The Fine Structure of Threefold Directed Triple Systems.(*)

Salvatore Milici (*), Gaetano Quattrocchi (*) Dipartimento di Matematica, Universita' di Catania, viale A. Doria 6, 95125 Catania, Italy.

Abstract. The fine structure of a threefold directed triple system is the vector $\left(c_{1}, c_{2}, c_{3}\right)$, where c_{i} is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a threefold directed triple system.

1. Introduction. A λ-fold triple system of order v, denoted $T S(V, \lambda)$, is a pair (V, d) where V is a v-set and d is a collection of 3 -subsets (called blocks or triples) of V, such that each $2-$ subset of V is contained in exactly λ triples.

A λ-fold directed triple system of order v, denoted $\operatorname{DTS}(v, \lambda)$, is a pair (V, B) where V is again a v-set while B is a collection of ordered 3 -subsets (called directed or transitive triples) of V, such that each ordered pair of distinct elements of V is contained in exactly λ directed triples. We note that each directed triple contains 3 ordered 2-subsets and the ordered 2 -subsets contained in the directed triple (a, b, c) are $(a, b),(a, c)$ and (b, c). A directed triple system is also called a transitive triple system

[^0]in the literature. It is well-known that there exists a DTS (v, λ) if and only if either $\lambda \equiv 1,2(\bmod 3)$ and $v \equiv 0,1(\bmod 3)$, or $\lambda \equiv 0(\bmod$ 3) and $v \neq 2$ [1].

These definitions permit \mathcal{A} and \mathcal{B} to contain repeated triples and repeated directed triples respectively. For each $i=1,2, \ldots, \lambda$, let \mathcal{B}_{i} denote the set of (directed) triples appearing i-times in (B) A. Let $\left|\mathcal{B}_{i}\right|=c_{i}$. Then $i c_{i}$ is the number of i-times repeated (directed) triples contained in the multiset $i B_{i}$ (the union of i copies of \mathcal{B}_{i}). It is easy to verify that the number of (directed) triples contained in a (DTS $(v, \lambda))$ TS (v, λ) is $\left(c_{1}+2 c_{2}+\ldots+\lambda c_{\lambda}=\lambda v(v-1) / 3\right) \quad c_{1}+2 c_{2}+\ldots+\lambda c_{\lambda}=\lambda v(v-1) / 6$.

Designs with repeated blocks have interesting applications in statistics [6], so the structure of repeated (directed) triples in (directed) triple systems has been widely studied. Lindner and Rosa [8] implicitly determined the possible number of repeated triples in a $\operatorname{TS}(\mathrm{v}, 2)$ for $\mathrm{v} \equiv 1,3(\bmod 6)$. Rosa and Hoffman [11] later extended this determination to the case $v \equiv 0,4(\bmod 6)$. Lindner and wallis [9], and independently Fu [7] determined the possible number of repeated directed triples in a DTS (v,2).

For $\lambda>2$, the following questions concerning repeated (directed) blocks arise:

1) Determine the possible support sizes, or number of distinct (directed) blocks, in a (DTS (v, λ)) $T S(v, \lambda)$. Remark that this question is to determine the possible values for the sum $c_{1}+c_{2}+\ldots+c_{\lambda}$. This problem is completely solved: see [1] and its references for $\operatorname{TS}(v, \lambda)$ and $[10]$ for $\operatorname{DTS}(v, \lambda)$.
2) Given $a(\operatorname{DTS}(v, \lambda)) \operatorname{TS}(v, \lambda)$, the fine structure of the
system is the vector $\left(c_{1}, \ldots, c_{\lambda}\right)$, where c_{i} is the number of (directed) triples repeated exactly i times. It is a very interesting problem to produce necessary and sufficient conditions for a vector to be the fine structure of $a(\operatorname{DTS}(v, \lambda)) T S(v, \lambda)$. This problem is solved for $T S(v, 3),[2]$ and [3].

Our aim in this paper is to determine the fine structures for DTS (v,3).

Put

$$
s(v)= \begin{cases}\frac{v(v-1)}{3} & \text { if } v \equiv 0,1(\bmod 3) \\ \frac{v(v-1)-2}{3} & \text { if } v \equiv 2(\bmod 3)\end{cases}
$$

Since any two of $\left\{c_{1}, c_{2}, c_{3}\right\}$ determine the third, we follow [2] by adopting the following notation for the fine structure: (t, s) is said to be the fine structure of a $\operatorname{DTS}(v, 3)$ if $c_{2}=t$ and $c_{3}=s(v)-s$. We first need to know the pairs (t, s) which can possibly arise as fine structures. We use the notation $D F i n e(v)$ for the set of fine structures which actually arise in DTS(v,3) systems. For every $v \geq 3$, we define
$\operatorname{DAdm}(v)=\left\{\begin{aligned}\{(t, s): 0 \leq t \leq s \leq s(v), & s \neq 1, \\ & (t, s) \notin\{(1,2),(1,3)\}\} \\ & \text { if } v \equiv 0,1(\bmod 3)\end{aligned}\right]$

Main theorem. $D F i n e(v)=D A d m(v)$ for every $v \geq 8 . \operatorname{DFine}(3)=\{(0,0)$, $(0,2),(2,2)\}, \operatorname{DFine}(4)=\operatorname{DAdm}(4) \backslash\{(0,2),(0,3)\}, \operatorname{DFine}(5)=\operatorname{DAdm}(5)$, $\operatorname{DFine}(6)=\operatorname{DAdm}(6) \backslash\{(0,2),(0,3),(0,4),(1,4)\}, \operatorname{DFine}(7)=\operatorname{DAdm}(7) \backslash$
$\{(0,3),(1,4),(0,5)\}$.

In section 2, we prove that $\operatorname{DFine}(v) \subseteq D A d m(v)$ and we establish some necessary conditions for $v=4,6,7$. In section 3 , we introduce recursive standard constructions. In section 4, we describe the determination of fine structures for small values of v, then we combine all the results to prove the Main Theorem.

2. Necessary conditions.

Let (V, B) be a $\operatorname{DTS}(V, 3)$. Sometimes we will call blocks the directed triples of \mathcal{B}. For each $x \in V$, let $\mathcal{B}(x)$ denote the multiset of blocks in $\mathcal{B}_{1} \cup 2 B_{2}$ containing x and let $d(x)=|B(x)|$. Let $\left(V^{*}, B^{*}\right)$ denote the partial threefold directed triple system such that $V^{*}=\{x \in V \mid d(x)>0\}$ and $\mathcal{B}^{*}=B_{1} \cup 2 \mathcal{B}_{2}$. For each $\alpha \in V^{*}$ define the multiset $V(\alpha)$ in the following way: if $x \in V^{*}, x \neq \alpha$, and x appears in exactly $3 n$ directed triples of $\mathcal{B}(\alpha)$, then put n copies of x in $V(\alpha)$. Let ρ_{n} be the number of elements $x \in V^{*}$ with $d(x)=3 n$.

Lemma 2.1. If $\mathrm{x} \neq \mathrm{y}, \mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y})=3$, then $|\mathcal{B}(\mathrm{x}) \cap \mathcal{B}(\mathrm{y})|=0$. Proof. See Lemma 2.2 of [10].

It is easy to prove the following Lemma.

Lemma 2.2. If $d(x)=3$ then there are $y, z \in V^{*}$ such that \mathcal{B}_{2} contains either (x, y, z) or (y, z, x) and the directed pair (z, y) appears in three directed triples of \mathcal{B}^{*}. Moreover $c_{2} \geq \rho_{1}$.

Lemma 2.3. It is $(0,2) \in D F i n e(3),(0,2) \notin D F i n e(v)$ for $v=4,6$ and (1,2) $\notin D F i n e(v)$ for every $v \equiv 0,1(\bmod 3)$.

Proof. Suppose that $(t, 2) \in D F i n e(v)$. Then $c_{1}+2 c_{2}=6$ and $\rho_{1}+2 \rho_{2}=6$. It follows that $\left(\rho_{1}, \rho_{2}\right) \in\{(6,0),(4,1),(2,2),(0,3)\}$. It is easy to eliminate the cases $\left(\rho_{1}, \rho_{2}\right) \in\{(6,0)$, (4, 1)\}. From $\left(\rho_{1}, \rho_{2}\right)=(2,2)$ it follows $c_{2}=2$, and from $\left(\rho_{1}, \rho_{2}\right)=(0,3)$ it follows either $c_{2}=0$ or $c_{2}=2$. Then $(1,2) \notin \operatorname{DFine}(v)$. Let $V^{*}=\{0,1,2\}$ and $B^{*}=\{120,102,210,021,201,012\}$. Clearly $\left(\mathrm{V}^{*}, B^{*}\right)$ is a DTS $(3,3)$ such that $(0,2) \in D F i n e(3)$. Moreover it is easy to check that there is not a partial threefold directed triple system verifying $\left(\rho_{1}, \rho_{2}\right)=(0,3)$ and not isomorphic to $\left(V^{*}, \mathcal{B}^{*}\right)$. Since for $\mathrm{v}=4,6$ there is not a $\operatorname{DTS}(\mathrm{v}, 3)$ that embeds ($\mathrm{V}^{*}, \mathcal{B}^{*}$), it follows that $(0,2) \notin D F i n e(v)$ for $v=4,6$.

Lemma 2.4. It is $(0,3) \notin D F i n e(v)$ for $v=4,6,7$ and $(1,3) \notin D F i n e(v)$ for every $v \equiv 0,1(\bmod 3)$.

Proof. Suppose $(t, 3) \in \operatorname{DFine}(v), t \leq 1$. From Lemma 2.2 it follows $\rho_{1} \leq 1$. Since $\rho_{3} \leq 1$ the equation $\rho_{1}+2 \rho_{2}+3 \rho_{3}=9$ has the solutions: $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=(1,4,0),(0,3,1)$. Lemma 2.2 eliminates the case $(1,4,0)$.

Let $\quad\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=(0,3,1), \quad V^{*}=\{1,2,3,4\}, \quad \mathrm{d}(1)=\mathrm{d}(2)=\mathrm{d}(3)=6 \quad$ and $d(4)=9$. At first suppose $t=1$. Clearly if a directed triple of \mathcal{B}^{*} meets the ordered pair $i j, i, j \in\{1,2,3\}$, then $j i$ does not appear in any directed triple of \mathcal{B}^{*}. Suppose 12 appears in the two times repeated block γ, then one of the following cases arises: (i) $\gamma=124$, (ii) $\gamma=142$, (iii) $\gamma=412$ (we denote the directed triple (a, b, c) by $a b c)$. Case (i): We can suppose either $412 \in \mathcal{B}^{*}$ or $142 \in \mathcal{B}^{*}$.

Then $324,432,342 \in \mathcal{B}^{*}$. The remaining blocks of \mathcal{B}^{*} contain 34 one time repeated, 43 two times repeated and 13 three times repeated. It is easy to see that this is impossible. Similarly we can eliminate the cases (i) and (ii).

At last suppose $t=0$. Let $\mathcal{B}^{*}=\{124,142,412,341,431,314$, 234, 423, 243\}. It is easy to verify that there is not a partial threefold directed triple system such that $\left(\rho_{1}, \rho_{2}\right)=(0,3)$ and not isomorphic to $\left(V^{*}, B^{*}\right)$. Since for $V=4,6,7$ there is not a $\operatorname{DTS}(\mathrm{V}, 3)$ that embeds ($\mathrm{V}^{*}, \mathcal{B}^{*}$), it follows that $(0,3) \notin D F i n e(\mathrm{v})$ for $\mathrm{v}=4,6,7$.

Lemma 2.5. It is $(0,4),(1,4) \notin D F i n e(6),(1,4) \notin \operatorname{DFine}(7)$.
Proof. Suppose ($t, 4$) $\in \operatorname{DFine}(v), v=6,7$ and $t \leq 1$. By $\rho_{4} \leq 1$ and Lemmas 2.1 and 2.2 , the equation $\rho_{1}+2 \rho_{2}+3 \rho_{3}+4 \rho_{4}=12$ has the following solutions:

	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}
(1)	1	1	3	0
(2)	1	4	1	0
(3)	0	0	4	0
(4)	0	3	2	0
(5)	0	6	0	0
(6)	0	4	0	1
(7)	1	2	1	1
(8)	0	1	2	1

At first suppose $\mathrm{V}=6$. Let $\mathrm{V}=\{0,1, \ldots, 5\}$. Since $\left|\mathcal{B}_{3}\right|=6$, it is easy to see that $\left|V^{*}\right| \geq 5$. Moreover $\left|V^{*}\right|=5$ implies that $d(x) \geq 6$ for every $x \in V^{*}$. Therefore the cases (1), (3), (7) and (8) are impossible.

