* 3,a,{3EB(1)uB(2). Then the directed triples of B \(B(1)uB(2» meet 

an element x~{l,2,3,a,{3}. This implies d(a)E{8,ll}. 

* Case (4): Let V ={1,2, ... ,6}, and let d(L)=6 for L=l, ... ,4, 

d(5)=9 and d(6)=12. Note that for every a,{3E{l, ... ,4} both a{3 and 

* (3a can not appear in blocks of B, otherwise IB
3

1>9. It is 

possible to suppose that 12 meets a block of B(5). The blocks of 

B( 1) (B( 2) ) meet the elements * 2,5,6,oEV , * (l,5,6,OEV). 

Proposition (P) implies that o,oE{5,6}. Then 1 and 2 do not appear 

in any triple of B (3 )uB (4). It follows that both the directed 

* pairs 34 and 43 meet blocks of B • 

* Case (5): Let V ={1,2, ... ,7} and let d(L)=6 for L=l, ... ,6, 

d(7)=9. From Proposition (P) it follows that if d(a)=6 then V(a) 

contains at least one repeated element. The following cases arise: 

(a): V(1)={2,2,7,7}. Then B >9. 
3 

* * 

(b) : V(1)={2,3,7,7}. Then 

V(7)={l,l,2,2,3,3} and (V 'B ) has a sub-DTS(3,3) on the elements 

* * 4,5,6. It is easy to see that it is impossible to embed (V 'B ) in 

(V,B). (c): V(1)={2,2,3,3}. Proceeding as in (b) we can eliminate 

this case. (d): V ( 1) = {2, 2,3,7 }. It is easy to see that there are 

blocks of B(l) meeting both 23 and 32, a contradiction. 

* Case (6): Let V ={1,2, ... ,6} and let d(1)=d(2)=d(3)=6, 

* d(4)=d(5)=d(6)=9. Clearly IV(1)(\{4,5,6}1~2 and there is bEB such 
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that Ib{'\{I,2,3}12:2. Let 1,2Eb. By proposition (P), it is possible 

to suppose V(I)={2,4,4,5}. Then V(2)={I,4,4,5}. Since d(6)=9 this 

is impossible. I 

Theorem 2.1. DFine(v)~DAdm(v). 

Proof. Let v=2 (mod 3). It follows from Lemma 2.7 of [10) 

that C3~S(V)-6. Since c 3=s(v)-s we obtain S2:6. 

C
1
+2c

2
+3c3=v(v-l), it follows C2~ lV(~-I)J-c3=s. 

From c 2:C and 
1 2 

Let v=O, 1 (mod 3). It is easy to see that 

Lemmas 2.3 and 2.4 complete the proof. • 

let 

3. Recursive Constructions. 

In this section we will denote by (V,'B) a DTS(v,3) on the 

Put U=VuZ~, ~E{v+l,v+4}. For every iE{l,2, ... ,v} and jEZ~\{O} 

F.= {(a,b) I a,bEZ , b-a=j (mod ~)}, 
1 ~ 

ro iF j { (ro U a, b) ( a, b) E F j} , 

F.ro. 
1 L 

<ro.F .> 
L 1 

Lemma 3.1 Let (t,s) be the fine structure of (V,'B). Then 

for each aE{O,l, ... ,v}, (t,s+a(v+l)) is the fine structure of a 

DTS(2v+l,3) (w,e). 

Proof. Let W=VuZ v + 1 and let 'D be the mul tiset of directed 

triples constructed by putting on it either ro.F. u F.ro. u <ro.F.> 
L L L L L L 

or 3<ro
i
F

i
> for each i=1,2, ... ,v. Let e be the multiset of directed 
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triples of ~ and ~. I 

Lemma 3.2 Let (t,s) be the fine structure of (V,E). Then 

for each [3=1,2, ... ,v, and for each a=[3 , [3+ I, ... , v , 

(t+~(v+1),s+a(v+1» is the fine structure of a DTS(2v+1,3) (W,e). 

Proof. Let W=Vuzv + l' At first we suppose ~?::2. Let D be the 

multiset of directed triples constructed by putting on it 

~<v, either oo.F. 
£ £ 

U F.oo. 
£ £ 

U <oo.F.> 
£ £ 

or 3<00.F. > 
£ £ 

for each 

Let e be the multiset of directed triples of E 

and ~. 

Now let [3=1. If v is odd then Fv+I=F'UFII, F'={U,V;IH) 
-2-

~=O, I, ... , and F"={ (V;l+~,~) ~=O, 1, ... , }. Let b be the 

multiset of directed triples 200
v +1F'u 2F"ooV+1u F'oov+IuooV+IFIt. If v 
-2- -2- --2- --2-

is even then F
v

=F / UFIIU{(V;2,O)}, F'={(H1,Hv;2) 

2" 

. v-2 
£=0,1, ... ,~} 

and F"={ (HI, ~+ V;2) 

directed triples 

v+2 
{ (-2-'ooV' 0), 

2" 

. v+2 v+2 
I £=-2-'-2-+I, ... ,V}. Let E be the multiset of 

200 
v 
2" 

F'U 2F"00 U 
v 
2" 

F'oo 
v 
2" 

U ooV(FII\{(O/~)}) 
2" 

v v+2 
( 0 ,00 v' 2")' ( 00 v' -2-' 0 ) } . 

2" 2" 

U 

Using the differences F i , with if v is odd and L:;t:~ if v 

is even, we can proceed as in the case ~?::2 to construct a multiset 

D of directed triples. Let e be the multiset of directed triples 

of E, E and D. I 

Lemma 3.3. Let (t,s) be the fine structure of (V,E). Then 

(t,s+(v+l)(v+4» and (t+E(v+4),s+(a+E)(v+4», for each a=O,I, . .. ,v 
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and c=O,l, are the fine structures of a DTS(2v+4,3) (W,G). 

