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Abstract 

Starting with the empty graph on p vertices, two players alternately 
add edges until the graph has some property P. The last player to move 
loses the P-avoidance game (there is also a P-achievement game, where 
the last player to move wins). If P is a property enjoyed by the complete 
graph on p vertices then one player must win after a finite number of 
moves. Assuming both players play optimally, the winner will depend 
only on p. All the games solved in the literature have followed a certain 
pattern. Namely, for sufficiently large p, the winner has been determined 
by the residue of p mod 4. We say such a game has a period of 4 (or 
in some cases a proper divisor of 4). In this paper we exhibit avoidance 
games with arbitrarily large period. We also prove that the equivalent 
games of 4-cycle achievement and 3-path avoidance have period 7. 

§1. Introduction 

We are interested in graph games of the following form. Two players agree on 
a graph property P, and on whether the aim of the game will be to create a graph 
with property P (the P-achievement game) or to avoid creating such a graph (the 
P-avoidance game). The game graph G starts off as K p (that is, p isolated vertices). 
The first player to move is designated Player A, and the other player is known as 
Player B. These two players take turns to add a single undistinguished edge to 
G, with play halting when G first achieves property P. The player who made the 
last move wins the achievement game, but loses if the aim was P-avoidance. The 
possible end positions in both games are related to extremal graph theory. 

If we choose P to be a property of the complete graph Kp but not of K p, then 
the game must finish (after at most (~) moves) in a win to one of the players. In 
game theoretic terms, this makes it a zero-sum, two-person game with complete 
information, a finite game tree and no draws. It is a well known theorem of von 
Neumann, that in such games one player has a winning strategy. Call this player W 
and call W's opponent L. The statement that W has a winning strategy means that 
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whatever moves L makes, W can always choose moves in reply which eventually 
lead to W being victorious. For an explanation of von Neumann's theorem and 
other game theoretic notions, see for example [2, p. 69]. 

Of course, there is a big gap between knowing that W exists and knowing 
which player W is, or what a winning strategy for W is. A number of games have 
hitherto been studied in the literature. Harary and Robinson looked at connect
edness achievement and avoidance games in [5]. In [1] Buckley and Harary solved 
diameter-2 avoidance, but were unable to solve diameter-2 achievement for p > 6. 
Games where the goal is a graph containing a vertex of degree .6. were studied in 
[4]. The related games where P is the property that every vertex has degree at 
least 0 appeared in [3]. The avoidance game was solved but the achievement game 
only proved tractable for 0 ~ 3. The results of these papers are summarised below. 

{

A wins if p = 2; or p 2:: 4, p == 0, 3 mod 4 
Connectedness achievement 

B wins if p = 3; or p 2:: 4,p == 1,2 mod 4 

{

A wins if p 2:: 3 and p 2, 3 mod 4 
Connectedness avoidance 

B wins if p = 2 or p == 0, 1 mod 4 

{

A wins if p == 0, 3 mod 4 
Diameter-2 avoidance 

B wins if p == 1, 2 mod 4 

{
A wins if p = 7; or p 2:: 6 and even 

Maximum degree-3 avoidance 
B wins if p = 4,5; or p 2:: 9 and odd 

Minimum degree-o avoidance (odd 0) 
{

A wins if p 0,3 mod 4 

B wins if pI, 2 mod 4 

{

A wins if pI, 2 mod 4 
Minimum degree-o avoidance (even 0) 

B wins if p == 0,3 mod 4 

{

A wins if p = 2; or p 2:: 7,p == 0,3 mod 4 
Minimum degree= 1 achievement 

B wins if p = 3,4; or p 2:: 5,p == 1,2 mod 4 

{

A wins if p = 3,6; or p 2:: 7, p == 0,3 mod 4 
Minimum degree=2 achievement 

B wins if p = 4,5; or p 2:: 9,p == 1,2 mod 4 

{

A wins if p 2:: 6 and pI, 2 mod 4 
Minimum degree=3 achievement 

B wins if p 4, 5; or p 2:: 7, p == 0, 3 mod 4 

The above results display a striking pattern. In all cases the winner is deter
mined by the residue of p modulo 4; possibly barring a few small exceptional values 
of p. This observation motivates the following definition. 

Definition. The period of the P-achievement game is the smallest integer T with 
the following property: There exists an integer N such that for all p 2: N, Player A 
wins P -achievement on p = P+T vertices if and only if Player A wins P -achievement 
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when p p. If no such T exists then we say the period is infinite or that the game 
is aperiodic. The period of the P-avoidance game is defined analogously. 