Case (2): Let $d(0)=3$ and $d(1)=9$. If $1 \notin V(0)$ then by Lemma $2.2, t \geq 2$. Suppose that 12 meets a block of $\mathcal{B}(0)$. By Lemma 2.2, the directed triples containing 21 are in \mathcal{B}^{*}. Then it is impossible to construct \mathcal{B}_{3} containing exactly four triples meeting 0 , two triples meeting 1 and three triples meeting 2.

Case (4): Let $d(1)=d(2)=d(3)=6$ and $d(4)=d(5)=9$. Then \mathcal{B}^{*} contains triples meeting the ordered pairs 45 and 54 . This implies that $\left(V, B_{3}\right)$ has triples meeting $04,40,05$ and 50. Therefore \mathcal{B}_{3} contains a triple meeting 1,2 and 3 . Suppose it is 123. Then \mathcal{B}^{*} contains triples meeting two of the following three ordered pairs 21, 31 and 32. This is impossible.

Case (5): The following possibilities arise: j) $V(1)=\{2,2,3,3\}$. Then $\left.\left|B_{3}\right|>6 ; j j\right) \quad V(1)=\{2,2,3,4\}$. Then $\left.t \geq 2 ; j j j\right) V(1)=\{2,3,4,5\}$. Let b_{1}, b_{2} and b_{3} denote the directed triples of $\mathcal{B}(1)$ meeting 2 . If $\quad \mathrm{b}_{1}, \quad \mathrm{~b}_{2}, \quad \mathrm{~b}_{3} \in \mathcal{B}_{1}$ then $\mathrm{V}(2)=\{1,3,4,5\}$. Therefore $\mathrm{d}(0)=3$, impossible. If $\mathrm{b}_{1} \in \mathcal{B}_{1}$ and $\mathrm{b}_{2}=\mathrm{b}_{3} \in \mathcal{B}_{2}$ then $\mathrm{t} \geq 2$.
Case (6): Let $V \backslash V^{*}=\{1\}$ and let 0 be the element of V^{*} such that $d(0)=12$. Clearly both the directed pairs 01 and 10 are in blocks of B_{3}. This is impossible.

Let $\mathrm{V}=7, \mathrm{~V}=\{0,1, \ldots, 6\}$ and suppose $(1,4) \in \operatorname{DFine}(7)$. To eliminate cases (1), (3), (5), (7) and (8) proceed as for $v=6$. Case (2): Let $d(0)=3$ and $d(1)=9$. If $1 \notin V(0)$ then by Lemma 2.2, $t \geq 2$. Suppose that 12 meets a block of $\mathcal{B}(0)$. By Lemma 2.2, the directed triples containing 21 are in \mathcal{B}^{*}. Suppose that $3 \in V(2)$. Then there are $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathcal{B}_{3}$ such that $1,3 \in \mathrm{~b}_{1}$ and $2,3 \in \mathrm{~b}_{2}$. It follows $t \geq 2$.

Case (4): Let $d(1)=d(2)=d(3)=6$ and $d(4)=d(5)=9$. If each block
meeting both 4 and 5 contains the same element $x \in\{1,2,3\}$, then $t \geq 2$. To complete the proof we can proceed as in the analogous case for $\mathrm{v}=6$.
Case (6): Let $\mathrm{V}^{*}=\{0,1, \ldots, 4\}$ and $\mathrm{d}(0)=12$, Obviously $\left(\mathrm{V}^{*}, \mathcal{B}^{*}\right)$ can not be the union of two sub-DTS $(3,3)$. Then for every ordered pair $i j, i, j \in V^{*} \backslash\{0\}$, appearing in some directed triple of \mathcal{B}^{*} the ordered pair $j i$ is not contained in any block of \mathcal{B}^{*}. Suppose $\mathcal{B}_{2}=\{120\}$. Then either $102 \in \mathcal{B}_{1}$ or $012 \in \mathcal{B}_{1}$. In the first case there are three directed triples of \mathcal{B}^{*} containing 01. Then $\left|\mathcal{B}_{2}\right| \geq 2$. It is easy to see that also the case $012 \in \mathcal{B}_{1}$ implies $\left|\mathcal{B}_{2}\right| \geq 2$. Similarly we can eliminate the cases $\mathcal{B}_{2}=\{102\}$ and $\mathcal{B}_{2}=\{012\}$.

Lemma 2.6. (0,5) \ddagger DFine (7).
Proof. Let (V, B) be a $\operatorname{DTS}(7,3)$ having the fine structure $(0,5)$. Since, by Lemma 2.2 it is $\rho_{1}=0$, the equation $\rho_{1}+2 \rho_{2}+3 \rho_{3}+4 \rho_{4}+5 \rho_{5}=15$ has the following solutions:

	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}
(1)	5	0	0	1
(2)	1	3	1	0
(3)	0	5	0	0
(4)	4	1	1	0
(5)	6	1	0	0
(6)	3	3	0	0

It is trivial to eliminate cases (1), (2) and (3).
To eliminate the remaining cases we prove at first the following Proposition (P): There is not a partial (V^{*}, \mathcal{B}^{*}) satisfying one of (4), (5) or (6) and such that: i) there is a
directed triple $a_{1} \in \mathcal{B}^{*}$ meeting $12, d(1)=d(2)=6$; ii) the directed triples of $B(I)$ meet five distinct elements.
In fact the ordered pair 12 meets other two elements of B^{*}, say a_{2} and a_{3}. Suppose $\alpha \in a_{2}$ and $\beta \in a_{3}$. Let $3 \in a_{1}$, by i) it is $\alpha \neq 3$ and $\beta \neq 3$. If $\alpha=\beta$ then both the ordered pairs $\alpha 2$ and 2α appear in directed triples of \mathcal{B}^{*}. By i) this is impossible. If $\alpha \neq \beta$ then $3, \alpha, \beta \in \mathcal{B}(1) \cup \mathcal{B}(2)$. Then the directed triples of $\mathcal{B}^{*} \backslash(\mathcal{B}(1) \cup \mathcal{B}(2))$ meet an element $\mathrm{x} \notin\{1,2,3, \alpha, \beta\}$. This implies $d(\alpha) \in\{8,11\}$.

Case (4): Let $V^{*}=\{1,2, \ldots, 6\}$, and let $d(i)=6$ for $i=1, \ldots, 4$, $d(5)=9$ and $d(6)=12$. Note that for every $\alpha, \beta \in\{1, \ldots, 4\}$ both $\alpha \beta$ and $\beta \alpha$ can not appear in blocks of \mathcal{B}^{*}, otherwise $\left|\mathcal{B}_{3}\right|>9$. It is possible to suppose that 12 meets a block of $\mathcal{B}(5)$. The blocks of $\mathcal{B}(1)(\mathcal{B}(2))$ meet the elements $2,5,6, \gamma \in \mathrm{~V}^{*}, \quad\left(1,5,6, \delta \in \mathrm{~V}^{*}\right)$. Proposition (P) implies that $\gamma, \delta \in\{5,6\}$. Then 1 and 2 do not appear in any triple of $\mathcal{B}(3) \cup \mathcal{B}(4)$. It follows that both the directed pairs 34 and 43 meet blocks of \mathcal{B}^{*}.

Case (5): Let $V^{*}=\{1,2, \ldots, 7\}$ and let $d(i)=6$ for $i=1, \ldots, 6$, $d(7)=9$. From Proposition (P) it follows that if $d(\alpha)=6$ then $V(\alpha)$ contains at least one repeated element. The following cases arise: (a): $V(1)=\{2,2,7,7\}$. Then $\mathcal{B}_{3}>9$. (b): $V(1)=\{2,3,7,7\}$. Then $V(7)=\{1,1,2,2,3,3\}$ and $\left(V^{*}, B^{*}\right)$ has a $\operatorname{sub-DTS}(3,3)$ on the elements $4,5,6$. It is easy to see that it is impossible to embed (V^{*}, \mathcal{B}^{*}) in (V, B). (C): $V(1)=\{2,2,3,3\}$. Proceeding as in (b) we can eliminate this case. (d): $V(1)=\{2,2,3,7\}$. It is easy to see that there are blocks of $\mathcal{B}(1)$ meeting both 23 and 32 , a contradiction.

Case (6): Let $V^{*}=\{1,2, \ldots, 6\}$ and let $d(1)=d(2)=d(3)=6$, $d(4)=d(5)=d(6)=9$. Clearly $|V(1) \cap\{4,5,6\}| \geq 2$ and there is $b \in \mathcal{B}^{*}$ such
that $|\mathrm{b} \cap\{1,2,3\}| \geq 2$. Let $1,2 \in \mathrm{~b}$. By proposition (P), it is possible to suppose $V(1)=\{2,4,4,5\}$. Then $V(2)=\{1,4,4,5\}$. Since $d(6)=9$ this is impossible.

Theorem 2.1. DFine (v) $\subseteq D A d m(v)$.
Proof. Let $\mathrm{v} \equiv 2(\bmod 3)$. It follows from Lemma 2.7 of [10] that $c_{3} \leq s(v)-6$. Since $c_{3}=s(v)-s$ we obtain $s \geq 6$. From $c_{1} \geq c_{2}$ and $c_{1}+2 c_{2}+3 c_{3}=v(v-1)$, it follows $c_{2} \leq\left\lfloor\frac{v(v-1)}{3}\right\rfloor-c_{3}=s$.

Let $v \equiv 0,1(\bmod 3)$. It is easy to see that $s \neq 1$ and $c_{3} \leq s(v)$. Lemmas 2.3 and 2.4 complete the proof.

3. Recursive Constructions.

In this section we will denote by (V, \mathcal{B}) a $\operatorname{DTS}(V, 3)$ on the v-set $\quad V=\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{v}\right\}$.

Put $\mathrm{U}=\mathrm{Vu} \mathcal{Z}_{\tau}, \quad \tau \in\{\mathrm{V}+1, \mathrm{v}+4\}$. For every $i \in\{1,2, \ldots, \mathrm{v}\}$ and $j \in Z_{\tau} \backslash\{0\}$ let

$$
\begin{aligned}
& F_{j}=\left\{(a, b) \mid a, b \in Z_{\tau}, b-a \equiv j(\bmod \tau)\right\}, \\
& \infty_{i} F_{j}=\left\{\left(\infty_{i}, a, b\right) \mid(a, b) \in F_{j}\right\}, \\
& F_{j} \infty_{i}=\left\{\left(a, b, \infty_{i}\right) \mid(a, b) \in F_{j}\right\}, \\
& \left\langle\infty_{i} F_{j}\right\rangle=\left\{\left(a, \infty_{i}, b\right) \mid(a, b) \in F_{j}\right\} .
\end{aligned}
$$

Lemma 3.1 Let (t, s) be the fine structure of (V, \mathcal{B}). Then for each $\alpha \in\{0,1, \ldots, v\},(t, s+\alpha(v+1))$ is the fine structure of a $\operatorname{DTS}(2 \mathrm{v}+1,3)(\mathrm{W}, \varepsilon)$.

Proof. Let $W=V \cup Z_{V+1}$ and let D be the multiset of directed triples constructed by putting on it either $\infty_{i} F_{i} \cup F_{i} \infty_{i} \cup<\infty_{i} F_{i}>$ or $3<\infty_{i} F_{i}>$ for each $i=1,2, \ldots, v$. Let \mathcal{E} be the multiset of directed
triples of \mathcal{B} and D.

Lemma 3.2 Let (t, s) be the fine structure of (V, \mathcal{B}). Then for each $\beta=1,2, \ldots, v$, and for each $\alpha=\beta, \beta+1, \ldots, v$, $(t+\beta(v+1), s+\alpha(v+1))$ is the fine structure of a $\operatorname{DTS}(2 v+1,3)(W, \mathcal{E})$.