Proof. Let Let t'?1={(j,j+1,j+3) 

G2={(j,j+2,j+3) 

Let 'D 1 be the mul tiset of directed triples constructed by 

putting on it either 3t'?1 or 2 t'?1 v5'2 and, for each .L=4,5, •.. ,v+3, 

either 3<00. F.> or 00. F.vF.oo. v<oo. F.>. Let G be the multiset 
~-3 ~ ~-3 ~ ~ ~-3 ~-3 ~ 

of directed triples of P and 'D
i

• It is easy to see that (W,G) has 

the fine structure (t+c(v+4),s+(a+c)(v+4» for each a=O,l, ... ,v+1 

and c=O, 1. 

Let be the mul tiset of directed triples constructed by 

putting on it t'? 1 vG' 2V t'? 3' 00 F vF 00 v<oo F > 
1 4 4 1 1 2 

and, for each 

i=5,6, •.• ,v+3, Let G be the multiset of 

directed triples of P and 'D
2

• It is easy to see that (W,G) has the 

fine structure (t,s+(v+1)(v+4». I 

Lemma 3.4. Let (t,s) be the fine structure of (V,P). Then, 

for each (3=2,3, ... , V , a=(3 , (3+ 1, ... , v and c=O,l, 

(t+(3(v+4),s+(v+l)(v+4» and (t+«(3+c)(v+4),s+(a+c)(v+4», are the 

fine structures of a DTS(2v+4,3) (W,G). 

Proof. Let W=VvZ
V

+
4 

Define 5'1' G'2 and G'3 as in the proof of 

Lemma 3.3. Let 'D
1 

be the multiset of directed triples constructed 

by putting on it 

for 

either 3t'? 
1 

or 

each j=l,2, ... ,(3-1, and, 

2 <oo(3F (3+3>v<oo(3F
4
>, 

if (3<v, either 

G be the multiset of directed triples of P and Vi' It is easy to 

see that (W,G) has the fine structure (t+«(3+c)(v+4),s+(a+c)(v+4». 

Let 'D2 be the multiset of directed triples constructed by putting 
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on it 2<oo,F '+ >u<oo,F, > 
1 1 3 1 1+4 

for each 

j= 1 , 2 , ... , {3 -I, and if {3<v, oo,iFL+3UFL+ 300LU < OOLFL+ 3 > for each 

L={3+ 1 , (3+ 2, ... , v . Let e be the multiset of directed triples of ~ 

and'D
2

• It is easy to see that (W,e) has the fine structure 

(t+{3(v+4),s+(v+l)(v+4)). I 

Theorem 3.1. Let v~7. If DFine(v)=DAdm(v) then 

DFine(2v+l)=DAdm(2v+l). 

Proof. By Lemma 3.1, if a=O, then DFine(v)~DFine(2v+l). Let 

p=O,I, ... ,v and h=I,2, ... ,v, then from Lemma 3.1 it follows that 

(t,s(v)-v+h(v+l)+p)EDFine(2v+l) for each t=O,I, ... ,s(v)-v+p. Let 

p=o, 1, ... ,v, h=I,2, ... ,v and (3=1,2, ... ,h, then from Lemma 3.2 it 

follows that (t,s(v)-v+p+h(v+l))EDFine(2v+l) for each 

t={3(v+l),{3(v+l)+I, ... ,s(v)-v+p+{3(v+l)). Since s(v)-v~v for v~7, 

the proof is completed. I 

Theorem 3.2. Let v~9. If DFine(v)=DAdm(v) then 

DFine(2v+4)=DAdm(2v+4). 

Proof. By Lemma 3.3, if a=c=O, then DFine(v)~DFine(2v+l). Let 

p=o, 1, ... , v+3, h=O f 1, ... , v and (3=O 11, ••. , h+l. By Lemmas 3.3 and 

3.4, it is (t+{3(v+4),s(v)+I+h(v+4)+p)EDFine(2v+4) for each 

t=o, 1, ... ,s(v)-v-3+p. Since s(v)-v-3+{3(v+4)~({3+1) (v+4)-1 for v~9, 

the proof is completed. I 

For every Vi' V2~3 put DFine(v
i

) + DFine(v
2

)= {(ti + t 2,sl + 

s) (t
l

, Sl )eDFine (Vi) and (t2, S2)EDFine (v 2)} and kDFine (Vi) 

DFine(v
l

) + ... + DFine(v
l

) k times. 
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Theorem 3.3. If there is a pairwise balanced design (PBD) 

of order v having k£ blocks of size v£ for every i=1,2, ... ,h, then 

k1DFine(v1) + k
2
DFine(v

2
) + •.. + khDFine(vh)~DFine(v). 

Proof. Let ~ the blocks of the PBD. For each block in ~ of 

size v£' form a DTS(Vi )· I 

4. Solutions for small orders. 

Lindner and Wallis [9], and independently Fu [7J, proved the 

following Lemma. 

Lemma 4.1. For v=O,l (mod 3), there exist two DTS(v,l) on 

the same element set intersecting in k triples if and only if k E 

{O,l, ... ,s(v)-2,s(v)}. 

For the proof of the following Lemma it is possible to see 

the survey [4J. 

Lemma 4.2. For all v=O,l (mod 3) there exists a large set 

of disjoint DTS(v,l). 

As a trivial consequence of Lemmas 4.1 and 4.2 we obtain the 

following result. 

Theorem 4.1. Let v=O,l (mod 3). For each s, Ossss(v), s~l 

it is (s,s)EDFine(v). 
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From Lemma 2.3 and Theorems 2.1 and 4.1 it follows that: 

Theorem 4.2. DFine (3) ={ (0,0), (0,2), (2,2)}. 