It seems common for a graph game to have period 4, posing one obvious 
question. What other periods (if any) are possible? This paper will partially 
answer that question. To make our analyses easier we assume throughout that 
both players use one step look-ahead. That is, no player will consider a move which 
immediately loses the game (or allows the opponent to win immediately) unless 
there is no option available. The reader is also warned that in our descriptions of a 
winning strategy for W we will often attribute a definite move to W without regard 
to other successful choices W could have made at the same stage. This practice is 
followed for the sake of clarity, given that in general W will have a multitude of 
winning strategies available. 

§2. Large component avoidance 

We call our first game large component avoidance. The aim is to avoid creating 
a component containing more than n vertices. By changing our definition of "large" 
(i.e. varying n) we will be able to generate a family of games with different periods. 
The game will sometimes be called n+-component avoidance to emphasize the role 
of n. Note that large component avoidance is a generalisation of the connectedness 
avoidance game studied in [5] under the name of "Don't Connect It". 

In what follows we will assume that p > n 2': 1, otherwise the game is not prop
erly defined since neither player can win nor lose. The winner of large component 
avoidance is shown by the following result. 

Theorem 1. Let p > n 2': 1 be given. Define m and r to be the unique integers 
satisfying p mn + rand 0 ~ r < n. Then player A wins n+-component avoidance 
on p vertices in the following cases (with player B winning in all other cases). 

(1) n is even and p == 2,3 mod 4. 

(2) n == 1 mod 4 and { 
r = 1 or 

r == 2,3 mod 4. 

(3) n == 3 mod 4 and 1
m even, r = 1. 

m even, r == 2,3 mod 4. 

m odd, r == 0,1 mod 4, r =1= 1. 

We shall prove Theorem 1 in a moment, but first observe what it tells us about 
the period of n+-component avoidance. If n is even then clearly the period is 4, so 
there is nothing new here. However, when n == 1 mod 4 the winner depends only 
on the residue of p modulo n, so the period is n. (To be sure the period is not 
a proper divisor of n we observe that within the cycle the only three consecutive 
wins for A are p == 1,2,3 mod n.) Similarly, when n 3 mod 4 the period is 2n, 
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with the only three consecutive wins for A being when p == 1,2,3 mod 2n. Thus, 
there is a graph game of period r for every positive integer r == 1,5 or 6 mod 8. 

In order to prove Theorem 1 we introduce some terminology. For each compo
nent e of G, let lei be the size of the component (the number of vertices contained 
in e). We say that e is a fragment if 1 < lei < n. The vertices in fragments, 
together with the isolated vertices (vertices of degree 0) form the set of live vertices. 
We use the symbols j, land e respectively to denote the number of fragments, live 
vertices and isolated edges (components of size 2), at a given stage of the game. 
Also, when 1 ~ 1 let s denote the size of the largest component among the live 
vertices. 

There are four types of move possible. 

MI Joins two isolated vertices, 
M2 Joins an isolated vertex to a fragment, 
M3 Joins two fragments, 
M4 Joins two vertices within the same component. 

Following the terminology of [5), M4 will be called a conservative move, be
cause it does not change the number of components or their sizes. 

To establish who wins large component avoidance it is instructive to study the 
penultimate positions (the positions from which the next player to move cannot 
avoid losing immediately). Clearly, in the penultimate position every component 
will be a complete subgraph of G and the sum of the sizes of the two smallest com
ponents will be greater than n. To win large component avoidance, players guide 
play to a penultimate position which suits them. Player A wants the penultimate 
position to have an odd number of edges, while B wants an even number. 

Proof of Theorem 1. 

We first note that when n = 1, Theorem 1 is trivially satisfied because Player 
A loses on the first turn of every game. Henceforth assuming that n > 1, we prove 
Theorem 1 by providing a winning strategy for W. This strategy consists of two 
phases, with the basic idea being to minimise f. 

Phase 1: 

We show inductively that W can ensure that 
(i) f ::; 1 when it is 1's turn to move and 
(ii) f ::; 2 and f - e ::; 1 when it is W's turn to move, 

and that after a finite number of moves the game will reach a position for which 
1 ::; n + 1, at which stage Phase 1 is completed. 