Proof. Let $W=V U Z_{V+1}$. At first we suppose $\beta \geq 2$. Let \mathcal{D} be the multiset of directed triples constructed by putting on it $2<\infty{ }_{\beta} F_{\beta}>\cup<\infty_{1} F_{\beta}>, \quad 2<\infty_{i} F_{i}>\cup<\infty_{i+1} F_{i}>$ for each $i=1,2, \ldots, \beta-1$, and, if $\beta<\mathrm{v}$, either $\infty_{i} F_{i} \cup F_{i} \infty_{i} \cup<\infty_{i} F_{i}>$ or $3<\infty_{i} F_{i}>$ for each $i=\beta+1, \beta+2, \ldots, v$. Let ε be the multiset of directed triples of \mathcal{B} and \mathcal{D}.

Now let $\beta=1$. If v is odd then $\frac{F_{\frac{\mathrm{V}+1}{2}}}{}=F^{\prime} \cup F^{\prime \prime}, F^{\prime}=\left\{\left(i, \frac{\mathrm{v}+1}{2}+i\right)\right.$ $\left.i=0,1, \ldots, \frac{\mathrm{~V}-1}{2}\right\}$ and $F^{\prime \prime}=\left\{\left.\left(\frac{\mathrm{V}+1}{2}+i, i\right) \quad \right\rvert\, \quad i=0,1, \ldots, \frac{\mathrm{v}-1}{2}\right\}$. Let \mathcal{C} be the multiset of directed triples $2_{\frac{\mathrm{v}+1}{2}} F^{\prime} \cup 2 F^{\prime \prime \infty}{ }_{\frac{\mathrm{v}+1}{}}^{2} \quad \frac{F^{\prime \infty}}{\frac{\mathrm{v}+1}{2}}{ }^{\mathrm{U} \infty}{ }_{\frac{\mathrm{v}+1}{2}}^{2} F^{\prime \prime}$. If v is even then $F_{\frac{\mathrm{v}}{2}}=F^{\prime} \cup F^{\prime \prime} \cup\left\{\left(\frac{\mathrm{v}+2}{2}, 0\right)\right\}, F^{\prime}=\left\{\left.\left(i+1, i+\frac{\mathrm{v}+2}{2}\right) \quad \right\rvert\, \quad i=0,1, \ldots, \frac{\mathrm{v}-2}{2}\right\}$ and $F^{\prime \prime}=\left\{\left.\left(i+1, i+\frac{\mathrm{v}+2}{2}\right) \right\rvert\, i=\frac{\mathrm{V}+2}{2}, \frac{\mathrm{v}+2}{2}+1, \ldots, \mathrm{v}\right\}$. Let \mathcal{C} be the multiset of
 $\left\{\left(\frac{v+2}{2},{ }_{\frac{v}{2}}, 0\right),\left(\frac{v+2}{2},{ }_{\frac{v}{2}}, 0\right),\left(0, \infty{ }_{\frac{v}{2}}, \frac{v}{2}\right),\left({ }_{\frac{v}{2}}, \frac{v+2}{2}, 0\right)\right\}$.

Using the differences F_{i}, with $i \neq \frac{v+1}{2}$ if v is odd and $i \neq \frac{v}{2}$ if v is even, we can proceed as in the case $\beta \geq 2$ to construct a multiset \mathcal{D} of directed triples. Let \mathcal{E} be the multiset of directed triples of \mathcal{B}, \mathcal{E} and D.

Lemma 3.3. Let (t, s) be the fine structure of (V, \mathcal{B}). Then $(t, s+(v+1)(v+4))$ and $(t+\varepsilon(v+4), s+(\alpha+\varepsilon)(v+4))$, for each $\alpha=0,1, \ldots, v$
and $\varepsilon=0,1$, are the fine structures of $\operatorname{arS}(2 v+4,3)(W, 8)$.
Proof. Let $W=V \cup Z_{V+4}$ Let $\mathscr{C}_{1}=\left\{(j, j+1, j+3) \quad \mid \quad j \in Z_{v+4}\right\}$, $\mathscr{C}_{2}=\left\{(j, j+2, j+3) \mid j \in Z_{v+4}\right\}$ and $C_{3}=\left\{(j, j+3, j+4) \mid j \in Z{ }_{v+4}\right\}$.

Let D_{1} be the multiset of directed triples constructed by putting on it either $3 C_{1}$ or $2 C_{1} \cup C_{2}$ and, for each $i=4,5, \ldots, v+3$, either $3<\infty_{i-3} F_{i}>$ or $\infty_{i-3} F_{i} \cup F_{i} \infty_{i-3}{ }^{U<\infty_{i-3}} F_{i}>$. Let \mathcal{E} be the multiset of directed triples of \mathcal{B} and D_{1}. It is easy to see that (W, \mathcal{E}) has the fine structure $(t+\varepsilon(v+4), s+(\alpha+\varepsilon)(v+4))$ for each $\alpha=0,1, \ldots, v+1$ and $\varepsilon=0,1$.

Let \mathcal{D}_{2} be the multiset of directed triples constructed by putting on it $C_{1} \cup C_{2} \cup G_{3}, \infty_{1} F_{4} \cup F_{4}{ }_{1} U<\infty_{1} F_{2}>$ and, for each $i=5,6, \ldots, \mathrm{v}+3, \infty_{i-3} F_{i} \cup F_{i}^{\infty}{ }_{i-3}{ }^{\cup<\infty_{i-3}} F_{i}>$. Let \mathcal{E} be the multiset of directed triples of B and D_{2}. It is easy to see that (W, \mathcal{E}) has the fine structure $(t, s+(v+1)(v+4))$.

Lemma 3.4. Let (t, s) be the fine structure of (V, \mathcal{B}). Then, for each $\beta=2,3, \ldots, v, \quad \alpha=\beta, \beta+1, \ldots, v \quad$ and $\varepsilon=0,1$, $(t+\beta(v+4), s+(v+1)(v+4))$ and $(t+(\beta+\varepsilon)(v+4), s+(\alpha+\varepsilon)(v+4))$, are the fine structures of a $\operatorname{DTS}(2 \mathrm{v}+4,3)(\mathrm{W}, \mathcal{E})$.

Proof. Let $W=V \cup Z_{V+4}$ Define C_{1}, C_{2} and C_{3} as in the proof of Lemma 3.3. Let \mathcal{D}_{1} be the multiset of directed triples constructed by putting on it either $3 G_{1}$ or $2 G_{1} \cup G_{2}, \quad 2<\infty_{\beta} F_{\beta+3}>\cup<\infty_{\beta} F_{4}>$, $2<\infty_{j} F_{j+3}>\cup<\infty_{j} F_{j+4}>$ for each $j=1,2, \ldots, \beta-1$, and, if $\beta<v$, either $3<\infty_{i} F_{i+3}>$ or $\infty_{i} F_{i+3} \cup F_{i+3} \infty_{i} U<\infty_{i} F_{i+3}>$ for each $i=\beta+1, \beta+2, \ldots, v$. Let ε be the multiset of directed triples of B and D_{1}. It is easy to see that (W, ε) has the fine structure $(t+(\beta+\varepsilon)(v+4), s+(\alpha+\varepsilon)(v+4))$. Let D_{2} be the multiset of directed triples constructed by putting
on it $\quad \mathscr{C}_{1} \cup \mathscr{C}_{2} \cup G_{3}, \quad 2<\infty_{\beta} F_{\beta+3}>\cup<\infty_{\beta} F_{2}>, \quad 2<\infty_{j} F_{j+3}>\cup<\infty_{j} F_{j+4}>$ for each $j=1,2, \ldots, \beta-1$, and , if $\beta<v, \infty_{i} F_{i+3} \cup F_{i+3}{ }_{i}^{\infty} \cup<\infty_{i} F_{i+3}>$ for each $i=\beta+1, \beta+2, \ldots, v$. Let \mathcal{E} be the multiset of directed triples of \mathcal{B} and D_{2}. It is easy to see that (W, \mathcal{E}) has the fine structure $(t+\beta(v+4), s+(v+1)(v+4))$.

Theorem 3.1. Le $t \quad v \geq 7$. If $D F i n e(v)=D A d m(v)$ then DFine $(2 \mathrm{v}+1)=\operatorname{DACm}(2 \mathrm{v}+1)$.

Proof. By Lemma 3.1, if $\alpha=0$, then $\operatorname{DFine}(\mathrm{v}) \subseteq D F i n e(2 \mathrm{v}+1)$. Let $\rho=0,1, \ldots, v$ and $h=1,2, \ldots, v$, then from Lemma 3.1 it follows that $(t, s(v)-v+h(v+1)+\rho) \in D F i n e(2 v+1)$ for each $t=0,1, \ldots, s(v)-v+\rho$. Let $\rho=0,1, \ldots, v, h=1,2, \ldots, v$ and $\beta=1,2, \ldots, h$, then from Lemma 3.2 it follows that ($t, s(v)-v+\rho+h(v+1)) \in D F i n e(2 v+1)$ for each $t=\beta(v+1), \beta(v+1)+1, \ldots, s(v)-v+\rho+\beta(v+1))$. Since $s(v)-v \geq v$ for $v \geq 7$, the proof is completed.

Theorem 3.2. Let $v \geq 9$. If $\operatorname{DFine}(\mathrm{v})=\operatorname{DAdm}(\mathrm{v})$ then DFine $(2 \mathrm{v}+4)=$ DAdm $(2 \mathrm{v}+4)$.

Proof. By Lemma 3.3, if $\alpha=\varepsilon=0$, then $D F i n e(v) \subseteq D F i n e(2 v+1)$. Let $\rho=0,1, \ldots, \mathrm{v}+3, \mathrm{~h}=0,1, \ldots, \mathrm{v}$ and $\beta=0,1, \ldots, \mathrm{~h}+1$. By Lemmas 3.3 and 3.4, it is $(t+\beta(v+4), s(v)+1+h(v+4)+\rho) \in D F i n e(2 v+4)$ for each $t=0,1, \ldots, s(v)-v-3+\rho$. Since $s(v)-v-3+\beta(v+4) \geq(\beta+1)(v+4)-1$ for $v \geq 9$, the proof is completed.

For every $v_{1}, v_{2} \geq 3$ put DFine $\left(v_{1}\right)+\operatorname{DFine}\left(v_{2}\right)=\left\{\left(t_{1}+t_{2}, s_{1}+\right.\right.$ $\left.s_{2}\right) \mid\left(t_{1}, s_{1}\right) \in \operatorname{DFine}\left(v_{1}\right)$ and $\left.\left(t_{2}, s_{2}\right) \in \operatorname{DFine}\left(v_{2}\right)\right\}$ and $\operatorname{kDFine}\left(\mathrm{v}_{1}\right)=$ DFine $\left(\mathrm{v}_{1}\right)+\ldots+\operatorname{DFine}\left(\mathrm{v}_{1}\right) \mathrm{k}$ times.

Theorem 3.3. If there is a pairwise balanced design (PBD) of order v having k_{i} blocks of size v_{i} for every $i=1,2, \ldots, h$, then $\mathrm{k}_{1} \operatorname{DFine}\left(\mathrm{v}_{1}\right)+\mathrm{k}_{2} \operatorname{DFine}\left(\mathrm{v}_{2}\right)+\ldots+\mathrm{k}_{\mathrm{h}} \operatorname{DFine}\left(\mathrm{v}_{\mathrm{h}}\right) \subseteq \operatorname{DFine}(\mathrm{v})$.

Proof. Let \mathcal{B} the blocks of the PBD . For each block in \mathcal{B} of size v_{i}, form a $\operatorname{DTS}\left(v_{i}\right)$.

4. Solutions for small orders.

Lindner and Wallis [9], and independently Fu [7], proved the following Lemma.

Lemma 4.1. For $v \equiv 0,1(\bmod 3)$, there exist two $\operatorname{DTS}(v, 1)$ on the same element set intersecting in k triples if and only if $k \in$ $\{0,1, \ldots, s(v)-2, s(v)\}$.

For the proof of the following Lemma it is possible to see the survey [4].

Lemma 4.2. For all $\mathrm{V} \equiv 0,1(\bmod 3)$ there exists a large set of disjoint DTS(v,1).