Theorem 4.3 DFine(4)=DAdm(4)\{(0,2), (O,3)}. 

Proof. Let V={1,2,3,4}. If dl
1
={124, 231, 342, 413, 142, 

213, 324, 431, 421, 132, 243, 314} then (V,dl
1

) produces (0,4). If 

:B
1
={123, 241, 314, 432, 412, 134, 243, 142, 413, 234} and 

:B
2
={321}, then (V,'B

1
u2:B

2
) produces (1,4). If ti'1={431, 342, 341, 

432, 321, 142, 413, 234} and ti'2={123, 214} then (V,G1u2ti'2) 

produces (2,4). If :D
1
={342, 341, 432, 142, 213, 324} and :D

2
={123, 

214, 431} then (V,:D
1
u2:D) produces (3,4). If f\={241, 431, 341, 

314, 342}, e
2
={214, 432} and e

3
={123} then (V,e

1
u2e

2
u3e) produces 

(2,3). Lemmas 2.3, 2.4 and Theorems 2.1, 4.1 complete the proof. I 

Theorem 4.4. DFine (6) =DAdm (6) \ { (0,2) , (0,3) , (0,4) , ( 1,4) } . 

Proof. Let V={1,2, •.• ,6}. If dl
1
={534, 354, 345, 154, 235}, 

dl
2
={145, 253} and dl

3
={651, 562, 241, 132, 316, 426, 643} then 

(V,dl
1
u2dl

2
u3dl

3
) produces (2,3). 

If .M
1
={451, 415, 541, 542, 452, 524, 423, 513}, .M

2
={243, 153} 

and .M
3
={614, 346, 162, 635, 256, 321} then (V,.M

1
u2.M

2
u3.M

3
) produces 

(2,4). Replacing in this DTS (6,3) some opportune blocks we can 

produce new fine structures. For example if .M~l) = (.,111 \ {542, 524, 

423} )u{ 243} and .,11(1)=(.,11 \{243})u{423, 
2 2 

524} then 

produces (3,4). 

If 'B
1
={126, 162, 612, 236, 263, 623, 346, 364, 634, 456, 465, 
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645, 516, 561, 651} and B
3
={214, 153, 431, 325, 542} then 

(V,B
1
v3':B

3
) produces (0,5). Replacing opportune blocks, we obtain 

(t,5) for t=2,4. 

If G1={452, 425, 542, 543, 534, 453, 143, 134, 314, 152, 125, 

215 , 132 } , G 2 = { 321 } and G 3 = { 264, 365, 461, 516, 623} then 

(V,G
1
v2G2v3G

3
) produces (1,5). Replacing opportune blocks, we 

obtain (3,5). 

If £1={135, 163, 153, 154, 164, 146, 263, 236, 235, 254, 245, 

246,356,536,563,465,645, 654} and .:t'3={521, 612,341, 432} 

then (V, .:t'1 v2.:t'2) produces (0,6). Replacing opportune blocks, we 

obtain (t, 6) for t=l, 2, ... ,5. 

If 1\={124, 241, 214, 431, 314, 341, 126, 162, 621, 236, 263, 

623, 436, 364, 643, 456, 465, 645, 516, 561, 651} and :D
3
={153, 

325, 542} then (V,:D1v3:D3 ) produces (0,7). Replacing opportune 

blocks, we obtain (t,7) for t=l,2, ... ,6. 

If e
1
={214, 421, 124, 341, 431, 314, 542, 524, 452, 126, 162, 

621, 236, 263, 623, 436, 364, 643, 456, 465, 654, 516, 561, 651} 

and e 3 = { 153 , 325} then (V, e
1
v3e) produces (0,8) . Replacing 

opportune blocks, we obtain (t,8) for t=l, 2, ... ,6. 

If :f
1
={421, 612, 236, 314, 436, 364, 634, 524, 645, 516} , 

:1
2
={214, 162, 263, 431, 542, 465, 561} and :f

3
={153, 325} then 

(V, :f 1 v2:f 2 v3:f) produces (7,8) . 

If §'1={214, 421, 124, 341, 431, 314, 542, 524, 425, 126, 162, 

621, 326, 263, 623, 436, 364, 643, 456, 465, 654, 516, 561, 651, 

325, 352, 235} and §'3={153} then (V'§'lv3§'3) produces (0,9). 

Replacing opportune blocks, we obtain (t, 9) for t=l, 2, ... ,8 and 

(t,10) for t=O,l, ... ,9. 
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Lemmas 2.3, 2.4, 2.5 and Theorems 2.1, 4.1 complete the 

proof. I 

Theorem 4.5. DFine ( 7) =DAdm (7) \ { (0,3) , (0,5) , ( 1,4) } . 

Proof. Starting from the Steiner triple system of order 7, 

Theorem 3.3 implies that if (t,s)EDAdm(7) and t and s are even 

then (t,s)EDFine(7). 

Let V={0,1, ... ,6}. If .s4
1
={106, 250, 056, 506, 560}, .s4

2
={160, 

205} and .s4
3
={012, 653, 213, 304, 352, 361, 403, 154, 246, 642, 

451} then (V,.s4
1
U2A

2
u3.s4

3
) produces (2,3). 

If B 1 = { 0 12, 4 3 1 , 5 3 2 , 123 , 3 12 , 32 1 }, B 2 = { 02 1 , 413 f 5 2 3} and 

B
3
={615, 630, 516, 036, 140, 354, 624, 045, 426, 250} then 

(V,B
1
u2B

2
u3B

3
) produces (3,4). 

If G
1
={012, 102, 120, 230, 203, 023, 340, 304, 034, 410, 401, 

014, 541}, b
2
={514} and b 3={605, 506, 532, 216,624, 315, 425, 

613, 436} then (V,G1u2b
2
U3b) produces (1,5). Replacing opportune 

blocks we obtain the fine structures: (t,5) for t=2,3,4; (t,6) for 

t=l,3,5; (t,7) for t=l,2, ... ,6; (t,8) for t=1,3,5,7i (t,9) for 

t=2, 3, ... ,8. 