Clearly, before the first move of the game f = 0 and the appropriate condition 
is satisfied. On later moves we may assume that W's strategy has worked for 
preceding moves. Thus, assume that j ::; 1 and it is 1's move. Now, the only move 
which increases f is M I , which increases both f and e by 1. Hence it follows that 
(ii) must hold after L has moved. Alternately, suppose that (ii) holds on W's turn 
and that 1 > n + 1. Then there must be enough isolated vertices available for W 
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to play 

{ 

Ml if f = 0, 
M2 if f = 1 or s = n - 1 (playing on the larger fragment if f = 2), 
M3 if f = 2 and s < n - 1. 

It is an easy matter to check that after W's move f ::; 1 and the game graph con
tains no large component. Moreover, every move W makes decreases the integral 
quantity 1 - sand 1's moves never increase this quantity. Since s < n, the termi
nating condition for Phase 1 must eventually be satisfied. Note that if need be L 
can imitate W's strategy, so play will not halt before Phase 1 is completed. 

Phase 2: 

We observe that every move of the game either leaves l unchanged or decreases 
it by n. Since l = p at the start of the game it follows that at the beginning of 
Phase 2, 1 == p mod nand 2 :::; 1 ::; n + 1. In addition, the move which completed 
Phase 1 must have decreased 1 and hence also decreased f. It follows that at the 
start of Phase 2, e = f ::; 1. W's strategy now splits into two cases. 

Case 1: p ¢ 1 mod n. 

In this case W has done the hard work; the result of the game is determined. 
Since 1 :::; n there is only one penultimate position which can now be reached, 
namely the disjoint union of Kr with m copies of Kn. We denote this position by 
mKnUKr· 

Case 2: p == 1 mod n. 

This case reduces to the connectedness avoidance game studied in [5]. The two 
players play "Don't Connect It" on the 1 = n + 1 live vertices, the only difference 
being that there may be conservative moves available on the non-live vertices. 
Examining the strategy given in [5] shows these surplus moves do not interfere with 
the winning strategy, although if there are an odd number of them the identity of 
W will change. The only requirement for Harary and Robinson's strategy to be 
applicable is that if n is odd then W must have a turn before the number of 
components (in the live vertices) is reduced below 3. By our comments at the start 
of this phase, at W's first turn in Phase 2 there will be at most 2 edges played 
between live vertices. Hence, there will certainly be at least 3 components unless 
l = n + 1 ::; 4. Thus the only special case we need examine further is n = 3. 

When n = 3 and p == 1 mod n the strategy given above must be slightly 
modified. In Phase 1, W plays exactly the same moves, except that in a position 
where 1 = 7 and f = e = 2, W plays Ml rather than M 2 . The only penultimate 
position which can then be reached is (m -1)K3 U 2K2 • We claim this is the same 
penultimate position reached as when the above exception is not encountered. To 
see this, study the possible positions at the end of Phase 1. We know the move 
which completed Phase 1 must have reduced l by 3 and reduced f by 1. However, 
prior to this last move f ::; 1 because of the inductive hypothesis of Phase 1 and 
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the fact that W did not encounter the exception. Hence at the start of Phase 2, 
f = O. This means that there are enough components of live vertices for W to play 
"Don't Connect It". W's strategy will be to play conservatively until L eventually 
has to play M 1, at which point W also plays MI' This ensures that the penultimate 
position reached when n = 3 and p == 1 mod n is always (m 1)K3 U 2K2 • 

This completes the description of a winning strategy for W. Now it is time 
to establish the identity of W (i.e. which player may choose to ensure victory by 
using this strategy). This depends only on the parity of the number of edges in 
the penultimate position. The complete graph K a has (~) edges, which is an odd 
number if and only if a == 2,3 mod 4. It follows from our description of Phase 2, 
that when p ::j 1 mod n Player A wins if and only if m(~) + G) is odd. Specifically, 
Player A wins if p 1=- 1 mod nand 

(1) n == 0,1 mod 4 and r == 2,3 mod 4, 
(2) n == 2,3 mod 4 and m is even and r 2,3 mod 4 or 
(3) n == 2,3 mod 4 and m is odd and r 0,1 mod 4. 