As a trivial consequence of Lemmas 4.1 and 4.2 we obtain the following result.

Theorem 4.1. Let $v \equiv 0,1(\bmod 3)$. For each $s, 0 \leq s \leq s(v), s \neq 1$ it is (s,s) l DFine(v).

From Lemma 2.3 and Theorems 2.1 and 4.1 it follows that:

Theorem 4.2. $\operatorname{DFine}(3)=\{(0,0),(0,2),(2,2)\}$.

Theorem 4.3 $\operatorname{DFine}(4)=\operatorname{DAdm}(4) \backslash\{(0,2),(0,3)\}$.
Proof. Let $V=\{1,2,3,4\}$. If $\mathbb{A}_{1}=\{124,231,342,413,142$, $213,324,431,421,132,243,314\}$ then $\left(\mathrm{V}, \mathcal{A}_{1}\right)$ produces $(0,4)$. If $\mathcal{B}_{1}=\{123,241,314,432,412,134,243,142,413,234\}$ and $\mathcal{B}_{2}=\{321\}$, then $\left(\mathrm{V}, \mathcal{B}_{1} \cup 2 \mathcal{B}_{2}\right)$ produces $(1,4)$. If $\mathscr{C}_{1}=\{431,342,341$, 432, 321, 142, 413, 234\} and $\mathscr{C}_{2}=\{123,214\}$ then $\left(V, \mathscr{C}_{1} \cup 2 \mathscr{C}_{2}\right)$ produces $(2,4)$. If $D_{1}=\{342,341,432,142,213,324\}$ and $D_{2}=\{123$, 214, 431\} then $\left(V, D_{1} \cup 2 D_{2}\right)$ produces $(3,4)$. If $\mathcal{E}_{1}=\{241,431,341$, $314,342\}, \varepsilon_{2}=\{214,432\}$ and $\varepsilon_{3}=\{123\}$ then $\left(V, \varepsilon_{1} \cup 2 \varepsilon_{2} \cup 3 \varepsilon_{3}\right)$ produces $(2,3)$. Lemmas $2.3,2.4$ and Theorems $2.1,4.1$ complete the proof.

Theorem 4.4. $\operatorname{DFine}(6)=\operatorname{DAdm}(6) \backslash\{(0,2),(0,3),(0,4),(1,4)\}$.
Proof. Let $V=\{1,2, \ldots, 6\}$. If $A_{1}=\{534,354,345,154,235\}$, $A_{2}=\{145,253\}$ and $A_{3}=\{651,562,241,132,316,426,643\}$ then $\left(\mathrm{V}, A_{1} \cup 2 A_{2} \cup 3 A_{3}\right)$ produces $(2,3)$.

If $M_{1}=\{451,415,541,542,452,524,423,513\}, M_{2}=\{243,153\}$ and $M_{3}=\{614,346,162,635,256,321\}$ then ($V, M_{1} \cup 2 M_{2} \cup 3 M_{3}$) produces (2,4). Replacing in this DTS $(6,3)$ some opportune blocks we can produce new fine structures. For example if $M_{1}^{(1)}=\left(M_{1} \backslash\{542,524\right.$, $423\}) \cup\{243\}$ and $M_{2}^{(1)}=\left(M_{2} \backslash\{243\}\right) \cup\{423,524\}$ then $\left(V, M_{1}^{(1)} \cup M_{2}^{(1)} \cup 3 M_{3}\right)$ produces (3,4).

```
If \mp@subsup{B}{1}{}={126, 162, 612, 236, 263, 623, 346, 364, 634, 456, 465,
```

645, 516, 561, 651\} and $\mathcal{B}_{3}=\{214,153,431,325,542\}$ then $\left(\mathrm{V}, \mathcal{B}_{1} \cup 3 \mathcal{B}_{3}\right)$ produces $(0,5)$. Replacing opportune blocks, we obtain $(t, 5)$ for $t=2,4$.

If $G_{1}=\{452,425,542,543,534,453,143,134,314,152,125$, 215, 132\}, $\mathscr{C}_{2}=\{321\}$ and $\mathscr{C}_{3}=\{264,365,461,516,623\}$ then ($V, \mathscr{C}_{1} \cup 2 \mathscr{C}_{2} \cup 3 G_{3}$) produces (1,5). Replacing opportune blocks, we obtain $(3,5)$.

If $\mathscr{L}_{1}=\{135,163,153,154,164,146,263,236,235,254,245$, 246, 356, 536, 563, 465, 645, 654\} and $\mathscr{L}_{3}=\{521,612,341,432\}$ then $\left(V, \mathscr{L}_{1} \cup 2 \mathscr{L}_{2}\right)$ produces $(0,6)$. Replacing opportune blocks, we obtain ($t, 6$) for $t=1,2, \ldots, 5$.

If $D_{1}=\{124,241,214,431,314,341,126,162,621,236,263$, $623,436,364,643,456,465,645,516,561,651\}$ and $D_{3}=\{153$, 325, 542$\}$ then $\left(V, D_{1} \cup 3 D_{3}\right)$ produces $(0,7)$. Replacing opportune blocks, we obtain ($t, 7$) for $t=1,2, \ldots, 6$.

If $\varepsilon_{1}=\{214,421,124,341,431,314,542,524,452,126,162$, $621,236,263,623,436,364,643,456,465,654,516,561,651\}$ and $\varepsilon_{3}=\{153,325\}$ then $\left(V, \varepsilon_{1} \cup 3 \varepsilon_{3}\right)$ produces $(0,8)$. Replacing opportune blocks, we obtain $(t, 8)$ for $t=1,2, \ldots, 6$.

If $\mathcal{F}_{1}=\{421,612,236,314,436,364,634,524,645,516\}$, $\mathscr{F}_{2}=\{214,162,263,431,542,465,561\}$ and $\mathscr{F}_{3}=\{153,325\}$ then $\left(V, \mathscr{F}_{1} \cup 2 \mathcal{F}_{2} \cup 3 \mathcal{F}_{3}\right)$ produces (7,8).

If $\wp_{1}=\{214,421,124,341,431,314,542,524,425,126,162$, 621, $326,263,623,436,364,643,456,465,654,516,561,651$, 325, 352, 235\} and $\xi_{3}=\{153\}$ then $\left(V_{1} \xi_{1} \cup 3 \xi_{3}\right)$ produces $(0,9)$. Replacing opportune blocks, we obtain ($t, 9$) for $t=1,2, \ldots, 8$ and ($t, 10$) for $t=0,1, \ldots, 9$.

Lemmas $2.3,2.4,2.5$ and Theorems $2.1,4.1$ complete the proof.

Theorem 4.5. $\operatorname{DFine}(7)=\operatorname{DAdm}(7) \backslash\{(0,3),(0,5),(1,4)\}$.
Proof. Starting from the Steiner triple system of order 7, Theorem 3.3 implies that if $(t, s) \in \operatorname{DAdm}(7)$ and t and s are even then (t, s) \in DFine (7).

Let $\mathrm{V}=\{0,1, \ldots, 6\}$. If $\mathcal{A}_{1}=\{106,250,056,506,560\}, A_{2}=\{160$, $205\}$ and $\mathcal{A}_{3}=\{012,653,213,304,352,361,403,154,246,642$, $451\}$ then $\left(V, A_{1} \cup 2 A_{2} \cup 3 A_{3}\right)$ produces $(2,3)$.

If $\mathcal{B}_{1}=\{012,431,532,123,312,321\}, \mathcal{B}_{2}=\{021,413,523\}$ and $\mathcal{B}_{3}=\{615,630,516,036,140,354,624,045,426,250\}$ then $\left(\mathrm{V}, \mathcal{B}_{1} \cup 2 \mathcal{B}_{2} \cup 3 \mathcal{B}_{3}\right)$ produces $(3,4)$.

If $G_{1}=\{012,102,120,230,203,023,340,304,034,410,401$, 014, 541\}, $\mathscr{C}_{2}=\{514\}$ and $\mathscr{C}_{3}=\{605,506,532,216,624,315,425$, $613,436\}$ then $\left(V, G_{1} \cup 2 \mathbb{C}_{2} \cup 3 G_{3}\right)$ produces $(1,5)$. Replacing opportune blocks we obtain the fine structures: ($t, 5$) for $t=2,3,4$; ($t, 6$) for $t=1,3,5$; ($t, 7$) for $t=1,2, \ldots, 6$; $(t, 8)$ for $t=1,3,5,7$; ($t, 9$) for $t=2,3, \ldots, 8$.

If $\xi_{1}=\{105,026,356,123,602,635,150,312,056,065,560$, $650,513,153,351,531,263,623,362,326,102\}, \xi_{3}=\{201,034$, $430,524,425,614,416\}$ then $\left(\mathrm{V}, \mathcal{G}_{1} \cup 3 \xi_{3}\right)$ produces $(0,7)$. Replacing opportune blocks we obtain the fine structures $(0,9),(1,9)$ and ($t, 10$) for $t=1,3,5,7,9$.

If $H_{1}=\{021,102,120,230,203,023,430,304,034,463,436$, 346, 410, 401, 014, 154, 541, 514, 351, 315, 135, 631, 613,136, 261, 216, 126, 605, 056, 650, 506, 065, 560\} and $H_{3}=\{245,642$,
$532\}$, then $\left(V, H_{1} \cup 3 H_{3}\right)$ produces (0,11). Replacing opportune blocks we obtain the fine structures: $(t, 11)$ for $t=1,2, \ldots, 10$; ($t, 12$) for $t=1,2, \ldots, 11 ;(t, 13)$ for $t=0,1, \ldots, 12$; $(2 t+1,14)$ for $t=0,1, \ldots, 6$.

Lemmas $2.3,2.4,2.5,2.6$ and Theorems $2.1,4.1$ complete the proof.

Lemma 4.3 It is $(0,3) \in D F i n e(v)$ for every $v \equiv 0,1(\bmod 3)$, $\mathrm{v} \geq 9$.

Proof. By Lemmas 3.1 and 3.3 it is sufficient to prove that $(0,3) \in \operatorname{DFine}(\mathrm{v})$ for $\mathrm{v}=9,10,12,13,15,16,18$. Let $\mathrm{V}=\{0,1, \ldots, 8\}$. If $B_{1}=\{124,142,412,341,431,314,234,423,243\}$ and $B_{3}=\{547,648,740,845,046,521,163,320,617,718,810,015$, 625, 726, 827, $028,538,735,836,037,560\}$ then $\left(\mathrm{V}, \mathcal{B}_{1} \cup 3 \mathcal{B}_{3}\right)$ produces $(0,3) \in D F i n e(9)$.

