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Let V be a finite set of order v. A (v,k,A.) covering design of index A. and 

block size k is a collection of k-element subsets, called blocks, such that every 

2-subset of V occurs in at least '}.. blocks. The covering problem is to determine 

the minimum number of blocks, a (v, k, A.), in a covering design. It is well 

known that a(v,k''}..)Lr~~=~'}..ll=<I>(v,k,A.), where rxl is the smallest integer 

satisfying x ~ r xl. It is shown here that with the possible exception of (v,'}..) = 

(44,13), (28,17), (44,17), a(v,5,A) = <I>(v,5,'}..) + e provided v == 0 (mod 4) and 11 ::;A 

::; 21 where e = 1 if A(V - 1) == 0 (mod 4) and AV (~-1) == -1 (mod 5) and e=O 

otherwise. 
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1. Introduction 

A (v,k,A) covering design (or respectively packing design) of order v, 

block size k and index A is a collection ~ of k-element subsets, called blocks, of a 

v-set V such that every 2-subset of V occurs in at least (at most) A blocks. 

Let a(v,k,A) denote the minimum number of blocks in a (v,k,A) covering 

design; and cr(v,k,A) denote the maximum number of blocks in a (v,k,A) 

packing design. A (v,k,A) covering design with I~I = a(v,k,A) is called a 

minimum covering design. Similarly, a (v ,k,A) packing design with I~ I = 

cr(v,k,A) will be called a maximum packing design. It is well known that [33] 

a(v,k,A) ?:: fyJ v-1",TI = <1>(v,k,A) and cr(v,k,A)::; [yJV-1",TI = '!f(v,k,A) kI k-1 1\ klk-1 n 
where r x 1 is the smallest and [x] is the largest integer satisfying [x] ::;. x ::;. r x l. 

When a(v,k,A) = <1>(v,k,A) the (v,k,A) covering design is called a minimal 

covering design. Similarly, when cr(v,k,A) = o/(v,k,A) the (v,k,A) packing design 

is called an optimal packing design. 

Many researchers have been involved in determining the covering 

numbers known to date (see bibliography) most notably W.H. Mills and R.C. 

Mullin. In one of their papers they proved the following [31]. 

Theorem 1.1 Let v be an odd integer greater than 5. 

(i) If v == l(mod 4) and A > 1, then a(v,5,A) = <1>(v,5,A) + e where e = 1 if A(v-l) -

"'V o (mod 4) and == -1 (mod 5) and e=O otherwise with the exceptions 
4 

that a(9,5,2) = <1>(9,5,2)+1, a(13,5,2) = <1>(13,5,2)+1 and the possible exceptions of 

the pairs (V,A) E {(53,2), (73,2)} and, 

(ii) If v == 3 (mod 4) and A 2. 1 then a(v,5,A) = <1>(v,5,A)+e where e is as in (i) with 

the exceptions that a(15,5,A) = <1>(l5,5,A)+1 for A = 1, 2 and the possible exception 

of the pairs (V,A) E {(63,2), (83,2)}. 

In the case v == 0 (mod 4) and "-=1 the problem is still open. 

For v == 0 (mod 4) and 2 ::; A ::; 10 and A= 12,16,20 we have the 

following result [5] [6] [7] [8] [11] [16] [17] [23] . 

Theorem 1 2 Let v==o (mod 4) v2.8 be an integer. Then a(v,5,A) = <j>(v,5,A) + e 

for 2::; A::;lO and A=12,16,20 where e=1 if A( v-I) == 0 (mod 4) and 

"'v --4-- == -1 (mod 5) and e=O otherwise with the possible exceptions of (v,A) = 

(28,4) (24,5) (28,5) (56,5) (104,5) (124,5) (144,5) (164,5) (184,5) (28,7) (24,9) 
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(28,9) (56,9) (144,9) (164,9) (184,9) (224,9). In this paper we consider the 
remaining indices of Iv where f... ~ 21 and v == 0 (mod 4). Specifically, we prove 

the following. 

Theorem 1.3 Let v == 0 (mod 4), v ~ 8 be an integer. Then a(v,5,A) = <I>(v,5,A) + e 

for all positive integers 11 $ A $ 21, where e is as in theorem 1.2, with the 

possible exceptions of (v,A) = (44,13), (28,17), (44,17). 

2. Recursive Constructions 

In order to describe our recursive constructions we require the notions 

of transversal designs, group divisible designs, covering (packing) designs 

with a hole of size h, and balanced incomplete block designs. For the 

definition of these combinatorial designs see [5]. We also adopt the same 

notations: a T[k,A,m] stands for a transversal design with block size k, index A 

and group size m. A GD[k,A,M,v] stands for a group divisible design with block 

size k, index A, group sizes from M, and v is the number of points in the design. 

If M = {m} then the design is denoted by GD[k, A, m, v]. A B[v,k,A] stands for a 

balanced incomplete block design with block size k, index A, and point set of 

size v. It is clear that if a B[v, k, A] exists then a(v, k, A) = 'Av (v-l) <I>(v, k, A) 
k(k-l) 

and Hanani [23] has proved the following existence theorem. 

Theorem 2 1 Necessary and sufficient conditions for the existence of a B[v, 5, 

A] are that A.(v-I) == O(mod 4) and Av(v-I) == O(mod 20) and (v, A) * (15, 2). 

The following obvious lemma is most useful to us. 

Lemma 2.1 If there exists a B[v, 5, A] and a(v, 5, A') = <I>(v, 5, A'), then a.(v, 5, 

1..+1..') = <I>(v, 5, 1..+ A'). 

We also shall make use of the following [5]. 

Lemma 2.2 If there exists a (v, k, A) covering design with a hole of size h ~ k 

and a(h, k, A) = <I>(h, k, A) then a(v, k, 'A) = <I>(v, k, 'A). 
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In many places through this paper, instead of constructing a (v, 5, A) minimal 

covering design we construct a (v, 5, A) covering design with a hole of size h ~ 

5 where a(h, 5, A) = <l>(h, 5, A) and then apply lemma 2.2 

The proof of the following theorem may be found in [1], [2], [3], [18], [20], [23], 

[32], [34]. 