Player B wins all other games for which p 1=- 1 mod n. 
When p == 1 mod n we rely on the analysis of "Don't Connect It" in [5], as 

summarised in §l. Player A wins "Don't Connect It" on n+ 1 vertices if and only if 
n == 1,2 mod 4. However, we must also account for the (m -1)(~) moves made in 
the non-live components. Hence if p == 1 mod n then Player A wins n+-component 
avoidance precisely when 

(1) n 1 mod 4, 
(2) n == 2 mod 4 and m is odd or 
(3) n == 3 mod 4 and m is even 

Compiling the results presented above completes the proof of Theorem 1. 8 

§3. 4-cycle achievement and 3-path avoidance 

It is easily seen that the winner of the 4-cycle achievement game is the winner 
of the 3-path avoidance game, as a 3-path can always be turned into a 4-cycle 
by adding an edge between the end-points of the path, and this is the only way 
a 4-cycle can be created. Hence the two games are equivalent, and we need only 
consider the 3-path avoidance game in detail. 

The components of a graph which contains no 3-paths can only be 3-cycles 
or stars (KI,n for some n ~ 0). Let the quadruple 8 (v, e, k, s) be known 
as the game state, where v, e, k are the number of components of G which are 
isolated vertices, isolated edges and K 1,2 's respectively; and s 0 or 00 depending 
on whether G respectively does not or does contain a non-trivial star (K1 ,n with 
n ~ 3). We will show that the winner of the game is determined by the game state. 
The winning strategy we will exhibit depends heavily on the value of the function 
4>(8) = v - 4e - 2k. 

When either player adds an edge to G they alter the game state. We think 
of a move as a quadruple M = (ml' m2, m3, m4) such that if 8 = 8 0 before a 
player's turn, then it is possible that 8 = 8 0 + M afterwards (here addition of 
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quadruples is defined component-wise). Making the assumption that no player will 
ever construct a 3-path if they have an option not to, the only moves we need 
consider are: 

MI = (-2,1,0,0) corresponding to joining two isolated vertices, 
M2 = (-1, -1,1,0) forming a K 1 ,2 from an isolated edge, 
M3 = (-1,0, -1,00) forming a K 1,3 from a K 1 ,2, 

M4 = (-1,0,0, -1) enlarging a non-trivial star, 
M5 = (0,0, -1,0) forming a 3-cycle from a K I ,2. 

We note that these moves change ¢ by -6,1,1, -1 and 2 respectively. Also, a 
particular move can be made if and only if the resulting game state has no negative 
components. We call such moves legal moves. 

We define £ to be the set of all game states from which the opponent of the 
player whose turn it is has a winning strategy. Since the game must end after a 
finite number of moves we have an alternate (recursive) definition. A given state 
is in £ if and only if every legal move from that state reaches a state (not in £) 
from which there is a move to a state in £. Specifically, a game state 80 is in 
£ if and only if there is a tactic, being a quintuple [RI' R 2 , R 3 , R 4 , R 5] of moves 
(called replies) with the following property holding for 1 :::; i :::; 5: If Mi is a legal 
move from So then Ri is a legal move from 80 + Mi and 80 + Mi + Ri E £. If we 
know that a particular move is not legal from 80 we may write • in place of the 
appropriate reply. So, for example, [Rll R 2 ,., R 4 , 0] is a typical tactic when k = 0 
in So and M 3 , M5 are not legal moves. 

To determine the winner of 3-path avoidance we prove a series of propositions 
that establish which states are in.c. The tactics required to prove these propositions 
will be numerous, so we leave to the reader the tedious business of checking that 
the legality of each reply Ri is implied by the legality of Mi' 

In essence we play the game 'backwards'; first working out how the game might 
end. 

Proposition 1. If k is even and v = 0 then 8 E £. 

Proof: Repeated use of the tactic [.,0,.,0, M 5 ] eventually reduces the game state 
to (0, e, 0, s), from which the next player to move has no option but to create a 
3-path and lose the game. 0 

Once a non-trivial star is created in G (i.e. s = 00), the game changes irre
versibly because of the availability of a new move (M4 ). The next two propositions 
study this phase of play. 

Proposition 2. If s = 00, ¢ ~ 0 and ¢ == 0 mod 4 then 8 E £. 

Proof: We induct on v, which must be even. The base case (v = 0) is handled 
by Proposition 1. For v ~ 2 there are two subcases. If k > 0 then W plays 
[M5, M 4 , M 4 , M 3 , M I ]. On the other hand if k = 0 then v 2: 4 so [Mll M 4 , 0, M 2 , 0] 
is a legal tactic. In each case W has reduced v, whilst preserving ¢ ~ 0 and 
¢ == 0 mod 4. 0 
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Proposition 3. Let s = 00 and ¢ 2:: O. Then S E £ if any of the following are 
true 
(i) ¢ 0 mod 7, 

(ii) ¢ 3 mod 7 and k =/: 1, 
(iii) ¢ == 5 mod 7 and k O. 