Let $S=\{0,1, \ldots, \vartheta\}, \vartheta=6,7,9,10$. For each $\tau=\vartheta+1$ and $j \in Z_{\tau} \backslash\{0\}$ put $F_{j}=\left\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{\tau}, \mathrm{b}-\mathrm{a} \equiv j(\bmod \tau)\right\}$. If $\vartheta=6$ then put $P_{j}=F_{j}$ for $j=1,4,5 ; P_{2}=\{13,21,32,40,54,65,06\}, P_{3}=\{14,25,36,43$, $50,61,02\}$ and $P_{6}=\{10,24,35,46,51,62,03\}$. If $\vartheta=7$ then put $P_{j}=F_{j}$ for $j=1,4,5 ; P_{2}=\{13,21,32,46,50,64,75,07\}, P_{3}=\{14$, $20,36,47,53,65,71,02\}, P_{6}=\{17,25,31,43,54,60,72,06\}$, $P_{7}=\{10,24,35,42,57,61,76,03\}$. If $\vartheta=9$ then put $P_{j}=F_{j}$ for $j=1,3,4,5,6,7 ; P_{2}=\{13,21,32,46,57,64,75,80,98,09\}$, $P_{8}=\{19,20,35,43,54,68,76,87,91,02\}, P_{9}=\{10,24,31,42$, 53, 65, 79, 86, 97, 08$\}$. If $\vartheta=10$ then put $P_{j}=F_{j}$ for $j=1,3,4,5$, $6,7,8$, and if we put $a=10, P_{2}=\{13,21,32,46,57,64,75,8 a$, $90, ~ a 8, ~ 09\}, ~ P_{9}=\{1 a, 20,31,43,54,65,76,87,98, a 9,02\}$, $P_{10}=\{10,24,35,42,53,68,79,86,97, a 1,0 a\}$. Suppose $\vartheta=6$. Let
$(W, \mathcal{B}), W=\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\}$, be a $\operatorname{DTS}(3,3)$ for which it is $(0,0) \in \operatorname{DFine}(3)$. Let $\quad A_{1}=<\infty_{1} P_{2}>\cup<\infty_{2} P_{3}>\cup<\infty_{3} P_{6}>, \quad A_{2}=\left\{1 \infty_{1} 3, \quad 2 \infty_{1} 1, \quad 3 \infty_{1} 2\right\}, \quad A_{3}=\left\{1 \infty_{1} 3\right.$, $\left.13 \infty_{1}, \quad \infty_{1} 13,2 \infty_{1} 1,21 \infty_{1}, \quad \infty_{1} 21, \quad 3 \infty_{1} 2,32 \infty_{1}, \quad \infty_{1} 32\right\}, \quad A_{4}=\{(1+i, 2+i, 6+i)$ | $i=0,1, \ldots, 6\}$. If $A=3 A_{1} \cup A_{3} \cup 3 A_{4} \backslash 3 A_{2}$ then ($\left.V \cup W, B \cup \mathcal{A}\right)$ produces $(0,3) \in \operatorname{DFine}(10)$. For $\vartheta=7,9,10$ let (W, \mathcal{B}) be a $\operatorname{DTS}(\vartheta-3,3)$ for which it is $(0,0) \in \operatorname{DFine}(\vartheta-3)$. Proceeding as above we obtain the proof for $v=12,16,18$. By Lemma 3.1 (with the differences P_{j} instead of F_{j}) construct a $\operatorname{DTS}(v, 3), v=6,7$, such that $(0,0) \in \operatorname{DFine}(v)$. Proceeding as above we obtain $(0,3) \in D F i n e(v)$ for $v=13,15$.

Theorem 4.6. DFine(9)=DAdm(9).
Proof. Starting from the Steiner triple system of order 9, Theorem 3.3 implies that if $(t, s) \in \operatorname{DAdm}(9)$ and t and s are even then ($t, \mathrm{~s}$) \in DFine (9).

Let $\mathrm{V}=\{0,1, \ldots, 8\}$. If $\mathscr{A}_{1}=\{076,687,876,768,826,286,268$, 718, 781, 871, 182, 812, 128\}, $\mathscr{A}_{2}=\{067\}$ and $\mathscr{A}_{3}=\{083,370,341$, $456,480,604,432,724,385,105,573,147,584,502,136,275$, 201, 623, 651\}, then ($V, A_{1} \cup 2 A_{2} \cup 3 A_{3}$) produces $(1,5)$.

Lemma 4.3 and Theorem 4.1 produce $(0,3)$, (s,s) \in DFine (9) for each $s=0,2,3, \ldots, 24$. By Lemmas 3.1 and 3.2 (with opportune changes in some cases) it is possible to complete the proof. For the sake of brevity we show the changes only in three cases. Let $F_{11}=\{13$, 32, 21\}, $F_{12}=\{40, ~ 04\}, F_{21}=\{12,24,41\}, F_{22}=\{30,03\}, F_{31}=\{14$, 31, 43\}, $F_{32}=\{02,20\}, F_{41}=\{23,34,42\}, \quad F_{42}=\{10,01\}$ and $F_{i}=F_{i 1} \cup F_{i 2}$ for $i=1,2,3,4$. At last let $W=\left\{\infty_{i} \mid i=1,2,3,4\right\}$. Case I: Let $(1,4)$ be the fine structure of the DTS (4, 3). If $A_{1}=\infty_{1} F_{11} \cup<\infty_{1} F_{11}>\cup F_{11} \infty_{1}$ and $\quad A_{3}=\stackrel{4}{i}=2_{<\infty}^{i} F_{i}>\cup<\infty_{1} F_{12}>$, then
$\left(W \cup Z_{5}, B \cup A_{1} \cup 3 A_{3}\right)$ produces (1,7). Case II: Let $(2,3)$ be the fine structure of the $\operatorname{DTS}(4,3) \quad(W, B)$ If $A_{1}=\stackrel{4}{=}_{\stackrel{4}{2}}\left(<\infty_{i} F_{i}>\infty_{i} F_{i} \cup F_{i} \infty_{i}\right) \cup \infty_{1} F_{11} \cup<\infty_{1} F_{11}>\cup F_{11} \infty_{1} \cup\left\{\infty_{1} 04,40 \infty_{1}\right\} \quad$ and $A_{2}=\left\{\infty_{1} 40, \quad 04 \infty_{1}\right\}$, then $\left(W \cup Z_{5}, B \cup A_{1} \cup 2 A_{2}\right)$ produces $(4,23)$. Case III: Let (W, B) be the $\operatorname{DTS}(4,3)$ constructed in Theorem 4.3 producing $(2,3) \in \operatorname{DFine}(4)$ where we put ∞_{i} instead of i (remember that the 2-times repeated blocks are $\infty_{2}^{\infty} \infty_{1}^{\infty} 4_{4}$ and $\infty_{4}^{\infty} \infty_{3}^{\infty}$). Let

 $\left.\infty_{2} 30, \infty_{4} 10\right\}$. Then $\left(\mathrm{WuZ}_{5}, C\right)$ produces $(0,23)$.

Theorem 4.7. DFine (10) =DAdm(10).
Proof. Since there is a PBD on 10 elements with 9 blocks of size 3 and 3 blocks of size 4 , by Theorem 3.3 and Lemma 4.3 it remains to prove that $(0, s),(1, s) \in D F i n e(10)$ for each odd s, $3<s<30$. Let $F_{j}=\left\{(a, b) \mid a, b \in Z_{7}, b-a \equiv j(\bmod 7)\right\}, j \in Z_{7} \backslash\{0\}$, and let $\mathrm{V}=\left\{\infty_{1}, \quad \infty_{2}, \infty_{3}\right\}$. Let $G_{11}=\{12,23,31\}, G_{12}=\{46,50,64,05\}$, $G_{21}=\{24,42\}, G_{22}=\{13,35,56,60,01\}, G_{51}=\{16,20,61,02\}$, $G_{52}=\{34, \quad 45, \quad 53\}, \quad G_{1}=G_{11} \cup G_{12}, \quad G_{2}=G_{21} \cup G_{22}$ and $G_{5}=G_{51} \cup G_{52}$. Clearly $F_{1} \cup F_{2} \cup F_{5}=G_{1} \cup G_{2} \cup G_{5}$. With F_{3}, F_{4} and F_{6} form the block set $\mathscr{A}=\{(1+i, i, 4+i) \quad \mid \quad i=0,1, \ldots, 6(\bmod 7)\}$. Let (V, B) be a $\operatorname{DTS}(3,3)$ such that either $(0,0)$ or $(0,2) \in D F i n e(3)$. If $C=<\infty_{1} G_{1}>\cup_{0} \infty_{3} G_{52}>$ and $D=\infty_{2} G_{2} \cup<\infty_{2} G_{2}>\cup G_{2} \infty_{2} \operatorname{lom}_{3} G_{51} \cup<\infty_{3} G_{51}>\cup G_{51} \infty_{3}$, then (VUZ, BUDUU3CU3A) produces either $(0,11)$ or $(0,13) \in D F i n e(10)$. Similarly we can prove that $(0, s) \in D F i n e(10)$ for each $s=5,7,9$.

Let (V, B) be a $\operatorname{DTS}(3,3)$ such that $\left\{\infty_{1} \infty_{2} \infty_{3}, \infty_{2} \infty_{3} \infty_{1}\right\} \subseteq \mathcal{B}$ and $(0,2) \in \operatorname{DFine}(3) . \quad$ If $\quad A_{1}=<\infty_{1} G_{12}>\cup<\infty_{2} G_{22}>\cup<\infty_{3} G_{51}>, \quad A_{2}=\left\{12 \infty_{1}, \quad 3 \infty_{1} 1\right.$,
$\left.42 \infty_{2}, \quad 4 \infty_{3} 5, \quad 53 \infty_{3}\right\}, \quad \varepsilon=\left\{\infty_{1} \infty_{2} 2, \quad \infty_{1} \infty_{3} 3, \quad \infty_{2} \infty_{3} 4, \quad \infty_{2} \infty_{3} 4, \quad \infty_{3} \infty_{1} 3, \quad \infty_{2} \infty_{1} 2\right.$, $\left.\infty_{1} 23, \quad \infty_{2} 24, \quad \infty_{3} 34\right\} \quad$ and $F=\{234\}$, then $\left(V \cup Z_{7}, B_{1} \cup \mathcal{F} \cup 2 \mathscr{F} \cup 3 A \cup 3 A_{1} \cup 3 A_{2}\right.$) produces $(1,5)$.

If $A_{3}=A_{1} \backslash\left\{4 \infty_{1} 6, \quad 6 \infty_{1} 4\right\} \quad$ and $E_{1}=\mathcal{E} \cup\left\{\infty_{1} 46,4 \infty_{1} 6,46 \infty_{1}, 64 \infty_{1}, 6 \infty_{1} 4\right.$, $\left.\infty_{1} 64\right\}$, then $\left(V \cup Z_{7}, \mathcal{B}_{1} \cup \mathcal{E}_{1} \cup 2 \mathscr{F} \cup 3 A \cup 3 A_{3} \cup 3 A_{2}\right.$) produces $(1,7)$. Analogously it is possible to prove that $(1, s) \in D F i n e(10)$ for $s=9,11,13$.

Let (V, \mathcal{B}) be a $\operatorname{DTS}(3,3)$ such that $(0,2) \in D F i n e(3)$. If $\Gamma=\{104$, $041,140,304,340,430,415,154,541,521,251,215,362,326$, $632,603,063,036,526,652,265\}, G_{1}=<\infty_{1} G_{1}>$ and $\mathcal{D}_{1}=\infty_{2} G_{2} \quad \cup<\infty_{2} G_{2}>$ $\cup G_{2} \infty_{2} \cup \infty_{3} G_{5} \cup<\infty_{3} G_{5}>\cup \quad G_{5} \infty_{3} \cup\left\{\begin{array}{l}\infty_{2} 65, \infty_{2} 06, \infty_{2} 10, \infty_{3} 43, ~ 43 \infty_{3} \text {, }\end{array}\right.$ $\left.\infty_{3} 54\right\} \backslash\left\{\infty_{2} 56, \quad \infty_{2} 60, \quad \infty_{2} 01, \quad m_{3} 34, \quad 34 \infty_{3}, \quad m_{3} 45\right\}$, then (VטZ, $\left.\mathcal{B} \cup \Gamma \cup \mathcal{D}_{1} \cup 3 G_{1}\right)$ produces $(0,23)$. Similarly we can prove that $(0,5) \in D F i n e(10)$ for $s=15,17,19,21$.