Theorem 2.2 There exists a T[6, 1, m] for all positive integers m with the 

exception of m E {2, 3, 4, 6} and the possible exception of m E {10, 14, 18, 22}. 

Theorem 2.3 [17] If there exists a GD[6, A, 5, 5n] and a (20+h, 5, A) covering 

design with a hole of size h then there exists a (20(n-l)+4u+h, 5, A) covering 

design with a hole of size 4u+h where 0:::;; u :::;; 5. 

Theorem 2.4 [17] If there exists a GD[6, A, 5, 5nl, a (20+h, 5, A) covering design 

with a hole of size h, a (20+h, 5, A) minimal covering design, then there exists a 

(20n+h, 5, A) minimal covering design. 

The application of the previous theorems requires the existence of a GD[6, A, 5, 

5n]. Our authority for this is the following lemma of Hanani [23, p. 286]. 

Lemma 2.3 There exists a GD[6, A, 5, 5n] for n = 7 and ~ 2. 

Let k, A, m, and v be posItIve integers. A modified group divisible design, 

MGD[k, A, m, v], is a quadruple (V 1~:Y,8) where V is a set of points with 

IVI = v = mn, 'Y = {Gl, ... , Gm } is a partition of V into m sets, called groups, 

o = {Rl, ... , Rn} is a partition of V into n sets, called rows, and P is a family of 

k-subsets of V, called blocks, with the following properties. 

1 ) IB (l Gil:::;; 1 for all B E P and Gi E y. 

2) IB (l Rjl :::;; 1 for all B E P and Rj E o. 
3) IGil = n for all Gi E Y and IRjl = m for all Rj E o. 
4) Every 2-subset {x, y} of V such that x and yare neither in the same 

group nor same row is contained in exactly A blocks. 

5) IGi (l Rj I = 1 for all Gi E Y and Rj E o. 
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A resolvable modified group divisible design, RMGD[k, A, m, v], is a modified 

group divisible design the blocks of which are partitioned into parallel classes. 

It is clear that a RMGD[5, 1, 5, 5m] is the same as RT[5, 1, m] with one parallel 

class of blocks singled out, and since a RT[5, 1, m] is equivalent to a T[6, 1, m] we 

have the following. 

Theorem 2.5 There exists a RMGD[5, 1, 5, 5m] for all positive integers m, m :f:. 2, 

3, 4, 6, with the possible exception of m E {l0, 14, 18, 22}. 

The following theorem is our main recursive construction. 

Theorem 2.6 [17] If there exists (1) a RMGD[5, 1, 5, 5m], (2) a GD[5, A {4, s*}, 

4m+s], where * means there is exactly one group of size s, (3) there exists a 

(20+h, 5, A) covering design with a hole of size h then there exists a 

(20m+4u+h+s, 5, A) covering design with a hole of size 4u+h+s where a ~ 

u::; m-l. 

Theorem 2.7 [17] If there exists (1) a RMGD[5, 1, 5, 5m], (2) a GD[5, A, {4, 8*}, 

4m+4] where * is as before, (3) a (20, 5, A) minimal covering design and a (24, 

5, A.) covering design with a hole of size 4, then there exists a (20m+4u+4, 5, A) 

covering design with a hole of size 4u+4 where 0 ~ u ~ m-l. 

Theorem 2.8 [4] If there exists (1) a RMGD[5, 1,5, 5m], (2) a GD[5, A, {4, s*}, 

4(m-l)] and (3) a (20+h, 5, A) covering design with a hole of size h then there 

exists a (24(m-l)+s+h, 5, A) covering design with a hole of size 4(m-l)+s+h. 

It is clear that the application of the above theorems requires the existence of 

a GD[5, 1, {4,s*}, 4m+s]. We observe that we may choose s = 0 if m == l(mod 5), s = 
4 if m == 0 or 4 (mod 5) and s = 4(~-1) if m == 1 (mod 3) (see [4]). We may also 

apply the following. 

Theorem 2.9 [22] There exists a GD[5, 1, {4, 8*}, 4m+8] where m == a or 2 (mod 

5), m ~ 7 with the possible exception of m = 10. 

Our last recursive construction is the following. 
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Theorem 2.10 If there exists (1) a RMGD[5, 1, 5, 5m], (2) a GD[5, 'A, 4, 4m], (3) a 

(20+h, 5, 'A) covering design with a hole of size h, (4) a(20+h, 5, 'A) = <1>(20+h, 5, 

'A), then a(20m+h, 5, 'A) = <1>(20m+h, 5, 'A). 

Take a RMGD[5, 1; 5, 5m] and inflate this design by a factor of 4, giving 

a RMGD[5,'A, 20, 20m]. Replace all its groups of size 20 by the blocks of a 

GD[5, 'A, 4, 20]. Add h points to the groups, then on the first m-I groups 

construct a (20+h, 5, 'A) covering design with a hole of size h and on the last 

group construct a (20+h, 5, 'A) minimal covering design. Finally, on the blocks 

of size m construct a GD[5, 'A, 4, 4mJ. 

We close this section with the following notation that will be used later. A 

block, <d, d+m, d+n, d+j, fed»~ mod v,where fed) = a if d is even and fed) = b if d is 

odd is denoted by <0 m n j > u {a, b} mod v. 

Similarly, a block < (O,d) (O,d+m) (1,d+n) (1, d+j) f( d) > mode -, v) where f( d) ,= a if 

d is even and f( d) = b if d is odd is denoted by «0,0) (O,m) (1,n) (I ,j) > u {a, b } 

mod(-, v). When using this notation, a and b are usually infinite points. 