If 9'1={105, 026, 356, 123, 602, 635, 150, 312, 056, 065, 560, 

650, 513, 153, 351, 531, 263, 623, 362, 326, 102}, 9'3={201, 034, 

430, 524, 425, 614, 416} then (V,9'
l
u39'3) produces (0,7). Replacing 

opportune blocks we obtain the fine structures (0,9), ( 1,9) and 

(t, 10) for t=l,3,5,7,9. 

If :H'1={021, 102, 120, 230, 203, 023, 430, 304, 034, 463, 436, 

346, 410, 401, 014, 154, 541, 514, 351, 315, 135, 631, 613,136, 

261, 216, 126, 605, 056, 650, 506, 065, 560} and :H'3={245, 642, 
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532}, then (V,H
1
u3H

3
) produces (0,11). Replacing opportune blocks 

we obtain the fine structures: (t,11) for t=1,2, ... ,10; (t,12) for 

t=1,2, ... ,11; (t,13) for t=0,1, •.• ,12i (2t+1,14) for t=0,1, ... ,6. 

Lemmas 2.3, 2.4, 2.5, 2.6 and Theorems 2.1, 4.1 complete the 

proof. I 

Lemma 4.3 It is (0,3)EDFine(v) for every v=O, 1 (mod 3), 

v~9. 

Proof. By Lemmas 3.1 and 3.3 it is sufficient to prove that 

(0,3)EDFine(v) for v=9, 10, 12, 13,15, 16, 18. Let V={0,1, ... ,8}. 

I f B 1 = { 124 , 142 , 4 12 , 34 1 , 43 1 , 3 14 , 2 34 , 42 3 , 243 } and 

B
3
={547, 648, 740, 845, 046, 521, 163, 320, 617, 718, 810, 015, 

625, 726, 827, 028, 538, 735, 836, 037, 560} then (V,B
1
u3B

3
) 

produces (O,3)EDFine(9). 

Let S={O,l, ... ,it}, it=6,7,9,10. For each T=it+1 and jEZT\{O} 

put F
j
={ (a,b) I a,bEZ

T
, b-a=j (mod T)}. If it=6 then put Pj=F

j 
for 

j=l, 4,5; P
2
={13, 21, 32, 40, 54, 65, 06}, P

3
={14, 25, 36, 43, 

50,61, 02} and P
6
={10, 24, 35, 46, 51,62, 03}. If it=7 then put 

Pj=F
j 

for j=l, 4, 5; P
2
={13, 21, 32, 46, 50, 64, 75, 07}, P

3
={14, 

20, 36, 47, 53, 65, 71, 02}, P
6
={17, 25, 31, 43, 54, 60, 72, 06}, 

P
7
={10, 24, 35, 42, 57, 61, 76, 03}. If it=9 then put P.=F. for 

j j 

j=l, 3, 4, 5, 6, 7; P
2
={13, 21, 32, 46, 57, 64, 75, 80, 98, 09} , 

P
s
={19, 20, 35, 43, 54, 68, 76, 87, 91, 02} , P

9
={10, 24, 31, 42, 

53, 65, 79, 86, 97, 08} . If it=10 then put P.=F. for j=l, 3, 4, 5, 
j j 

6,7,8, and if we put a=10, P
2
={13, 21,32,46,57,64,75, 8a, 

90, a8, 09}, P
9
={la, 20, 31, 43, 54, 65, 76, 87, 98, a9, 02}, 

P
1o

={10, 24, 35, 42, 53, 68, 79, 86, 97, a1, Oa}. Suppose it=6. Let 
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(W,B), W={001,oo2,003}' be a DTS(3,3) for which it is (0,0)EDFine(3). 

Let 

~=O , I, ... , 6 } . If then ( VuW , 'Euil ) produces 

(O,3)EDFine(10). For ~=7,9,10 let (W,'B) be a DTS(~-3,3) for which 

it is (0,0) EDFine (~-3 ). Proceeding as above we obtain the proof 

for v=12,16,18. By Lemma 3.1 (with the differences P. instead of 
j 

construct a DTS(v,3), v=6,7, such that (O,O)EDFine(v). 

Proceeding as above we obtain (O,3)EDFine(v) for v=13, 15. I 

Theorem 4.6. DFine(9)=DAdm(9). 

Proof. Starting from the Steiner triple system of order 9, 

Theorem 3.3 implies that if (t,s)EDAdm(9) and t and s are even 

then (t,s)EDFine(9). 

Let V={O,l, ... ,8}. If il
1
={076, 687, 876, 768, 826, 286, 268, 

718,781, 871, 182, 812, 128}, il
2
={067} and il

3
={083, 370, 341, 

456, 480, 604, 432, 724, 385, 105, 573, 147, 584, 502, 136, 275, 

201,623, 651}, then (V,il
1
u2il

2
u3il

3
) produces (1,5). 