Let (V, \mathcal{B}) be a $\operatorname{DTS}(3,3)$ such that $\mathcal{B}_{3}=\left\{\infty_{1} \infty_{2} \infty_{3}, \quad \infty_{3} \infty_{2} \infty_{1}\right\}$. If $\Gamma_{1}=\Gamma \cup\{504,310,240,134\} \backslash\{140,304\}, \quad \mathcal{D}_{2}=\infty_{1} G_{1} \cup<\infty_{1} G_{1}>\quad \cup \quad G_{1} \infty_{1} \cup$ $\infty_{2} G_{2} \cup<\infty_{2} G_{2}>\quad \cup \quad G_{2} \infty_{2} \cup \infty_{3} G_{3} \cup \ll \infty_{3} G_{3}>\quad \cup \quad G_{3} \infty_{3} \cup \quad\left\{\infty_{1} \infty_{2} \infty_{3}, \quad \infty_{1} \infty_{2} 3\right.$, $\quad \infty_{1} \infty_{2} 1, \quad \infty_{1} \infty_{3} 5, \quad \infty_{1} \infty_{3} 0, \quad \infty_{2} \infty_{3} 2, \quad m_{2} \infty_{3} 4, \quad \infty_{2} 65, \quad \infty_{2} 10, \quad 43 \infty_{3}, \quad \infty_{3} 43$, $\left.\infty_{2} 06\right\} \backslash\left\{\infty_{2} 01, \quad \infty_{3} 34, \quad 34 \infty_{3}, \quad \infty_{3} 45, \quad \infty_{2} 60, \quad \infty_{2} 56, \quad \infty_{1} 31, \quad m_{2} 13, \quad \infty_{1} 50, \quad \infty_{3} 20\right.$, $\left.\infty_{2} 24\right\}$ and $\mathscr{C}_{2}=\left\{\infty_{3} \infty_{2} \infty_{1}\right\}$, then $\left(V \cup Z_{7}, \Gamma_{1} \cup D_{2} \cup 3 C_{2}\right)$ produces $(0,29)$. If $\quad D_{3}=D_{2} \backslash\left\{\infty_{1} 46, \quad 4 \infty_{1} 6, \quad 46 \infty_{1}, \quad \infty_{1} 64, \quad 6 \infty_{1} 4, \quad 64 \infty_{1}\right\} \quad$ and $\quad C_{3}=C_{2} \quad u$ $\left\{4 \infty_{1} 6,6 \infty_{1} 4\right\}$, then $\left(V \cup Z_{7}, \Gamma_{1} \cup D_{3} \cup 3 G_{3}\right)$ produces $(0,27)$. Analogously we obtain $(0,25) \in D F i n e(10)$. If in the above cases we replace the blocks 362 and 526 with 326 and 562 , we obtain (1,5) $\in D F i n e(10)$ for each $s=15,17,19,21,23,25,27,29$.

Theorem 4.8. DFine (12) $=\operatorname{DAdm}(12)$.
Proof. Since there is a PBD on 12 elements with 16 blocks of
size 3 and 3 blocks of size 4, by Theorem 3.3 and Lemma 4.3 it remains to prove that $(0, s),(1, s) \in D F i n e(12)$ for each odd s, $3<s<44$. Let $F_{j}=\left\{(a, b) \mid a, b \in Z_{8}, b-a \equiv j(\bmod 8)\right\}, j \in Z_{8} \backslash\{0\}$, and let $\mathrm{V}=\left\{\infty_{1}, \quad \infty_{2}, \quad m_{3}, \infty_{4}\right\}$. Let $G_{11}=\{13,21,32\}, G_{12}=\{46,54,65\}$, $G_{13}=\{70,07\}, G_{2}=\{24,35,57,12,43,60,76,01\}, G_{4}=\{71,02,10$, 23, $34,45,56,67\}, G_{71}=\{15,51\}, G_{72}=\{26,62\}, G_{73}=\{37,73\}$, $G_{74}=\{40, \quad 04\}, \quad G_{1}=G_{11} \cup G_{12} \cup G_{13}, \quad G_{7}=G_{71} \cup G_{72} \cup G_{73} \cup G_{74} . \quad$ Clearly $F_{1} \cup F_{2} \cup F_{4} \cup F_{7}=G_{1} \cup G_{2} \cup G_{4} \cup G_{7}$. With F_{3}, F_{5} and F_{6} form the block set $A=\{(1+i, 7+i, 4+i) \mid i=0,1, \ldots, 7\}$. Let (V, \mathcal{B}) be a DTS $(4,3)$ such that either $(0,0)$ or $(0,4)$ or $(1,4) \in \operatorname{DFine}(4)$. Let $\alpha(i)=i$ for $i=1,2$, $\alpha(4)=3$ and $\alpha(7)=4$. For each G_{i} (or $G_{i j}$) put in G either the directed triples $\cos _{\alpha(i)} G_{i}>3$-times repeated or ${ }^{\infty}{ }_{\alpha(i)} G_{i} \cup{ }^{<\infty}{ }_{\alpha(i)} G_{i}>$ $\cup G_{i} \infty(i)$. Then (VソZ $\left.{ }_{8}, B \cup C \cup 3 A\right)$ produces $\left(0, s_{1}\right)$, $\left(1, S_{2}\right) \in D F i n e(12)$ for each odd $s_{1}, 5 \leq s_{1} \leq 33$, and for each odd $s_{2}, 7 \leq s_{2} \leq 33$. Suppose that the $\operatorname{DTS}(12,3)$ which produces $(0,3)$ above constructed contains the directed triples $\infty_{1} G_{11} \cup<\infty_{1} G_{11}>\cup G_{11} \infty_{1}$. If we change the directed triples $\left\{2 \infty_{3} 3,2 \infty_{3} 3,3 \infty_{3} 4,3 \infty_{3} 4, \infty_{1} 32\right\}$ with $\left\{32 \infty_{3}, 23 \infty_{3}\right.$, $\left.\infty_{3} 34, \infty_{3} 34, \infty_{1} 23\right\}$, then $(1,5) \in \operatorname{DFine}(12)$.

If $A_{1}=\{174,741,417,205,025,520,316,163,631,427,247$, $742,530,350,035,614,641,164,752,725,527,063,036,306\}$ and $\mathscr{C}_{1}=\mathbb{C} \cup\left\{\infty_{2} 42, \quad \infty_{2} 53, \quad 53 \infty_{2}, \infty_{2} 75,17 \infty_{3}, \quad \infty_{3} 20, \quad \infty_{1} 31\right\} \backslash\left\{\infty_{1} 13, \infty_{2} 24\right.$, $\left.\infty_{2} 35, \quad 35 \infty_{2}, \infty_{2} 57,71 \infty_{3}, \infty_{3} 02\right\}$, then $\left(V \cup Z_{8}, B \cup C_{1} \cup A_{1}\right)$ produces $(0, s)$ for each $s=35,37,39,41$.

Suppose the set of 3 -times repeated blocks is $<\infty_{1} G_{13}>$. Let
 $\left.\infty_{4}^{\infty} 2_{1}{ }_{1}, \quad \infty_{2} \infty_{4} \infty_{3}, \quad \infty_{3} \infty_{1} \infty_{4}\right\} \quad$ and $\quad \mathscr{C}_{2}=\mathscr{C}_{1} \cup\left\{\infty_{2} \infty_{1} 0, \quad \infty_{1} 0_{\infty}, \quad \infty_{2} \infty_{3} 1, \quad \infty_{3} 1 \infty_{2}\right.$, $\left.\infty_{3} 7 \infty_{1}, \quad 7 \infty_{1} \infty_{3}, \quad \infty_{3} 01,710,701\right\} \backslash\left\{7 \infty_{1} 0,7 \infty_{1} 0, m_{2} 01, ~ 01 \infty_{2}, \infty_{3} 10,7 \infty_{3} 1\right.$,
$\left.\infty_{3} 71\right\}$, then $\left(V \cup Z_{8}, \mathcal{B}_{1} \cup G_{2} \cup \mathcal{A}_{1}\right)$ produces $(0,43)$. If in the above five DTS (12,3) we change the blocks 025 and 520 with 205 and 502, it follows (1,5) \in DFine (12) for each $s=35,37,39,41,43$.

Theorem 4.9. $\operatorname{DFine(v)=DAdm(v)\text {for}v=13,15,16,18.~}$
Proof. Since there are PBD on v elements with blocks of size 3 and blocks of size 4 [5], by Theorem 3.3 and Lemma 4.3 it remains to prove that $(0, s),(1, s) \in D F i n e(v)$ for each odd s, $3<s<s(v)$. For $v=13,15$ we can proceed as in Theorem 4.6 using the costruction $w->2 w+1, w=6,7$. The ingredients are a DTS (w,3) having an opportune fine structure and the following edge decompositions of the complete directed graph on $w+1$ elements: For $w+1=7$, let $P_{1}=\{12,23,31,46,64,50,05\}, P_{2}=\{13,24,35,42,56,60,01\}$, $P_{3}=\{16,61,20,34,45,53,02\}, P_{4}=\{14,25,36,40,51,62,03\}$, $P_{5}=\{15,26,30,41,52,63,04\}, P_{6}=\{10,21,32,43,54,65,06\}$. For $w+1=8$, let $P_{1}=\{12,23,31,45,56,67,70,04\}, P_{2}=\{13,24$, $35,42,57,60,71,06\}, P_{3}=\{14,25,36,47,50,61,72,03\}$, $P_{4}=\{15,26,37,40,51,64,73,02\}, P_{5}=\{16,27,30,41,52,63$, $74,05\}, P_{6}=\{17,20,34,46,53,62,75,01\}, P_{7}=\{10,21,32,43$, $54,65,76,07\}$. For $v=16$ the proof follows from the existence of a PBD with three blocks of size 6 and the remaining blocks of size 3. For $v=18$ the proof follows from the existence of a PBD with 3 blocks of size 4 , one block of size 6 and the remaining blocks of size 3 [11].

Theorem 4.10. DFine(5)=DAdm(5).
Proof. Let $v=\{0,1, \ldots, 4\}$. If $\mathcal{B}_{1}=\{012,123,234,340,401$,

024, 130, 241, 302, 413, 031, 142, 203, 314, 420, 043 104, 210, 321, 432\}, then $\left(V, B_{1}\right)$ produces $(0,6)$. If $\mathcal{B}_{1}^{(1)}=\mathcal{B}_{1} \cup\{032,431$, $014\} \backslash\{130,302,413,031,104\}$ and $\mathcal{B}_{2}^{(1)}=\{130\}$, then $\left(\mathrm{V}, \mathcal{B}_{1}^{(1)} \cup 2 \mathcal{B}_{2}^{(1)}\right)$ produces $(1,6)$. If $G_{1}=\{123,304,410,024,341,314,420,043$, 401, 321$\}$ and $\mathscr{C}_{2}=\{432,012,203,130,214\}$, then $\left(V, G_{1} \cup 2 G_{2}\right)$ produces $(5,6)$. If $\mathscr{C}_{1}^{(1)}=C_{1} \cup\{431,432,342\} \backslash\{341\}$ and $\mathscr{C}_{2}^{(2)}=\mathscr{C}_{2} \backslash\{432\}$, then $\quad\left(V, \mathscr{C}_{1}^{(1)} \cup 2 \mathscr{C}_{2}^{(2)}\right)$ produces (4,6). If $\mathscr{C}_{1}^{(2)}=C_{1}^{(1)}\{021, \quad 012, \quad 312\} \backslash\{321\} \quad$ and $\quad \mathscr{C}_{2}^{(2)}=\mathscr{C}_{2}^{(1)} \backslash\{012\}$, then $\left(\mathrm{V}, \mathbb{C}_{1}^{(2)} \cup 2 \mathcal{C}_{2}^{(2)}\right)$ produces $(3,6)$. If $\mathbb{C}_{1}^{(3)}=\mathcal{C}_{1}^{(2)} \cup\{203,230,034\} \backslash\{304\}$ and $\mathscr{C}_{2}^{(3)}=\mathscr{C}_{2}^{(2)} \backslash\{203\}$, then $\left(V, \mathscr{C}_{1}^{(3)} \cup 2 \mathscr{C}_{2}^{(3)}\right)$ produces $(2,6)$. If $D_{1}=\{402,204,142,342,243,241,301,103\}$ and $D_{2}=\{321,401,034$, 143, 102, 230$\}$ then ($V, \mathcal{D}_{1} \cup 2 D_{2}$) produces $(6,6)$.

Theorem 4.11. DFine (8)=DAdm(8).
Proof. Let $\mathrm{V}=\{0,1, \ldots, 7\}$. If $\mathcal{B}_{1}=\{126,157,257,346,375$, $475,567,765\}, \mathcal{B}_{2}=\{125,167,276,347,356,465\}$ and $\mathcal{B}_{3}=\{143$, 421, 532, 624, 731, 203, 510, 630, 740, 054, 061, 072\}, then $\left(\mathrm{V}, \mathcal{B}_{1} \cup 2 \mathcal{B}_{2} \cup 3 B_{3}\right)$ produces (6,6). To obtain ($t, 6$) for $t=2,3,4,5$ change opportunely in some directed triples of $\mathcal{B}_{1} \cup 2 \mathcal{B}_{2}$ the directed pair 67 with 76 and (or) 56 with 65 . For example changing the blocks 276 and 567 with 156 and 265 we obtain $(5,6)$.