3. The Structure of Packing and Covering Designs 

Let (V,~) be a (v,k,'A) packing design, for each 2-subset e = {x,y} of V 

define m(e) to be the number of blocks in b which contain e. Note that by the 

definition of a packing design we have m(e) ~ 'A for all e. 

The complement of (V,~), denoted by C(V,~) is defined to be the graph 

with vertex set V and edges e occurring with multiplicity 'A -m(e) for all e. The 

number of edges (counting multiplicities in C(V,~» is given by 

'A(;) - Ibl (~). The degree of a vertex x is 'A( v-I) - rx (k-I) where rx is the 

number of blocks containing x. 

In a similar way we define the excess graph of a (V ,~) covering design 

denoted by E(V,~), to be the graph with vertex set V and edges e occurring with 

multiplicity m(e)-'A for all e where m(e) ~ A The number of edges in E(V,~) is 
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given by Ibl (~) - A (~); and the degree of a vertex v is rx (k-l) - A( v-I) 

where rx is as before. 

To define the excess graph of a covering design with a hole H of size h let e 

{x,y} where at least one of x or y does not lie in H and let m( e) be the 

number of blocks in p which contain e. Then the excess graph of the 

covering design with a hole H of size h, denoted by E(v\H,P), is the graph 

with vertex set V and edges e occuring with multiplicity m(e) - A. In a 

similar way the complement graph, E(V\H,P), of a (v,k,A) packing design with 

a hole of size h is defined. 

Lemma 3.1 [5] Let (V,P) be a (v,5,4) packing design with \jI(v,5,4)-e blocks, 

where e = 1 if v == 3 (mod 5) and ° otherwise. Then the degree of each vertex of 

C(V,P) is divisible by 4 and the number of edges in the graph is 0, 4 or 12 when 

v mod 5 E {0,1}, {2,4}, or {3}. 

The only graph with 4 edges and every vertex of a degree divisible by 4 

is the graph with four parallel edges connecting two vertices and v-2 isolated 

vertices. Therefore, when v == 2 or 4 (mod 5) a (v,5,4) optimal 

packing design is the same as a (v,5,4) packing design with a hole of size 2. 

Lemma 3215] Let (V,~) be a (v,5,2) optimal packing design where v == 3 (mod 

10). Then the degree of each vertex of C(V,~) is divisible by 4 and the number 

of edges in the graph is 6. Hence, C(V,~) consists of v-3 isolated vertices and 3 

other vertices the pairs of which are connected by 2 edges. 

Lemma 3.3 [5] Let (V,~) be a (v,5,4) minimal covering design. Then the degree 

of each vertex of E(V,~) is divisible by 4 and the number of edges in the graph 

is 0, 6 or 8 when v mod 5 E {O,l}, {2,4} or {3} respectively. 

The only graph with 6 edges and every vertex of a degree divisible by 4 is the 

graph with v-3 isolated vertices and 3 other vertices each one connected to 

the other 2 by two parallel edges. 

The following is very simple but most useful to us. 

Theorem 3 1 If there exists 
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1) A (v,5,A,) covering design with $(v,5,A,) blocks. 

2) A (v,5,A,') packing design with 'V(v,5,A,') blocks. 

3) $(v,5,A,) + 'V(v,5,A,') = $(v,5,A,+A,'). 

4) The complement graph C(V,~) of the packing design is isomorphic 

to a subgraph G of the excess graph E(V,~) of the covering design. 

Then there exists a (v,5,A,+A.') covering design with $(v,5,A,+A.') 

blocks, that is, a (v,5,A,+A. ') minimal covering design. 

4. COVERING WITH INDEX 11 

Lemma 4.1 Let v == 0 or 16 (mod 20) be a positive integer. Then a(v, 5, A.) = $(v, 

5, A,) for A. > 1 with the exception of (v, A,) = (56, 5), (56, 9). 

Proof. If v == 0 or 16 (mod 20) then there exists a B[v, 5, 4] [23] On the other 

hand for such v, a(v, 5, A,) = $(v, 5, A.) for A, = 2, 3, 4, 5, by Theorem 1.2 therefore 

by Lemma 2.1 the result hold except possibly when v = 56 and 

A, == l(mod 4). We now construct a (56, 5, 13) minimal covering design and then 

invoke the previous lemma to get the result. 

For a (56, 5, 13) minimal covering design let X = Z48 U H 8 where 

H8={h1'" .h8}' Adjoin a point {oo}to H8 and on Z48 u H8U {oo} take 10 copies 

of a (57, 5, 1) covering design with a hole of size 9, [22], such that the hole is H 8 

U {oo}. In copy i, i=l, ... ,8, replace "00" by hi. In copy 9 replace "00" by hI and 

in copy 10 replace "00" by h 2' Furthermore, take the following blocks under 

the action of the group Z 48 . 

< 011 2435> u {h l' h 2} half orbit < 0 8 19 29> u {h7' h 8}' 

< 0 1 3717> < 05 152335> < 0 1 42632> < 0 2 931 36> 

< 0 1 3 7 15> < 0 5 21 30>u {h 3' h 4} < 0 9 20 33> u {h 5' h 6} 

Notice that a(8, 5, 13) = $(8, 5, 13) by lemma 5.3. 

Lemma 4.2 Let v == 4 (mod 20) be a positive integer greater than 4. Then 

there exists a (v, 5, 3) minimal covering design such that there is one pair that 

appears in at least six blocks. Furthermore, one block in this design can be 

replaced by a block of size 2 and the covering property still holds. 
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The construction of such design is as follows: 

1) Take a (v-2, 5, 1) minimal covering design [24, p.50]. This design has a 

block that can be replaced by a block of size 2, say (v-3, v-2), and the covering 

property still holds. 

2) Take a B[v+l, 5, 1] [23]. Assume in this design we have the block 

(1 2 3 v v+ 1) where {I, 2, 3} are arbitrary numbers. In this block change v+ I to 

v-I, and in all other blocks change v+ 1 to v. 