Lemma 4.3 and Theorem 4.1 produce (0,3), (s,s)EDFine(9) for 

each 8=0,2,3, ... ,24. By Lemmas 3.1 and 3.2 (with opportune changes 

in some cases) it is possible to complete the proof. For the sake 

of brevity we show the changes only in three cases. Let F11 ={ 13, 

32, 21} , F
12

={40, 04} , F
21

={12, 24, 41 } , F {30, 03}, F31 ={ 14, 22 

31, 43 } , F32 = {02, 20} , F
41

={23, 34, 42} , F42 ={ 10 I 01} and 

F.=F. uFo for ~=1, 2,3 f 4. At last let W={oo. ~=1,2,3,4}. Case I: 
-L u -L2 L 

Let (1,4) be the fine structure of the DTS(4,3). If 

il =00 F u<oo F >vF 00 1 1 11 1 11 11 1 
and il =.6 <oo.F.>u<oo F > 

3 -L= 2 -L -L 1 12 ' 
then 
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(WvZ
5

, 

structure 

produces (1,7). Case II: Let (2,3) be the fine 

of the DTS(4,3) (W,:B) . If 

A =.0 «oo.F.>voo.F.vF.oo.)vco F v<co F >vF co v{co 04,4000 } 
1 -L=2 -L -L L -L L L 1 11 1 11 11 1 1 1 

and 

A
2

={co
1
40, 0400

1
}, then (WvZ

5
,:BvAlv2A) produces (4,23). Case III: 

Let (W, 'B) be the DTS (4,3) constructed in Theorem 4.3 producing 

(2,3) EDFine (4) where we put coL instead of L (remember that the 

2-times repeated blocks 

A= and let 

are co co 00 
214 

'G'=Av:Bv{123, 

and Let 

Theorem 4.7. DFine(10)=DAdm(10). 

Proof. Since there is a PBD on 10 elements with 9 blocks of 

size 3 and 3 blocks of size 4, by Theorem 3.3 and Lemma 4.3 it 

remains to prove that (0, s), 

3<s<30. Let F
j
={ (a,b) a,bEZ

7
, 

V={ool ' 00 2' 00 3} . Let G
11

={12, 

G
21 

= {24, 42} , G 22 = {13, 35, 56, 

G
52

={ 34, 45, 53}, G =G vG 
12' 1 

F vF vF =G vG vG 
1 2 5 1 2 5 

11 

F 
4 

(1,s)EDFine(10) for each odd s, 

b-a=j (mod 

23, 31 } , 

60, 

G =G 
2 21 

and 

01} , 

vG 
22 

F 
6 

7) } , jEZ
7 

\ {O} , and let 

G
12

={46, 50, 64, 05} , 

G {16, 20, 61, 02} , 
51 

and G =G vG Clearly 
5 51 52 

form the block set 

A={(1+L,L,4+L) L=O, 1, ... , 6 (mod 7)}. Let (V, :B ) be a DTS ( 3 , 3 ) 

such that either (0,0) or (0,2)EDFine(3). If 'G'=<oo G >V<oo G > and 
1 1 3 52 

then (VvZ
7

,:Bv'Dv3'G'v3A) 

produces either (0,11) or (0,13)EDFine(10). Similarly we can prove 

that (0,s)EDFine(10) for each s=5,7,9. 

(0,2)EDFine(3). If 
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produces (1,5). 

If dJ 
3 

and Y;={234}, then 

!X't 64 }, then (VuZ
7

,'B
1
ue

1
u2Y;u3dJu3dJ3u3dJ) produces (1,7). Analogously 

it is possible to prove that (1,s)EDFine(10) for s=9,11,13. 

Let (V,'B) be a DTS(3,3) such that (0,2)EDFine(3). If 1={104, 

041, 140, 304, 340, 430, 415, 154, 541, 521, 251, 215, 362, 326, 

632, 603, 063, 036, 526, 652, and 'D =co G u <co G > 
1 2 2 2 2 

co354}\{oo256, co260, co201, co334, 34co
3 , co345}, then (VUZ

7
,'BU1u'D1u3G'1) 

produces (0,23). Similarly we can prove that (0,s)EDFine(10) for 

s=15,17,19,21. 

Let (V,'B) be a DTS(3,3) such that 

11=1 u {504, 310, 240, 134}\{140, 304}, U <co G > u G co U 
1 1 1 1 

co206}\{oo201, co334, 34co
3 , co345, co260, 00

256, co131, co213 , co150, co320, 

co}4} and G'2={co3co2co
1
}, then (VUZ

7
,11U'D2u3G'2) produces (0,29). 

If andG' =t;' u 
3 2 

{4co
1
6, 6oo

1
4}, then (VUZ

7
,11UD3u3t;'3) produces (0,27). Analogously 

we obtain (O,25)EDFine(10). If in the above cases we replace the 

blocks 362 and 526 with 326 and 562, we obtain (l,s)EDFine(lO) for 

each s=15, 17, 19, 21, 23, 25, 27, 29. I 

Theorem 4.8. DFine(12)=DAdm(12). 

Proof. Since there is a PBD on 12 elements with 16 blocks of 
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size 3 and 3 blocks of size 4, by Theorem 3.3 and Lemma 4.3 it 

remains to prove that (O,s), (1,s)EDFine(12) for each odd s, 

3<s<44. a,bEZs ' b-a=j (mod 8)}, jEZ
8
\{0}, and let 

Let G
11

={13, 21, 32} , G
12

={46, 54, 65} , 

G
13

={70, 07}, G
2
={24, 35, 57, 12, 43, 60, 76, 01}, G

4
={71, 02, 10, 

23, 34, 45, 56, 67}, G
71

={15, 51}, G
72

={26, 62}, G
73

={37, 73}, 

G =G uG uG uG 
7 71 72 73 74 

Clearly 

F and F form the block set 
5 6 

.s4={ (lH, 7H, 4H) i=0,1, ... ,7}. Let (V,~) be a DTS(4,3) such that 

either (0,0) or (0,4) or (1,4)EDFine(4). Let a(i)=i for i=l,2, 

a(4)=3 and a(7)=4. For each G. 
L 

put in b either the 

directed triples 

U Giooa(i)' Then 

for each odd S1' 

<ooa(i)Gi > 3-times repeated or ooa(i)Gi U <ooa(i)Gi > 

(VuZs,~ubu3.s4) produces (O,S1)' (1'S2)EDFine(12) 

and for each odd 7ss s33. 
2 

Suppose 

that the DTS(12,3) which produces (0,3) above constructed contains 

the directed triples 00 G u<oo G >uG 00 . 
1 11 1 11 11 1 If we change the 

directed triples {2 00
3
3, 2 00

3
3 I 300

3
4, 3 00

3
4, 001 32 } with {32 00

3
, 2300

3
, 

00
334, 00

334, 001 23 }, then (1,5)EDFine(12). 