Proof: Suppose that ¢ > 0 and that one of (i),(ii) or (iii) holds. Then v 2:: if> 2:: 3 
so by playing the tactic, ~, defined by 

[M4,M4,M4,MI,MI] if ¢ == 0 mod 7 and k =/: 2 
[M4, M4, M4, M I , M3] if ¢ == 0 mod 7 and k = 2 

~ = [M4, M3,., M I ,.] if ¢ == 3 mod 7 and k = 0 
[M4,M4,M3,MI,M5] if ¢ == 3 mod 7 and k = 2 
[M4, M4, M4, MIl M5] if ¢ == 3 mod 7 and k > 2 
[M2 , M3,., M 4 , .] if ¢ == 5 mod 7 

W preserves the fact that one of (i),(ii) or (iii) holds. Moreover, after playing ~ 
either ¢ > 0 (in which case we proceed by induction) or ¢ E {O, -4}. The base 
cases when ¢ E {O, -4} are handled by Proposition 2. Note that one of these base 
cases must be reached after a finite number of turns because we know the game is 
finite and it cannot end while v 2:: ¢ 2:: 3 because a move of MI is still available. 0 

Although we will not prove it, the reader may care to verify that Propositions 
2 and 3 represent a complete analysis of the game once a non-trivial star has been 
introduced (in the sense that the only states in £ are the ones already mentioned). 
Hence the game is fairly simple once s = 00. An obvious strategy when playing the 
game with s = 0 is to aim to construct a star at an opportune stage. Unfortunately, 
an unwilling opponent can always thwart such a plan. In our analysis for s = 0 
that follows, whenever either player plays M3 the reader should verify that the 
game reduces to Proposition 2 or 3. As these situations are well understood, our 
future comments will be restricted to the positions reached in which s = O. 

Proposition 4. If s = 0 then S E £ for each of the following small cases. It is a 
simple matter to check for (i) to (vi) that W's tactic reduces the game to a case 
already solved. 

(i) v 1, k even 
(ii) v 3, k odd 

(iii) v = 4, k odd, e 2:: 1 
(iv) v 4, e k = 0 
(v) v 5, e ::; 1, k = 0 
( vi) v 6, keven, (e 2:: 1 or k = 0) 

W plays [.,M5,M5,.,M3] 
W plays [M3 ,MI,MI,.,MI ] 

W plays [M2 ,M5,M2,.,M2] 

W plays [MI ,.,.,.,.] 

W plays [Ml, M 5 ,.,.,.] 

W plays [M2 , M I , M3,., M I ] 

Proposition 5. If s = 0, v 2:: 4, e 2:: 1, ¢ ::; 0 and ¢ == 2 mod 4 then S E £. 

Proof: We induct on v, which we note must be even. The base cases are han
dled by Proposition 4 (iii) and (vi). If v 2:: 8 then W plays [Ml, M 3 , M 2 ,., M I ], 

thereby reducing v by either 2 or 4 whilst preserving ¢ == 2 mod 4, increasing e 
and decreasing ¢. 0 
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Proposition 6. If s = k = 0, v ~ 7, e ~ 1, ¢ ::; 3 and ¢ == 3 mod 4 then SEC. 

Proof: W plays [M2' MIl.'.'.] to reach the situation handled by Proposition 5. 
8 

Proposition 7. If s = 0 then S E £ in the following cases. In (i) to (iv) W's 
tactic reduces the game to Proposition 5, Proposition 6 or an earlier part of this 
proposition. 

(i) ¢ = 3, k ::; 1, e ~ 1 
(ii) ¢ = 8, k = 0, e ~ 1 

(iii) ¢ = 10, k = 0 
(iv) ¢ = 7, k = 0, e ~ 1 

W plays [1\,f2' Ml, M 4, ., M I ] 

W plays [M2' M I ,.,.,.] 

W plays [MI' M 3 , ., ., .] 

W plays [MI' M 5 , .,.,.] 

Proposition 8. Let s = 0 and ¢ ~ 12. Then S E [, if either k = 0 and ¢ == 
1, 3 mod 7, or k = 1 and ¢ == 5 mod 7. 

Proof: We induct on ¢ with W playing the tactic T, defined by 

if ¢ == 1 mod 7 
if ¢ == 3 mod 7 
if ¢ == 5 mod 7 

Note that playing T strictly decreases ¢ and either preserves the inductive hypoth
esis or arrives at one of the base cases treated in Proposition 7. 8 

Proposition 9. Player A wins the game whenever p == 0,2 mod 7 or p E {8,13}. 
Player B wins all other games except possibly when p == 4 mod 7. 