3) Again take a B[v+l, 5, 1]. Assume in this design we have the block 

( 1 2 3 v-I v+ 1). In this block change v+ 1 to v, and in all other blocks change 

v+l to v-I. 

It is readily checked that the above three steps yield a (v, 5, 3) minimal 

covering design such that it has a block of size 2 and the pair {v-I, v} appears 

at least six times: three times in step 2 and three other times in step 3. 

Lemma 4.3 Let v == 4 (mod 20) be a positive integer greater than 4. Then a( v, 

5, 11) = <1>(v, 5, 11). 

Proof. For all v == 4 (mod 20), v ~ 24, the construction is as follows: 

1) Take a (v, 5, 4) optimal packing design [14]. In this design each pair 

appears in precisely four blocks except one pair, say, {v-I, v} that appears in 

zero blocks. 

2) Take a (v, 5, 4) minimal covering design [8, 11]. This design has a triple, 

say, {v-2, v-I, v}, the pairs of which appear in six blocks. 

3) Take a (v, 5, 3) minimal covering design as constructed in lemma 4.1. 

This design has a pair, say, {v-I, v} that appears in at least six blocks. 

Now it is readily checked that the above three steps yield a (v, 5, 11) minimal 

covering design. 

Lemma 4.4 a(v, 5, 11) = cp(v, 5, 11) for v = 8, 28, 48, 68, 88. 

The required constructions are given in the following table. In 

general, the construction in this table, and all other tables to come, is as 
follows: Let X = Zv-n u Hn or X = Z2 X Zv-n u Hn where Hn = {hI, ... , hn } is the 

2 

hole. The blocks are constructed by taking the orbits of the tabulated base 

blocks. 
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y Point Set 

8 

28 

48 

68 

88 ZsoUH s 

Base Blocks 

(0 1 2 3 4) (0 1 2 4 5) (0 1 2 4 5) (0 1 3 4 6) 

(0 1 23 8) twice (026 15 19) twice (0 3 9 17 21) twice 

(0 3 10 15 20) twice (0 1 2 5 18) (0 2 9 14 20) 

(039 1721) (0 1 23 9) (025 14 18) (0 3 7 15 21) 

(04 9 15 20) 

Take a (48, 5, 8) covering design with a hole of size 8 

[10]. Furthermore, take the following blocks: 

(0 8 16 24 32) + i, iE zs' twice 
4 8 

(024 1022) (0 1 11 18) u {hi}i=1 (03 9 26) u {hi}i=5 

(015 1429) (0 1 49) u {hI, h2} (02 15 21) u {h3, h4} 
(03 1029) U {h5, h6} (05 1225) u {h7, hS} 

Take two copies of a (6S, 5, 4) covering design with a 

hole of size 8. Such design can be constructed from a 

T[6, 1, 12] by deleting 6 points from last group, then 

replace each block of the resultant design by the 

blocks of a B[v, 5, 4], v = 5, 6. 

Finally, add 2 points to the groups and on the first 5 groups 

construct a (14, 5, 4) covering design with a hole of size 2 

and take these 2 points with the last group to be the hole of 

size 8. Furthermore, take the following blocks: 

(0 12 24 36 48) + i, i E Z 12' twice 

(0 4 10 24 32) (0 1 3 10 40) (0 6 14 32 47) (0 1 24 11) 

(07 19 27 44) (0 3 17 38) u {hi}~l (05 23 34) u {hil~=5 
(04 19 35) u {hI, h2} (0 5 1643) u {h3, h4} 

(05 18 31) u{h5, h6} (06 1545) u {h7, hS} 

Take two copies of an (8S, 5, 4) covering design with a 

hole of size 8. Such design can be constructed from a 

T[6, 1, 16] by deleting 8 points from last group, then 

replacing all its blocks and the first 5 groups by the 

blocks of a B[v, 5, 4], v = 5, 6, 16, and take the last 
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group to be the hole. Furthermore, take an (80, 5, 1) 

minimal covering design [25] and the following blocks: 

(0 16 3248 64) + i, i E ZI6, twice (0 5 23 38) u {hil~I 
8 

(072946) u {hi}i=5 

(07 15 66) u {hI, h2} (0 9 3445) u {h3, h4} (0 5 27 52) 

u{h5, h6} (0 11 35 54) u {h7, h8} 

(0 1 3 921) (0 4 1431 44) (0 1 3 13 41) (0 4 23 5460) 

Lemma 4.5 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 11) = <I>(v, 5, 

11 ). 

For v = 8, 28, 48, 68, 88, the result follows from lemma 4.3. For v ;?: 108, 

V -:F. 128, simple calculations show that v can be written in the form v = 20m + 4u 

+ h + s where m, u, hand s are chosen so that: 

1) there exists a RMGD[5, 1, 5, 5m]; 

2) there exists a GD[5, 11, {4, s*}, 4m+s]; 

3 ) 4u + h + S == 8, 28, 48, 68, 88; 

4) 0 ~ u ~ m-l, s == 0 (mod 4) and h = O. 

Now apply theorem 2.6 with f... = 11 and the result follows. For v = 128 

apply theorem 2.3 with n = 7, h = 0, and u = 2. 

Lemma 4.6 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 11) = 

<I> (v, 5, 11). 

Pro of. For all positive integers v == 12 (mod 20), the construction is as follows: 

1) Take a (v, 5, 4) optimal packing design [14]. In this design each pair 

appears in 4 blocks except one pair, say, {a, b} that appears in zero blocks. 

2) Take a (v, 5, 4) minimal covering design [11]. In this design there is a 

triple, say, {a, b, c} the pairs of which appear in 6 blocks. 