If .s4 {174, 741, 417, 205, 025, 520, 316, 163, 631, 427, 247, 1 

742, 530, 350, 035, 614, 641, 164, 752, 725, 527, 063, 036, 306} 

00
2
35, 35 00

2, 00
257, 7100

3
, 00302}, then (VuZ s ' 

for each s=35, 37, 39, 41. 

produces ( ° , s) 

Suppose the set of 3-times repeated blocks 

000000, 
243 

and b 2 =b 1 u { 00 200 1 0 , 
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oo371}, then (VuZ
a

,'B
1
uG

2
uil

1
) produces (0,43). If in the above five 

DTS(12,3) we change the blocks 025 and 520 with 205 and 502, it 

follows (1,s)EDFine(12) for each s=35, 37, 39, 41, 43. I 

Theorem 4.9. DFine(v)=DAdm(v) for v=13,15,16,18. 

Proof. Since there are PBD on v elements with blocks of size 

3 and blocks of size 4 [5], by Theorem 3.3 and Lemma 4.3 it 

remains to prove that (O,s), (l,s)EDFine(v) for each odd s, 

3<s<s(v) . For v=13,15 we can proceed as in Theorem 4.6 using the 

costruction w-->2w+1, w=6,7. The ingredients are a DTS (w, 3) having 

an opportune fine structure and the following edge decompositions 

of the complete directed graph on w+1 elements: For w+1=7, let 

P
1
={12, 23, 31, 46, 64, 50, 05} , P

2
={13, 24, 35, 42, 56, 60, 01} , 

P3={16, 61, 20, 34, 45, 53, 02} , P
4
={l4, 25, 36, 40, 51, 62, 03}, 

Ps={15, 26, 30, 41, 52, 63, 04} , P6={10, 21, 32, 43, 54, 65, 06} . 

For w+1=8, let P
1
={12, 23, 31, 45, 56, 67, 70, 04}, P

2
={13, 24, 

35, 42, 57, 60, 71, 06} , P3={14, 25, 36, 47, 50, 61, 72, 03} , 

P
4
={15, 26, 37, 40, 51, 64, 73, 02 } , Ps={16, 27, 30, 41, 52, 63, 

74, 05} , P6={17, 20, 34, 46, 53, 62, 75, 01} f P
7
={10, 21, 32, 43, 

54, 65, 76, 07} . For v=16 the proof follows from the existence of 

a PBD with three blocks of size 6 and the remaining blocks of size 

3. For v =18 the proof follows from the existence of a PBD with 3 

blocks of size 4, one block of size 6 and the remaining blocks of 

size 3 [11]. I 

Theorem 4.10. DFine(5)=DAdm(5). 

Proof. Let v={0,1, ... ,4}. If 'B
1
={012, 123, 234, 340, 401, 
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024, 130, 241, 302, 413, 031, 142, 203, 314, 420, 043 104, 210, 

321, 432} , then produces (0,6) . If 'B (1 ) ='B v { 032 
1 1 ' 

431, 

014}\{130, 302, 413, 031, 104} and 'B~1l = {130} , then (V,'B(1)v2'B(1l) 
1 2 

produces (1,6). If t'\={123, 304, 410, 024, 341, 314, 420, 043, 

401, 321} and t;'2={432, 012, 203, 130, 214}, then (V,t;'
l
v2G) 

produces (5,6) . 

t;'~2)=t;'2\{432}, 

t;'(2)=t;'( 1) {021 
1 1 I 

then 

012, 

(V, (2) ) produces 
2 

and \{203}, 

If t;' (1 ) =t;' v { 43 1 , 
1 1 

(V t;'(l)v2t;'(2» 
, 1 2 

312}\{321} and 

(3,6) . 

then 

432, 342}\{341} and 

produces (4,6) . If 

(1)\{012}, then 

230, 034}\{304} 

produces (2,6) . If 

1J
1
={402, 204, 142, 342, 243, 241, 301, 103} and D2 {321, 401, 034, 

143, 102, 230} then (V,1J
1
v21J

2
) produces (6,6). I 

Theorem 4.11. DFine(8)=DAdm(8). 

Proof. Let V={0,1, ... ,7}. If 'B
1
={126, 157, 257,346,375, 

475,567, 765}, 'B
2
={125, 167, 276, 347, 356, 465} and 'B

3
={143, 

421, 532, 624, 731, 203, 510, 630, 740, 054, 061, 072}, then 

(V,'B
1
v2B

2
v3'B) produces (6,6). To obtain (t,6) for t=2,3,4,5 

change opportunely in some directed triples of 'B
1
v2'B

2 
the directed 

pair 67 with 76 and (or) 56 with 65. For example changing the 

blocks 276 and 567 with 156 and 265 we obtain (5,6). 

If (;'1 {125, 126, 127, 156, 157, 167, 256, 257, 267, 345, 346, 

347, 365, 367, 375, 465, 476, 475, 576, 765} then (V,G
1
v3'B

3
) 

produces (0,6) . If t;'(1)=Gv{265 
1 1 ' 

275}\{256, 257, 576, 765} and 

t;'~1)={576}, then (V t;'(l)v2t;'°)v3B ) 
, 1 2 3 

produces (1,6) . 