If $G_{1}=\{125,126,127,156,157,167,256,257,267,345,346$, 347, $365,367,375,465,476,475,576,765\}$ then $\left(V, \mathscr{C}_{1} \cup 3 \mathcal{B}_{3}\right)$ produces $(0,6)$. If $\mathscr{C}_{1}^{(1)}=\mathscr{C}_{1} \cup\{265,275\} \backslash\{256,257,576,765\}$ and $\mathscr{C}_{2}^{(1)}=\{576\}$, then $\left(V, \mathscr{C}_{1}^{(1)} \cup 2 \mathcal{C}_{2}^{(1)} \cup 3 B_{3}\right)$ produces $(1,6)$.

If $D_{1}=\{152,126,127,165,167,175,256,257,267,345,346$, $347,536,537,376,465,475,476,567,765,325,352,532\}$ and
$D_{3}=\{143,421,624,731,203,510,630,740,054,061,072\}$, then ($V, D_{1} \cup 3 D_{3}$) produces $(0,7)$. If $D_{1}^{(1)}=D_{1} \cup\{125\} \backslash\{152,325\}$ and $\mathcal{D}_{2}^{(1)}=\{352\}$, then $\left(V, D_{1}^{(1)} \cup 2 \mathcal{D}_{2}^{(1)} \cup 3 D_{3}\right)$ produces $(1,7)$.

If $\varepsilon_{1}=\{126,157,257,346,375,745,567,765,470\}, \varepsilon_{2}=\{125$, 167, 276, 347, $356,465,740\}$ and $\varepsilon_{3}=\{143,421,532,624,731$, 203, 510, 630, 054, 061, 072\}, then ($V, \varepsilon_{1} \cup 2 \varepsilon_{2} \cup 3 \varepsilon_{3}$) produces (7,7). If $\quad \varepsilon_{1}^{(1)}=\mathcal{E}_{1} \cup\{347, \quad 374, \quad 475\} \backslash\{745\} \quad$ and $\quad \varepsilon_{2}^{(1)}=\mathcal{E}_{2} \backslash\{347\}$, then $\left(\mathrm{V}, \varepsilon_{1}^{(1)} \cup 2 \varepsilon_{2}^{(1)} \cup 3 \varepsilon_{3}\right)$ produces (6,7). If $\varepsilon_{1}^{(2)}=\mathcal{E}_{1} \cup\{167,176,276,267\}$ and $\varepsilon_{2}^{(2)}=\varepsilon_{2} \backslash\{167,276\}$, then $\left(V, \varepsilon_{1}^{(2)} \cup 2 \varepsilon_{2}^{(2)} \cup 3 \varepsilon_{3}\right)$ produces (5,7). If $\varepsilon_{1}^{(3)}=\varepsilon_{1}^{(1)} \cup\{167, \quad 176,276,267\} \quad$ and $\quad \varepsilon_{2}^{(3)}=\varepsilon_{2}^{(1)} \backslash\{167,276\}$, then $\left(\mathrm{V}, \varepsilon_{1}^{(3)} \cup 2 \varepsilon_{2}^{(3)} \cup 3 \varepsilon_{3}\right)$ produces (4,7). If $\varepsilon_{1}^{(4)}=\varepsilon_{1}^{(2)} \cup\{356,465$, 365, $456\}$ and $\varepsilon_{2}^{(4)}=\varepsilon_{2}^{(2)} \backslash\{356,465\}$, then $\left(V, \varepsilon_{1}^{(4)} \cup 2 \varepsilon_{2}^{(4)} \cup 3 \varepsilon_{3}\right)$ produces $(3,7)$. If $\varepsilon_{1}^{(5)}=\varepsilon_{1}^{(3)} \cup\{356,465,365,456\}$ and $\varepsilon_{2}^{(5)}=\varepsilon_{2}^{(3)} \backslash\{356,465\}$, then $\left(V, \varepsilon_{1}^{(5)} \cup 2 \varepsilon_{2}^{(5)} \cup 3 \varepsilon_{3}\right)$ produces $(2,7)$.

Let $\xi_{1}=\{125,126,127,165,176,175,256,257,267,435$, $436,347,365,367,735,465,476,457,567,576,314,134,143$, $713,371,731\}$ and $\mathscr{G}_{3}=\{421,532,624,061,203,510,630,740$, 054, 072\}, then $\left(\mathrm{V}, \mathcal{G}_{1} \cup 3 \xi_{3}\right)$ produces $(0,8)$. If $\mathscr{G}_{1}^{(1)}=\mathcal{G}_{1} \cup\{376\} \backslash\{367$, 576, 567$\}$ and $\mathscr{G}_{2}=\{567\}$, then $\left(V, \mathscr{\xi}_{1}^{(1)} \cup 2 \mathscr{G}_{2} \cup 3 \xi_{3}\right)$ produces (1,8). If $\mathscr{G}_{1}^{(2)}=\mathcal{G}_{1} \cup\{345,375\} \backslash\{435,735,134,371,143,731\}$ and $\mathcal{G}_{2}^{(2)}=\{143$, 731\}, then $\left(V, \xi_{1}^{(2)} \cup 2 \xi_{2}^{(2)} \cup 3 \xi_{3}\right)$ produces $(2,8)$.

Let $\mathcal{H}_{1}=\{126,157,257,436,735,475,567,765,134,371\}$ and $\mathscr{H}_{2}=\{125,167,276,347,356,465,143,731\}$, then $\left(V, H_{1} \cup 2 \mathcal{H}_{2} \cup 3 \xi_{3}\right)$ produces $(8,8)$. If $\mathscr{H}_{1}^{(1)}=H_{1} \cup\{346,347,437\} \backslash\{436\}$ and $\mathcal{H}_{2}^{(1)}=\mathcal{H}_{2} \backslash\{347\}$, then $\left(V, H_{1}^{(1)} \cup 2 \mathcal{H}_{2}^{(1)} \cup 3 \xi_{3}\right)$ produces (7,8). Similarly we can prove that $(t, 8) \in D F i n e(8)$ for each $t=3,4,5,6$.

Let $\mathscr{L}_{1}=\{152,126,127,156,157,167,256,257,267,453$,
$436,347,365,367,753,465,476,475,576,765,314,134,143$, $713,371,731,352,325,532\}$ and $\mathscr{L}_{3}=\mathscr{G}_{3} \backslash\{532\}$, then $\left(V, \mathscr{L}_{1} \cup 3 \mathscr{L}_{3}\right)$ produces $(0,9)$. If $\mathscr{L}_{1}^{(1)}=\mathscr{L}_{1} \cup\{125\} \backslash\{152,325,352\}$ and $\mathscr{L}_{2}^{(1)}=\{352\}$, then $\left(V, \mathscr{L}_{1}^{(1)} \cup 2 \mathscr{L}_{2}^{(1)} \cup 3 \mathscr{L}_{3}\right)$ produces (1,9). If $\mathscr{L}_{1}^{(2)}=\varphi_{1}^{(1)} \cup\{346\} \backslash\{436$, 134, 143\} and $\mathscr{L}_{2}^{(2)}=L_{2}^{(1)} \cup\{143\}$, then $\left(V, \varphi_{1}^{(2)} \cup 2 \mathscr{L}_{2}^{(2)} \cup 3 \mathscr{L}_{3}\right)$ produces (2,9). If $\mathscr{L}_{1}^{(3)}=\mathscr{L}_{1}^{(2)} \cup\{175,165\} \backslash\{765,156,157,576\}$ and $\mathscr{L}_{2}^{(3)}=\mathscr{L}_{2}^{(2)} \cup\{576\}$, then $\left(V, \mathscr{L}_{1}^{(3)} \cup 2 \mathscr{L}_{2}^{(3)} \cup 3 \mathscr{L}_{3}\right)$ produces (3,9). If $\mathscr{L}_{1}^{(4)}=H_{1} \cup\{753, \quad 352\} \backslash\{735\} \quad$ and $\quad \mathscr{L}_{2}^{(4)}=H_{2} \cup\{532\}$, then $\left(\mathrm{V}, \mathscr{L}_{1}^{(4)} \cup 2 \mathscr{L}_{2}^{(4)} \cup 3 \mathscr{L}_{3}\right) \quad$ produces (9,9). If $\mathscr{L}_{1}^{(5)}=\mathscr{L}_{1}^{(4)} \cup\{346$, 347, $437\} \backslash\{436\}$ and $\mathscr{L}_{2}^{(5)}=\mathscr{L}_{2}^{(4)} \backslash\{347\}$, then $\left(V, \mathscr{L}_{1}^{(5)} \cup 2 \mathscr{L}_{2}^{(5)} \cup 3 \mathscr{L}_{3}\right)$ produces (8,9). Similarly we obtain ($t, 9) \in D F i n e(8)$ for each $t=4,5,6,7$.

In the following we give a complete solution for the cases $(0, s),(s, s), s=10,11, \ldots, 18$. Proceeding as above it is possible to obtain the remaining cases.

Let $M_{1}=\mathscr{L}_{1} \cup\{412,421,413,142,216,217\} \backslash\{126,127,143\}$ and $M_{3}=\mathscr{L}_{3} \backslash\{421\}$, then $\left(V, M_{1} \cup 3 M_{3}\right)$ produces $(0,10)$. Let $M_{1}^{(1)}=\varphi_{1}^{(4)} \cup\{216$, $412\} \backslash\{126\}$ and $M_{2}^{(1)}=\mathscr{L}_{2}^{(4)} \cup\{421\}$, then $\left(V, M_{1}^{(1)} \cup 2 M_{2}^{(1)} \cup 3 M_{3}\right)$ produces $(10,10)$.

Let $N_{1}=M_{1} \cup\{624,642,462,241,124,645\} \backslash\{421,142,465\}$ and $N_{3}=M_{3} \backslash\{624\}$, then $\left(V, N_{1} \cup 3 N_{3}\right)$ produces $(0,11)$. Let $N_{1}^{(1)}=M_{1}^{(1)} \cup\{642$, $241\} \backslash\{421\}$ and $N_{2}^{(1)}=M_{2}^{(1)} \cup\{624\}$, then $\left(V, N_{1}^{(1)} \cup 2 N_{2}^{(1)} \cup 3 N_{3}\right)$ produces (11,11).

Let $\mathcal{P}_{1}=\mathscr{L}_{1} \cup\{725,726,637,457,567,023,203,230,027,207$, $072,360,630,603\} \backslash\{257,267,367,475,576\}$ and $\mathcal{P}_{3}=\mathscr{L}_{3} \backslash\{203,630$, $072\}$, then $\left(V, \mathcal{P}_{1} \cup 3 \mathcal{P}_{3}\right)$ produces $(0,12)$. Let $\mathcal{P}_{1}^{(1)}=\mathscr{L}_{1}^{(4)} \cup\{725,457$, 603, 027, 230\}
{257, 475\} and } \mathcal { P } _ { 2 } ^ { (1) } = \mathscr { L } _ { 2 } ^ { (4) } \cup \{ 6 3 0 , 0 7 2 , 2 0 3 \} , then $\left(\mathrm{V}, \mathcal{P}_{1}^{(1)} \cup 2 \mathcal{P}_{2}^{(1)} \cup 3 \mathcal{P}_{3}\right)$ produces $(12,12)$.

Let $Q_{1}=P_{1} \cup\{061,601, \quad 306,617,016\} \backslash\{360,167\}$ and $Q_{3}=P_{3} \backslash\{061\}$, then $\left(V, Q_{1} \cup 3 Q_{3}\right)$ produces $(0,13)$. Let $Q_{1}^{(1)}=\mathcal{P}_{1}^{(1)} \cup\{063$, $601\} \backslash\{603\}$ and $Q_{2}^{(1)}=\mathcal{P}_{2}^{(1)} \cup\{061\}$, then $\left(V, Q_{1}^{(1)} \cup 2 Q_{2}^{(1)} \cup 3 Q_{3}\right)$ produces $(13,13)$.

Let $\mathcal{R}_{1}=Q_{1} \cup\{517,106,150,510,501\} \backslash\{157,016\}$ and $\mathcal{R}_{3}=Q_{3} \backslash\{510\}$, then $\left(V, \mathcal{R}_{1} \cup 3 \mathcal{R}_{3}\right)$ produces $(0,14)$. Let $\mathcal{R}_{1}^{(1)}=Q_{1}^{(1)} \cup\{517$, $150\} \backslash\{157\}$ and $\mathcal{R}_{2}^{(1)}=Q_{2}^{(1)} \cup\{510\}$, then $\left(V, \mathcal{R}_{1}^{(1)} \cup 2 \mathcal{R}_{2}^{(1)} \cup 3 \mathcal{R}_{3}\right)$ produces $(14,14)$.