3) Take a (v, 5, 3) minimal covering design [16]. If this design has a pair, 

say, {a, b} that appears in 5 blocks then we are done. Otherwise, simple 

calculation shows that we may assume that {a, b} and {a, 5} appear 4 times in 

the blocks of the (v, 5, 3) minimal covering design. Assume in design (1) we 

have the block (1 2 3 a 5) and in design (2) we have the block (1 2 3 b c). In the 

first block change 5 to b and in the second block change b to 5. Now it is 
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readily checked that the above construction yields a (v, 5, 11) minimal 

covering design for v == 12 (mod 20). 

Theorem 4.1 a(v, 5, 11) = <\lev, 5, 11) for all positive integers v == 0 (mod 4), 

v ~ 8. 

5. COVERING WITH INDEX 13 

Lemma 5.1 (a) a(v, 5, 13) = <\lev, 5, 13) for v = 24, 64, 84. 

(b) There exists a (24, 5, 13) covering design with a hole of 

size 4. 

Proof. (a) For a (24, 5, 13) minimal covering design the construction is as 

follows: 

1) Take a (24, 5, 7) optimal packing design [10]. The complement graph of 

this design is a I-factor, that is a ladder graph on 24 vertices such that the 

vertices contain all the numbers from 0 to 23. 

2) Take the following blocks of a (24, 5, 6) minimal covering design on 

X=Z24 

(0124 to) (mod 24) (0 I 6 12 17) (mod 24) 

(0 1 2 4 13) (mod 24) (0 1 3 7 19~ (mod 24) 

(029 12 17) (mod 24) (038 13 17) (mod 24) 

(039 13 17) (mod 24) 

The excess graph of the above (24, 5, 6) minimal covering design has a 

subgraph that is a I-factor. Now apply theorem 3.1 to get the result. 

For v = 64, 84, again take a (v, 5, 7) optimal packing design [JO]. The 

complement graph is a I-factor. Furthermore, take a (v, 5, 6) minimal 

covering design as given in [6]. Close observation shows that the excess graph 

contains a subgraph that is I-factor. Now apply theorem 3.1 to get the result. 

(b) For a (24, 5, 13) covering design with a hole of size 4 proceed as follows: 

1) Take two copies of a (23, 5, 2) optimal packing design [9]. In this design 

each pair appears exactly twice except a triple, say, {21, 22, 23}, the pairs of 

which appear in zero blocks. 

2) Take four copies of a B[25, 5, 1]. Assume that in each copy we have the 

block (21 22 23 24 25). Delete this block and in all other blocks change 25 to 24. 
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3) Take a (24, 5, 5) covering design with a hole of size 4 [5]. It is readily 

checked that the above three steps yield a (24, 5, 13) covering design with a 

hole of size 4. 

Lemma 5.2 Let v == 4 (mod 20) be a positive integer greater than 4. Then a(v, 

5, 13) = 4>(v, 5, 13) with the possible exception of v = 44. 

Proof. For v = 24, 64, 84, the result is given in lemma 5.1. For v ~ 124, v -:;:. 144, 

184, 224, 304, simple calculations show that v can be written in the form v = 
20m + 4u + h + s where m, U, h, and s are chosen so that: 

1) there exists a RMGD[5, 1, 5, 5m]; 

2) there exists a GD[5, 13, {4, s*}, 4m+s]; 

3 ) 4u + h + s = 24, 64, 84; 

4) 0 sus m-I, s == 0 (mod 4) and h = 4. 

Now apply theorem 2.6 to get the result. 

For v = 104, 224, 304, apply theorem 2.10 with m = 5, 11, 15 and /... == 13. 

For v = 144 apply theorem 2.8 with m = 7, /... = 13 and s = h = O. 

For v = 184, apply theorem 2.7 with m = 8 and U = 5. 

Lemma 5.3. a(v, 5, 13) = 4>(v, 5, 13) for v = 8, 28, 48, 68, 88. 

Proof. For v = 8, let X= Zs u {a, b, c}. On X construct an (8, 5, 8) optimal 

packing design [13]. This design has a pair, say, {a, b} that appears in four 

blocks, and each other pair appears in eight blccks. Furthermore, take the 

following blocks of an (8, 5, 5) minimal covering design in which the pair {a, 

b} appears 10 times. To construct this design, let x=zsu {a, b, c}. Then the 

blocks are (0 2 a b c) (mod 5) (0 1 2 a b) (mod 5) (0 1 2 3 c) (mod 5). 

For v = 48, 68, 88 take the blocks of a (v, 5, 8) optimal packing design [13]. This 

design has a pair, say, {a, b} that appears in 4 blocks while each other pair 

appears in 8 blocks. Furthermore, take the blocks of a (v, 5, 5) covering design 

with a hole of size 8 [6] and on the hole of size 8 construct an (8, 5, 5) minimal 

covering design such that one pair, {a, b}, appears 10 time$. 

For v = 28 see next table. 

y Point Set Base Blocks 

28 Z2xZ12UH 4 (h 1 h2 h3 h4) (orbit length 1) 

103 



«0,0) hI h2 h3 h4) «(1,0)(1,1)(1,3)(1,10» u {hJ i!l 

«0,0)(0,1 )(0,2)(0,3 )(0,5» «0,0)(0,1)(0,2)(0,6)(0,8» 

«(1,0)(1,1)(1,2)( 1,3)( 1,7» « 1 ,0)( 1,1)(1,4)(1,6)(1,9» 

«0,0)(0,1 )(0,4 )(0,7)(1,11» «0,0)(0,2)(0,5)(0,9)( 1 ,2» 

«0,0)( 1,1)( 1 ,3)(1,6)(1,8» «0,0)(0,1 )(0,5)( 1 ,0)(1,1) 

«0,0)(0,2)(1,0)(1,1)(1,3» «0,0)(0,1 )(0,4)( 1 ,0)(1 ,6» 

«0,0)(0,3)(1,5)( 1,7)( 1,9» «0,0)(0,2)(0,5)( 1,3)(1,9» 

«0,0)(0,4)(1,2)( 1,7)(1,10» ( (0,0)(0,1 )(0,3)(1,5)(1,9» 