If {152, 126, 127, 165, 167, 175, 256, 257, 267, 345, 346, 

347, 536, 537, 376, 465, 475, 476, 567, 765, 325, 352, 532} and 
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7)3={143, 421, 624, 731, 203, 510, 630, 740, 054, 061, 072}, then 

(V, produces (0,7) . If 7) (1) =7) u { 125 } \ { 152 , 
1 1 

325} and 

7)~1)={352}, then (V,7)~l)U27)~l)U37)) produces (1,7). 

If e
1 

{126, 157, 257, 346, 375, 745, 567, 765, 470}, e
2
={125, 

167,276,347,356,465, 740} and e
3
={143, 421, 532,624,731, 

203, 510, 630, 054, 061, 072}, then (V,e
1
u2e

2
u3e

3
) produces (7,7). 

If 347, 374, 475}\{745} and {347}, then 

( V e (l)u2e (l)u3e ) 
'1 2 3 

and e(2)=e \ {167, 
2 2 

produces (6,7). If e~2)=elU{ 167, 176, 

276}, then (V e(2)u2e(2)u3e) produces 
, 1 2 3 

276, 267} 

(5,7). If 

176 , 276 , 267 } and 1 ) \ { 167 , 276}, then 

(V e(3)u2e(3)u3e) produces 
'1 2 3 

(4,7) . If 465, 365, 

456 } and =e ~ 2 ) \ { 356, 465}, then (V e(4)u2e(4)u3e) produces 
, 1 2 3 

(3,7). If e(S) 
1 

3)u{356, 465, 365, 456} and e~S)=e~3\{356, 465}, 

then (V,e(S)u2e(S)u3e) produces (2,7). 
1 2 3 

Let fJ {125, 126, 127, 165, 176, 175, 256, 257, 267, 435, 
1 

436, 347, 365, 367, 735, 465, 476, 457, 567, 576, 314, 134, 143, 

713, 371, 731} and fJ
3
={421, 532, 624, 061, 203, 510, 630, 740, 

054, 072 } , then (V,fJ
1
u3§') produces (0,8) . If fJ(l)=§' u{376}\{367, 

1 1 

576, 567} and ={567}, then (V §,(l)u2§' u3§' ) 
'1 2 3 produces (1,8) . If 

375}\{435, 735, 134, 371, 143, 731} and §,(2)={143 
2 ' 

731} then (V §' (2) u2§' (2) u3§' ) produces (2,8). 
, I 1 2 3 

Let Jf 1 {12 6, 157, 257, 436, 735, 475, 567, 765, 134, 371} and 

Jf
2
={l25, 167, 276, 347, 356, 465, 143, 731}, then (V,Jf

1
u2Jf

2
u3fJ

3
) 

produces (8,8) . If Jf (1) =Jf u{ 346 
1 1 ' 

347, 437}\{436} and 

then produces (7,8) . Similarly 

we can prove that (t,8)EDFine(8) for each t=3,4,5,6. 

Let :£1 {152, 126, 127, 156, 157, 167, 256, 257, 267, 453, 
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436, 347, 365, 367, 753, 465, 476, 475, 576, 765, 314, 134, 143, 

713, 371, 731, 352, 325, 532 } and :£ 
3 

{532}, then 

produces (0,9). If :£(1)=:£ v{ 125} \ {152, 325, 352} and :£2(1)={ 352}, 
1 1 

then produces (1,9) . 

134, 143 } and then produces 

(2,9) . If 2)v{175, 165}\{765, 156, 157, 576} and 

:£(3) (2)v{576}, 
2 

then produces (3,9) . If 

:£(4)=Jf v{753 
1 1 ' 

352}\{735} and =Jf2V{532}, then 

( V :£(4)v2:£(4)v3:£ ) 
, 1 2 3 

produces (9,9) . If :£~S) (4)v{346, 347, 

437 } \ { 436 } and then (V :£(S)v2:£(S)v3:£) produces 
, 1 2 3 

(8,9). Similarly we obtain (t,9)EDFine(8) for each t=4,5,6,7. 

In the following we give a complete solution for the cases 

(0, s), (s,s), s=10, 11, ... ,18. Proceeding as above it is possible 

to obtain the remaining cases. 

Let M
1
=:£lV{412, 421, 413, 142, 216, 217}\{126, 127, 143} and 

M3=:£3\{421}, 

412}\{126} 

(10,10) . 

then 

and 

(V, Ml v3M3 ) produces 

then 

( 0 10) Let M(1)=:£(4)v{216 
,. 1 1 ' 

(V M(l)v2M(l)v3M) produces 
, 1 2 3 

Let N
1

=M
1
v{624, 642, 462, 241, 124, 645}\{421, 142, 465} and 

241}\{421} and then produces 

(11,11) . 

Let P1=:£lv{725, 726, 637, 457, 567, 023, 203, 230, 027, 207, 

072,360,630, 603}\{257, 267, 367, 475, 576} and :P
3
=:£3\{203, 630, 

072} , 

603, 

then 

027, 

(V,P
1
v3P) 

230}\{257, 

produces (0,12) . 

475} and 

(V,P(l)v2:P(1)v3:P) produces (12,12). 
1 2 3 
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Let 601, 306, 617, 016}\{360, 167 } and 

Q
3 

{061}, then (V,Qlu3Q3) produces ( 0 13) Let Q(1) =:p(1)U{ 063 
,. 1 1 ' 

601}\{603} and Q(1)=p(1)U{061} then 
2 2 ' 

(V Q(l)u2Q(1)u3Q) produces 
'1 2 3 

(13,13) . 

Let 106, 150, 510, 501}\{157, 016} and 

150}\{157} and produces 

(14,14) . 

Let Y'1=:R1u{216, 217, 341, 421, 412, 142}\{126, 127, 314} and 

.'f
3

='R
3
\{421}, then (0,15). Let <1)='R~1)U{412, 

2 16 } \ { 126 } and (V Y'(l)u2Y'(Uu3:f) produces 
, 1 2 3 

(15,15) . 