Let $\varphi_{1}=\mathcal{R}_{1} \cup\{216,217,341,421,412,142\} \backslash\{126,127,314\}$ and $\varphi_{3}=\mathcal{R}_{3} \backslash\{421\}$, then $\left(\mathrm{V}, \varphi_{1} \cup 3 \varphi_{3}\right)$ produces $(0,15)$. Let $\varphi_{1}^{(1)}=\mathcal{R}_{1}^{(1)} \cup\{412$, $216\} \backslash\{126\}$ and $\varphi_{2}^{(1)}=\mathcal{R}_{2}^{(1)} \cup\{421\}$, then $\left(V, \varphi_{1}^{(1)} \cup 2 \varphi_{2}^{(1)} \cup 3 \varphi_{3}\right)$ produces $(15,15)$.

Let $\mathscr{T}_{1}=\varphi_{1} \cup\{374,746,470,740,407,702\} \backslash\{347,476,072\}$ and $\mathscr{J}_{3}=\varphi_{3} \backslash\{740\}$, then $\left(V, \mathcal{T}_{1} \cup 3 \mathcal{F}_{3}\right)$ produces $(0,16)$. Let $\mathscr{T}_{1}^{(1)}=\varphi_{1}^{(1)} \cup\{746$, $470\} \backslash\{476\}$ and $\mathscr{T}_{2}^{(1)}=\varphi_{2}^{(1)} \cup\{740\}$, then $\left(V, \mathcal{F}_{1}^{(1)} \cup 2 \mathcal{T}_{2}^{(1)} \cup 3 \mathcal{F}_{3}\right)$ produces $(16,16)$.

Let $U_{1}=\mathcal{T}, \cup\{547,051,054,504,045\} \backslash\{457,501\}$ and $u_{3}=\mathscr{F}_{3} \backslash\{054\}$, then $\left(v, u_{1} \cup 3 u_{3}\right)$ produces $(0,17)$. Let $u_{1}^{(1)}=\mathscr{F}_{1}^{(1)} \cup\{105$, $504\} \backslash\{150\}$ and $U_{2}^{(1)}=\mathcal{T}_{2}^{(1)} \cup\{054\}$, then $\left(V, U_{1}^{(1)} \cup 2 U_{2}^{(1)} \cup 3 U_{3}\right)$ produces (17,17).

Let $V_{1}=U_{1} \cup\{162,241,642,264,624\} \backslash\{126,421\}$, then $\left(V_{1} V_{1}\right)$ produces $(0,18)$. Let $V_{1}^{(1)}=u_{1}^{(1)} \cup\{162,264\} \backslash\{126\}$ and $V_{2}^{(1)}=u_{2}^{(1)} \cup\{624\}$, then $\left(V, V_{1}^{(1)} \cup 2 V_{2}^{(1)}\right)$ produces $(18,18)$.

Theorem 4.12. DFine (11)=DAdm(11).
Proof. Lemma 3.1 produces $(t, s) \in D F i n e(11)$ for $s=6 k$, $k=0,1, \ldots, 6$ and $0 \leq t \leq s$.

Let $V=\{0,1, \ldots, 9, a\}$. Let D_{1} be the block set defined in the above Theorem 4.10. If $G_{1}=\{062,649,631,96 a, ~ a 68,860,083,841$,

438, 218, 209, 910, 139, 942, 3a0, a23, 24a, 1a4\} and $\mathscr{G}_{2}=\{051$, 85a, $959,958, ~ 879, ~ 973, ~ a 71, ~ 074, ~ 782, ~ 70 a, ~ 540\}, ~ t h e n ~$ $\left(V, D_{1} \cup 3 \xi_{1} \cup 3 \xi_{2}\right)$ produces (0,7).

Let \mathcal{E}_{1} and ε_{2} be the block sets defined in the above Theorem 4.10. If $\xi_{1}^{(1)}=\xi_{1} \cup\{a 32\} \backslash\{a 23\}$ and $\mathscr{G}_{2}^{(1)}=\{071,723,87 a, 978$, a79, 859, 953, a51, 054, 582\}, then $\left(\mathrm{V}, \varepsilon_{1} \cup 2 \varepsilon_{2} \cup 3 \xi_{1}^{(1)} \cup 3 \xi_{2}^{(1)}\right)$ produces (7,7). Proceeding as in the Theorem 4.10 we prove that $(t, 7) \in D F i n e(11)$ for each $t=1,2, \ldots, 6$.

To settle the cases (t, s), for each $s=8,9, \ldots, 34$ and $0 \leq t \leq s$, it is possible to embed a $\operatorname{DTS}(5,3)$ on $W=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{5}\right\}$ having an opportune fine structure in a $\operatorname{DTS}(11,3)$ as in Theorem 4.6. (Note that $F_{2}=\{13,35,51\} \cup\{24,40,02\}$ and $F_{3}=\{14,41\} \cup\{25,52\} \cup\{30$, 03\}).

To settle the cases $(t, 35)$, it is possible to suppose that the $\operatorname{DTS}(11,3)(V, B)$ producing $(t, 34)$ above constructed contains the three-times repeated blocks $\infty_{3} 14$ and $41 \infty_{4}$. Moreover it is possible to suppose that $\infty_{3} \infty_{4} \infty_{1}, \infty_{3} \infty_{1} \infty_{4} \in \mathcal{B}$. Then it is possible to replace in B the blocks $\infty_{3} \infty_{1} \infty_{4}, \infty_{3} 14, \infty_{1} 45, \infty_{4} 15$ with $\infty_{3} \infty_{1} 4$, $\infty_{3} \infty_{4} 1, \infty_{1} \infty_{4} 5,145$ and or the blocks $\infty_{3} \infty_{4} \infty_{1}, \infty_{3} 14, \infty_{4} 42, \infty_{1} 12$ with the following ones $\infty_{3} \infty_{4} 4, \infty_{3} \infty_{1} 1, \infty_{4} \infty_{1} 2,142$.

Theorem 4.13. DFine(14)=DAdm(14).
Proof. Let $V=\{0,1, \ldots, 9, a, b, c, d\}$. If $A_{1}=\{d 8 b$, dac, 8ac, $90 b, 9 c a, ~ c 0 a, ~ 0 c 8, ~ a b c, ~ c b a\}, ~ A_{2}=\{d 8 a, d b c, 8 c b, 90 c, 9 a b, 0 b a$, C08\} and $A_{3}=\{a 8 d, a 30,7 a 9,1 a 4,2 a 5,3 a 6,5 a 1,6 a 2,4 a 7, b d 0$, b98, 1b6, 2b7, 3b1, 4b2, 5b3, 6b4, 7b5, c9d, 1c7, 2c1, 3c2, 4c3, $5 c 4,6 c 5,7 c 6, ~ d 69, ~ 05 d, 1 d 2,2 d 3,3 d 4,4 d 5,7 d 1,6 d 7,819,480$, 185, 286, 387, 582, 683, 784, 092, 395, 294, 596, 491, 973, 103, 046, 720, 507, 601\}, then $\left(V, A_{1} \cup 2 A_{2} \cup 3 A_{3}\right)$ produces (7,7). If
$A_{1}^{(1)}=A_{1} \cup\{9 a b, \quad 9 b a, \quad c a b\} \backslash\{c b a\} \quad$ and $\quad A_{2}^{(1)}=A_{2} \backslash\{9 a b\}$, then $\left(V, A_{1}^{(1)} \cup 2 A_{2}^{(1)} \cup 3 \mathcal{A}_{3}\right)$ produces $(6,7)$. Similarly we can prove that $(t, 7) \in D F i n e(14)$ for each $t=2,3,4,5$.

Let $\mathcal{B}_{1}=\{d a 8, d 8 b, 8 d c, d a b, d a c, d b c, 8 c a, 8 b a, 8 c b, 90 a$, $90 b, 90 c, 9 a b, 9 a c, 9 b c, 0 c a, ~ 0 b a, ~ 0 c b, ~ a b c, ~ c b a, ~ a d 8, ~ a 8 d, 8 a d\}$ and $B_{3}=A_{3} \cup\{c 08\} \backslash\{a 8 d\}$, then $\left(V, B_{1} \cup 3 B_{3}\right)$ produces $(0,7)$. If $\mathcal{B}_{1}^{(1)}=\mathcal{B}_{1} \cup\{d 8 a\} \backslash\{d a 8$, a8d, $8 a d\}$ and $\mathcal{B}_{2}=\{a 8 d\}$, then $\left(V, B_{1}^{(1)} \cup 2 \mathcal{B}_{2} \cup 3 B_{3}\right)$ produces (1,7).

To complete the proof we can proceed similarly to the above Theorem by embedding a $\operatorname{DTS}(5,3)$ on $W=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{5}\right\}$ having an opportune fine structure in a $\operatorname{DTS}(14,3)$ (see also Lemmas 3.3 and 3.4). The ingredients are: $P_{1}=\{10,25,34,43,58,67,76,82$, $01\}, P_{2}=\{18,20,32,47,54,65,71,86,03\}, P_{3}=\{12,23,31,45$, $56,64,78,80,07\}, P_{4}=\{14,21,36,42,53,60,75,87,08\}$, $P_{5}=\{16,27,38,40,51,62,73,84,05\}$ and one of the following block sets: either $3\left\{(j, j+2, j+6) \mid j \in Z_{9}\right\}$, or $2\left\{(j, j+2, j+6) \mid j \in Z_{9}\right\}$ $\cup\left\{(j, j+4, j+6) \mid j \in Z_{9}\right\}$, or $\left\{(j, j+2, j+6) \mid j \in Z_{9}\right\} \cup\{(j, j+6, j+2) \quad$, $\left.j \in Z_{g}\right\} \cup\left\{(j, j+4, j+6) \quad \mid j \in Z_{g}\right\}$.

Proof of the Main theorem. The results of the section 4 and Theorems $2.1,3.1$ and 3.2 prove the Main theorem.

REFERENCES
[1] C.J.Colbourn and C.C.Lindner, Support sizes of triple systems, J. Comb. Theory A 61 (1992) 193-210.
[2] C.J.Colbourn, R.A.Mathon, A.Rosa and N.Shalaby, The fine structure of threefold triple systems: $v \equiv 1,3$ (mod 6), Discrete Math. 92 (1991) 49-64.
[3] C.J.Colbourn, R.A. Mathon and N.Shalaby, The fine structure of threefold triple systems: $v \equiv 5$ (mod 6), Austral. J. Comb. 3 (1991) 75-92.
[4] C.J.Colbourn and A.Rosa, Directed and Mendelsohn triple systems, Contemporary Design Theory (1992), 97-136 (J.H.Dinitz and D.R.Stinson, eds), John Wiley \& Sons, Inc.
[5] C.J.Colbourn, A.Rosa and D.R.Stinson, Pairwise balanced designs with block sizes three and four, Canad. J. Math. 43 (4) (1991), 673-704.
[6] W.Foody and A.Hedayat, On theory and applications of BIB designs with repeated blocks, Ann. Statist. 5 (1977), 932-945.
[7] H.L.Fu, Directed triple systems having a prescribed number of triples in common, Tamkang J. Math. 14 (1983) 691-703.
[8] C.C.Lindner and A.Rosa, Steiner triple systems having a prescribed number of triples in common, Can. J. Math. 27 (1975) 1166-1175. Corrigendum: 30 (1978) 896.
[9] C.C.Lindner and W.D.Wallis, Embeddings and prescribed intersections of transitive triple systems, Ann. Discrete Math. 15 (1982) 265-272.
[10] S.Milici, G.Quattrocchi and H.Shen, Support sizes of directed triple systems, J. Comb. Theory A 75 (1996) 198-219.
[11] A.Rosa and D.G.Hoffman, The number of repeated blocks in twofold triple systems, J. Comb. Theory A 41 (1986) 61-88.

[^0]: (*) Research supported by MURST and GNSAGA-CNR.