«0,0)(0,4)(1,3)(1,8)(1,9» «0,0)(0,1)(1,0)(1,1) hI) 4 times 

«0,0)(0,2)(1,3)(1,7) hI) twice «0,0)(0,1)(1,0)(1,1) h2) 

«0,0)(0,4)(1,2)(1,10) h2) «0,0)(0,5)(1,8)(1,11) h2) 

«0,0)(0,2)(1,4)(1,8) h2) «0,0)(0,5)(1,7)(1,10) h2) 

«0,0)(0,6)( 1,1)(1,5) h2) «0,0)(0,6)(1,3)(1,9) h3) 

«0,0)(0,5)(1,2)(1,9) h3) 3 times 

«0,0)(0,4)(1,8)(1,10) h3) twice 

«0,0)(0,3)(1,6)(1,10) h4) «0,0)(0,5)(1,2)(1,5) h4) 

«0,0)(0,2)(1,1)(1,7) h4) ( (0,0)(0,3)(1,6)(1 ,8)h4) 

«0,0)(0,4)(1,7)(1,10) h4) «0,0)(0,5)(1,2)(1,10) h4) 

Lemma 5.4 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 13) = <l>(v, 5, 

13 ). 

Proof. For v = 8, 28, 48, 68, 88, the result follows from lemma 5.3. For 

v ~ 108, v"# 128, write v = 20m + 4u + h + s where m, u, h, and s are chosen as in 

lemma 4.5. Now apply theorem 2.6 with A, = 13 to get the result. 

For v = 128 apply theorem 2.3 with n = 7, h = 0, and u = 2. 

Lemma 5.5 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 13) = <l>(v,5, 

13). 

Proof. For all positive integers v == 12 (mod 20) the blocks of a (v, 5, 13) 

minimal covering design are the blocks of a (v, 5, 9) [7] and a (v, 5, 4) minimal 

covering design [11]. 

In this section we have shown 
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Theorem 5.1 (X(v, 5, 13) = <l>(v, 5, 13) for all positive integers v == 0 (mod 4), v ;::: 

8 with the possible exception of v = 44. 

6. COVERING WITH INDEX 14 

Lemma 6.1 Let v == 4 (mod 20) be a positive integer greater than 4. Then (X(v, 

5, 14) = <l>(v, 5, 14). 

For all positive integers v == 4 (mod 20), v ;:::: 24, the construction is as 

follows: 

1) Take a (v, 5, 4) optimal packing design [14]. In this design there is one 

pair, say, {v-2, v-I} that appears in zero blocks while each other pair appears 

in four blocks. Furthermore, assume in this design we have the block (9 10 11 

v-3 v-I) where 9, 10, 11 are arbitrary numbers. In this block change v-I to v. 

2) Take two copies of a (v, 5, 4) minimal covering design [8, 11]. This 

design has one triple, the pairs of which appear in six blocks. Assume, in both 

copies, the tripl~ is {v-3, v-2, v-I}. 

3) Take a (v-I, 5, 1) minimal covering design [26]. This design has a block 

of size 3, say, (v-3, v-2, v-I) which we delete. 

4) Take a B[v+I, 5, 1] and assume we have the block (9 10 11 v v+1). In this 

block change v+l to v-I and in all other blocks change v+l to v. 

The above four steps give a design such that the pair {v-3, v-2} appears 17 

times, {v-3, v-I} 16 times, and {v-I, v} appears 15 times, the pair {v-2, v-I} 

appears 13 times, and each other pair appears at least 14 times. 

To have the pair {v-2, v-I} appearing 14 times assume in the (v, 5, 4) optimal 

packing design we have the block (1 2 3 v-2 v-3) where {I, 2, 3} are arbitrary 

numbers. In this block change v-3 to v-l. And assume in B[v+l, 5, 1] we have 

the block (I 2 3 v v-I). In this block change v-I to v-3. 

It is easy to check that the above construction yields a (v, 5, 14) minimal 

covering design for all v == 4 (mod 20), v ;::: 24. 

Lemma 6.2 (X(v, 5, 14) = <l>(v, 5, 14) for v = 8, 28, 48, 68, 88. 

Proof: The constructions of these designs are given in the next table. 
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Point Set 

8 Za 

28 

48 

68 

88 Zao UH a 

Base Blocks 

(0 1 2 4 5) twice (0 1 2 3 4) (0 1 2 4 6) (0 1 3 4 6) 

(0 1 2 3 8) 4 times (0 2 6 14 19) 3 times (0 3 10 14 19) 3 times 

(0 3 10 16 20) 3 times (026 15 19) (0 3 9 17 21) (0 3 10 15 20) 

(0 1 27 16) (025 13 17) (03 9 13 21) 

On Z40UH 7 take 5 copies of a (47, 5, 2) covering design 

with a hole of size 7 [31]. Furthermore, take the 

following blocks: 

(0 3 20 23 h8) half orbit (0 8 16 24 32)+i, ie ZS' 3 times 

(0 1 10 22 2S) (0 2 11 25 hI) (0 3 7 20 h2) (0 5 15 25 h3) 

(0 1 24 h4) (0 4 9 14 h5) (0 6 12 25 h6) (0 7 14 25 h7) 

(0 1 3 10 hS) (0 4 12 25 hS) (0 5 16 22 hS). 

On Z60UH7 take 5 copies of a (67,5,2) covering design 

with a hole of size 7 [31]. 

Furthermore, take the following blocks: 

(0 5 30 35 hS> half orbit (0 12 24 36 4S)+i, ie Z 12, 3 times 

(0 1 3 9 32) (0 4 11 30 44) (0 5 IS 33 43> (0 1 3 7 22) 

(0 S 17 2S 42) (0 10 23 39 hI) (0 1 3 7 h2) (0 5 14 3S h3) 

(0 8 25 40 h4> (0 10 23 44 h5> (0 11 23 42 h6) (0 1 3 4 h7) 

(0 4 17 42 h8> (0 5 15 49 hS> (0 7 21 40 hS) 

On Z60UH 7 take 5 copies of a (S7, 5, 2) covering design 

with a hole of size 7 [31]. Take also the blocks of an 

(SO, 5, 1) minimal covering design on zao [25]. 