Proof: We analyse the game according to p's congruence class modulo 7. In each 
game where Player A is victorious, the play of the first edge reaches a state in C. 

p == 0 mod 7: Player A wins each of the sub cases p = 7, p = 14 and p ~ 21 as 
shown by Proposition 4(v), Proposition 7(ii) and Proposition 8 
respectively. 

p == 1 mod 7: When p = 8, Player A wins by Proposition 4(vi). Otherwise 
p ~ 15 and Proposition 8 implies that Player A loses. 

p == 2 mod 7: Player A wins each of the sub cases p = 9, p = 16 and p ~ 23 as 
shown by Proposition 7(i), Proposition 7(iii) and Proposition 8 
respectively. 

p == 3 mod 7: Proposition 7(iii) and Proposition 8 imply that A loses. 
p == 5 mod 7: By Proposition 4(v), Player B wins when p = 5. For p ~ 12, 

B wins by playing [M2 ,.,.,.,.] followed by [M5 ,., M 4 ,., MI]' 
Since the vertices in a 3-cycle have effectively been eliminated, 
the game is now reduced to the p == 2 mod 7 case, with the 
first edge already played. As Player A always wins when p == 
2 mod 7, Player B must win this game. 

p == 6 mod 7: By Proposition 4(vi), B wins when p = 6 and by Proposi
tion 7(iv), A wins when p = 13. Otherwise p ~ 20 so after 
B plays [MI ,.,.,., .], Proposition 7(ii) and Proposition 8 tell 
us that player A must lose. 8 

121 



Proposition 10. Player A wins when p = 25; Player B wins for all other p == 
4 mod 7. 

Proof: Player A wins when p = 25, by playing [MI , M3,., -,.] from (23,1,0,0); 
which works by Proposition 7(iv). If p == 4 mod 7 and p =1= 25 then Player B starts 
by playing [MI , -,.,., .]. If p = 4 or p = 11 then B now wins by Proposition 1 
and Proposition 6 respectively. Otherwise the game state is (p - 4,2,0,0) and play 
proceeds as follows. 
(a) B plays [MI , M 2,.,., e] which reaches (p 6,0,2,0) or wins by Proposition 5 

(p = 18), Proposition 7(ii) (p = 32), or Proposition 8 (p 2:: 39). 
(b) From (p-6,0,2,0) B plays [M2 ,-,M3 ,e,M5] and reaches (p 6,0,0,0) or 

(p - 9,0,3,0). The former is equivalent to a game starting with p == 5 mod 7, 
which Player B wins by Proposition 9. 

(c) From (p - 9,0,3,0) B plays [M2 ,e,M4 ,.,M5] to reach (p - 12,0,4,0) or 
(p - 9,0,1,0). The latter is equivalent to the position two moves into a game 
which started with p == 5 mod 7. Again, by Proposition 9 we know Player B 
wins. 

(d) From (p -12,0,4,0) for p = IS, B plays [M5 , ., M 3 , e, MIl and wins by Propo
sition 5. For p 2:: 32, B plays [M3, e, Mr, -, M I ] to reach (p - 14,1,3,0). 

(e) From (p -14, 1,3,0) B plays [M3, M3, Mr,., M5] to win by Proposition S. 8 

This completes the analysis of 3-path avoidance. Combining Propositions 9 
and 10, we have the following result. 

Theorem 3. The 3-path avoidance game has period 7. Player A wins on the 
exceptional values p E {S, 13, 25} and when p 0,2 mod 7. Player B wins for all 
other values of p. 

§4. Concluding remarks 

A number of graph games have so far eluded analysis. For example, the c
cycle avoidance games remain unsolved for all meaningful c. The 'easiest' case; 
that of 3-cycle avoidance, is known as Hajnal's triangle-free game and has only 
been solved for small values of p or under restricted conditions [6]. What has been 
demonstrated by this work is that such unsolved games need to be approached with 
broader possibilities in mind than previous evidence suggested. The preponderance 
of period 4 games in the literature arises because such games are often just difficult 
enough to present a challenge yet yield a solution. It seems unlikely that they 
represent an overwhelming trend within the class of graph games. 

It would be interesting to discover a "natural" graph game which is aperiodic. 
A pathological example is not hard to create. Consider, say, a game where the goal 
is to achieve a graph with a prime number of components. 
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