Let 'jl=Y' lu{374, 746, 470, 740, 407, 702}\{347, 476, 072} and 

'j 
3 

{740} , then 

470}\ {476} and 

(16,16) . 

produces (0,16) . Let 

740} , then produces 

051, 054, 504, 045}\{457, 501} and 

V
3
='J

3
\{054}, then (V,Vlu3V3 ) produces 

504}\{150} and ='J~l)U{054}, then 

(17,17) . 

(0 17) Let V(1)='j(1)U{105 
,. 1 1 ' 

(V V(l)u2V(l)u3V) produces 
, 1 2 3 

Let V
1
=V

1
u{162, 241, 642, 264, 624}\{126, 421}, then (V,Vl ) 

produces (0,18). Let <1l=V~l)U{162, 264}\{126} and 

v(1)=V(1)u{624} then (V,V(1)u2V(1) produces (18,18). I 
2 2 ' 1 2 

Theorem 4.12. DFine(11)=DAdm(11). 

Proof. Lemma 3.1 produces (t,s)EDFine(ll) for s=6k, 

k=0,1, ... ,6 and O~t~s. 

Let V={0,1, ... ,9,a}. Let V1 be the block set defined in the 

above Theorem· 4.10. If ~1={062, 649, 6317 96a, a68, 860, 083, 841, 
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438, 218, 209, 910, 139, 942, 3aO, a23, 24a, 1a4} and '§2={051, 

85a, a59, 958, 879, 973, a71, 074, 782, 70a, 540} , then 

(V,D1u3§'lU3§'2) produces (0,7). 

Let e and e be the block sets defined in the above Theorem 
1 2 

4.10. If and §,(1)={071 
2 ' 

723, 87a, 978, a79, 

859, 953, a51, 054, 582}, then produces 

(7,7). Proceeding as in the Theorem 4.10 we prove that 

(t,7)EDFine(11) for each t=1,2, ... ,6. 

To settle the cases (t,s), for each s=8,9, ... ,34 and O::st::ss, 

it is possible to embed a DTS(5,3) on W={())l' ())2""'())s} having an 

opportune fine structure'in a DTS(11,3) as in Theorem 4.6. (Note 

that F
2
={13, 35, 51}u{24, 40, 02} and F

3
={14, 4I}u{25, 52}u{30, 

03 } ) . 

To settle the cases (t, 35) , it is possible to suppose that 

the DTS(ll,3) (V,E) producing (t,34) above constructed contains 

the three-times repeated blocks ()) 14 
3 

and 4I()) . 
4 

()) ()) ()) EB. 
3 1 4 

Then it 

Moreover it is 

is possible to 

replace in B the blocks C03())1())4' ())3 14 , ())1 45 , ()) 15 with ())3 00 1 4 , 4 

co30041 , 001004,5, 145 and or the blocks ())300400
1' ())3 I4 , 0\42, 00 12 with 

1 

the following ones ())3 0044 , 00
3

00
1
1, 00

4
00

1
2, 142. I 

Theorem 4.13. DFine(14)=DAdm(14). 

Proof. Let V={0,1, ... ,9,a,b,c,d}. If .111 ={ d8b, dac, 8ac, 

90b, 9ca, cOa, Oc8, abc, cba} , .I1
2
={d8a, dbc, 8cb, 90c, 9ab, Oba, 

c08} and .11 ={a8d, a30, 7a9, la4, 
:1 

2a5, 3a6, Sal, 6a2, 4a7, bdO, 

b98, Ib6, 2b7, 3bl, 4b2, 5b3, 6b4, 7b5, c9d, Ic7, 2cl, 3c2, 4c3, 

5c4, 6c5, 7c6, d69, 05d, Id2, 2d3, 3d4, 4d5, 7d1, 6d7, 819, 480, 

185, 286, 387, 582, 683, 784, 092, 395, 294, 596, 491, 973, 103, 

046, 720, 507, 601} , then (V,.I1
1
u2.11

2
u3.11

3
) produces (7,7) . If 



il ( 1 ) =il u { 9 ab , 
1 1 

9ba, eab}\{eba} and then 

( V .il(l)u2.il(1)u3.il ) 
, 1 2 3 

produces ( 6 , 7) . Similarly we can prove that 

(t,7)EDFine(14) for each t=2,3,4,5. 

Let 'Bl ={da8, d8b, 8de, dab, dae, dbe, 8ea, 8ba, 8cb, 90a, 

90b, 90c, 9ab, 9ae, 9be, Oca, aba, Oeb, abc, eba, ad8, a8d, 8ad} 

then produces (0,7) . If 

8ad} then 

produces (1,7). 

To complete the proof we can proceed similarly to the above 

Theorem by embedding a DTS(5,3) on W={ool' oo2""'cos } having an 

opportune fine structure in a DTS(14,3) (see also Lemmas 3.3 and 

3.4). The ingredients are: P
1
={10, 25, 34, 43, 58, 67, 76, 82, 

o 1 }, P 2 = { 18 , 2 0, 3 2, , 47, 5 4 , 6 5, 7 1 , 86, 03}, P 3 = { 12 , 2 3 , 3 1, 45, 

56, 64, 78, 80, 07}, P
4
={14, 21, 36, 42, 53, 60, 75, 87, 08}, 

P
s
={16, 27, 38, 40, 51, 62, 73, 84, 05} and one of the following 

block sets: either 3{(j,j+2,j+6) I jEZ
9

}, or 2{(j,j+2,j+6) 

u {(j,j+4,j+6) jEZ
9

}, or {(j,j+2,j+6) jEZ
9

} u {(j,j+6,j+2) 

Proof of the Main theorem. The results of the section 4 and 

Theorems 2.1, 3.1 and 3.2 prove the Main theorem. 
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