Furthermore, take the following blocks: 

(0 13 40 53 h8) half orbit (0 16 32 44 64)+i, ieZl6' 3 times 

(0 1 3 7 15) (0 5 23 42 51) (0 10 36 49 56) (0 1 3 929) 

(0 10 31 55 hI) (0 11 33 50 h2) (04 IS 3961) (0 5 3647 h3) 

(0 10 25 63 h4) (0 1 3 7 h5) (0 5 13 30 h6) (0 9 20 43 h7) 

(0 12 27 56 h8) (0 12 30 52 hS> (0 14 33 59 hS) 

Lemma 6.3 Let v == S (mod 20) be a positive integer. Then a(v, 5, 14) = <1> (v, 5, 

14 ). 
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Proof For v = 8, 28, 48, 68, 88 the result follows from the previous lemma. 

For v ~ 108 the proof is exactly the same as that of lemma 5.4. 

Lemma 6.4 a(v, 5, 14) = <I>(v, 5, 14) for v = 12, 32, 52, 72, 92. 

Proof For v = 12 the construction is as follows: 

1) Take a (12, 5, 2) minimal covering design as presented in [29]. Take the 

block (2 6 9 11 12) and change the point 12 to 4. After this change, the pair {9, 

12} appears only once, the pairs {2,4}, {9,4} appear four times, the pairs {3,12}, 

{8,9} appear 3 times and each other pair appears at least twice. 

2) Take a (12, 5, 4) minimal covering design [11]. This design has a triple, 

say, {2, 4, 9} the pairs of which appear in six blocks. 

3) Take a (12, 5, 4) optimal packing design [14]. This design has a pair, say, 

{2, 4} that appears in zero blocks while each other pair appears in four blocks. 

Furthermore, assume in this design we have the block 

(1 2 5 12 3) where {I, 5} are arbitrary numbers. In this block change the point 

3 to 9. 

4) Again, take a (12, 5, 4) optimal packing design, and assume {4, 9} appears 

in zero blocks. Furthermore, assume we have the block (1 2 5 8 9). In this block 

change 9 to 3. Now it is easy to check that the above four steps give a (12, 5, 14) 

minimal covering design. 

For v = 32, 52, 72, 92 the construction is as follows: 

I) Take a (v, 5, 4) minimal covering design and assume that the pairs of the 

triple {I, 2, 3} appear in six blocks. 

2) Take a (v, 5, 4) optimal packing design and assume that the pair {I, 2} 

appears in zero blocks. 

3) Again take a (v, 5, 4) optimal packing design and assume that the pair 

{1, 3} appears in zero blocks. 

4) Take a (v, 5, 2) covering design with a hole of size 8: For a (32, 5, 2) and 

(52, 5, 2) covering design with a hole of size 8 see [29], and for a (72, 5, 2) and 

(92, 5, 2) covering design with a hole of size 8 see [6]. 

But the (8, 5, 2) minimal covering design has a triple, say, {I, 2, 3} the pairs of 

which appear in five blocks [29]. It is readily checked that the above four 

steps yield a (v, -5, 14) minimal covering design for v = 32, 52, 72, 92. 
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Lemma 6.5 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 14) = <I>(v, 5, 

14 ). 

Proof For v = 12, 32, 52, 72, 92 the result is given in the previous lemma. 

For v ~ 112, v if::. 132, simple calculation shows that v can be written in the form 

v = 20m + 4u + h + s where m, u, hand s are chosen so that: 

1) there exists a RMGD[5, 1, 5, 5m]; 

2) there exists a GD[5, 14, {4, s*}, 4m+s]; 

3 ) 4u + h + s = 12, 32, 52, 72, 92; 

4) 0 ~ u ~ m-1, s == 0 (mod 4) and h = O. 

Now apply theorem 2.6 with '). = 14 to get the result. 

For v = 132 apply theorem 2.3 with n = 7, h = 0, A = 14, and u = 3. 

In this section we have shown: 

Theorem 6.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 14) = <1>(v, 5, 14). 

7. COVERING WITH INDEX 15 

Lemma 7.1 Let v == 4 (mod 20), v ~ 24, be a positive integer. Then a(v, 5, 15) 

<1> (v, 5, 15). 

Proof For all v == 4 (mod 20), v ~ 24, a (v, 5, 15) minimal covering design can 

be constructed as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a 

triple the pairs of which appear in six blocks. Assume, in both copies, the 

triple is {a, b, c} [8], [11]. 

2) Take a (v, 5, 4) optimal packing design. This design has a pair, say, {a, b} 

that appears in zero blocks while each other pair appears in four blocks. 

3) Take a (v, 5, 3) minimal covering design. By lemma 4.1 this design has a 

block of size two, say, (b, c) which we delete. 

Now it is readily checked that the above three steps yield a (v, 5, 15) minimal 

covernig design for all v == 4 (mod 20), v ~ 24. 
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Lemma 7.2 Let v == 8 (mod 20) be a positive integer. Then a.(v, 5, 15) = <1>(v, 5, 

15). 

Proof The blocks of a (v, 5, 15) minimal covering design are the blocks of a 

(v, 5, 8) and a (v, 5, 7), v *' 28, minimal covering designs. 

For v = 28 let X = Z26u{a, b}. Then on Z26 construct a B[26, 5, 12]. Furthermore, 

take the following blocks under the action of the group Z26. 

(0 1 23 a) (025 11 a) (03 11 16 a) (04 11 16 b) 

(0 4 12 16 b) (0 6 13 19 b) (0 8 17 a b) 

Lemma 7.3 There exists a (v, 5, 3) covering design with a hole of size 8 for v = 

32, 52, 72, 92. 

Proof For v = 32, see [16]. 

For v = 52, 72, 92 see the following table. 

Y.. Point Set 

52 

72 

92 

Base Blocks 

(0 2 6 14 24) (0 1 3 7 20) (0 1 26 18) 
4 8 

(09 19 30)u{hi}i=1 (03 10 25)u{hi }i=5 (0 5 18 31)u{h1, h2} 

(0 8 17 29)u{h3, h4 } (03 11 24)u{h5, h6} (05 14 21)u{h7, h8} 

(0 1 3 7 49) 3 times (0 8 19 32 44) 3 times 
4 8 

(0526 35)u{hi }i=1 (0 1027 41)u{hi}i=5 (05 26 35)u{h 1, h2 } 

(05 26 35)u{h3, h4 } (0 1027 41)u{h5, h6} (0 1027 41)u{h7, h8} 

(0 4 20 35 47) (0 1 3 7 35) (0 5 15 45 63) 

(0 8 20 44 67) (0 13 27 46 68) (0 1 3 7 15) 

(0 5 28 38 60) (0 1 3 9 27) (0 10 21 46 64) 
4 8 

(0 11 25 42)u{hi }i=1 (0 11 37 50)u{hi}i=5 (0930 44)u{h 1, h2 } 

(05 33 50)u{h3, h4 } (07 16 69)u{h5, h6} (0 13 32 55)u{h7, h8} 

Lemma 7.4 a.(v, 5, 15) = <1>(v, 5, 15) for v = 12, 32, 52, 72, 92. 

For v = 12, the construction is as follows: 
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1) Take two copies of a (12, 5, 4) optimal packing design on z10u{a, b}. In 

this design there is one pair that appears in zero blocks while each other pair 

appears in four blocks. Assume that in both copies this pair is {a, b}. 

2) Take a (12, 5, 4) minimal covering design. This design has a triple, say, 

{a, b, c} the pairs of which appear in six blocks. 

3) Take a (12, 5, 3) minimal covering design such that one of its pairs 

appears in ten blocks. To construct such design let X= Z 10 u{ a, b} then take 

the blocks (0 2 4 6 8)+i, ie Z2 (0 1 2 5 9) (mod 10) (0 3 5 a b) (mod 10). 

It is easy to check that the above three steps yield the blocks of a (12, 5, 15) 

minimal covering design . 

For v = 32, 52, 72, 92 the construction is as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a 

triple the pairs of which appear in six blocks. Assume, in the first design the 

triple is {O, 2, 4} and in the second the triple is {O, 4, 6}. 

2) Take a (v, 5, 4) optimal packing design. In this design there is a pair, 

say, {O, 4} that appears in zero blocks while each other pair appears in four 

blocks. 

3) Take a (v, 5, 3) covering design with a hole of size 8. On the hole 

construct an (8, 5, 3) minimal covering design where x=Zg and blocks are (0 2 

4 6)+i, ie Z2' (0 1 3 4 5) (mod 8). Close observation of this design shows that the 

pairs {O, 4} and {2, 6} appear five times while each other pair appears at least 

three times. From this design delete the block (0 2 4 6). 

Since {O, 4} and {2, 6} appear five times in the blocks of (v, 5, 3) minimal 

covering design, and since we assume that the pairs of the triples {O, 2, 4} and 

{O, 4, 6} appear exactly six times, it is easy to see that when we delete the block 

(0 2 4 6) we actually did not lose any pair and that the above three steps yield a 

(v, 5, 15) minimal covering design for v = 32, 52, 72, 92. 

Lemma 7.5 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 15) = <\lev, 5, 

15). 

For v = 12, 32, 52, 72, 92 the result follows from the previous lemma. For 

v ;;::= 112 the proof is the same as that of lemma 6.5. 

In this section we have shown: 
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Theorem 7.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 15) = <\lev, 5, 15). 

8. COVERING WITH INDEX 17 

Lemma 8.1 (a) Let v == 4 (mod 20) be a positive integer greater than 4. Then 

a(v, 5, 17) = <\l(v, 5, 17) with the possible exception of v = 44. 

(b) There exists a (24, 5, 17) covering design with a hole of size 4. 

For all positive integers v == 4 (mod 20), v * 44, the blocks of a (v, 5, 17) 

minimal covering design are the blocks of a (v, 5, 4) and a (v, 5, 13) minimal 

covering design. 

(b) For a (24, 5, 17) covering design with a hole of size 4 proceeds as follows: 

1) Take 3 copies of a (23, 5, 2) optimal packing design [9]. In this design 

there is a triple, say, {21, 22, 23} the pairs of which appear in zero blocks. 

2) Take 6 copies of a B[25, 5, 1]. Assume in each copy we have the block (21 

22 23 24 25) which we delete and in all other blocks change 25 to 24. 

3) Take a (24, 5, 5) covering design with a hole of size 4 [5]. 

Lemma 8.2 a(v, 5, 17) = <\lev, 5, 17) for v = 8, 48, 68, 88. 

Proof The construction of these designs are as follows: 

1) Take' a (v, 5, 14) minimal covering design (lemma 6.2). Close obsevation 

of these designs shows that their excess graphs are two I-factor. 

2) Take a (v, 5, 3) optimal packing design [12]. Close observation of these 

designs shows that their complement graphs are a I-factor. 

Now apply theorem 3.1 to get the result. 

Lemma 8.3 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 17) = <\l(v, 5, 

17) with the possible exception of v = 28. 

Proof For v = 8, 48, 68, 88 the result follows from the previous lemma. For v ~ 

108, v *' 128, 168, 208, 268, write v = 20m + 4u + h + s where m, u, hand s are 

chosen the same as in lemma 5.2 with the difference that 4u + h + s = 8, 48, 68, 

88. Now apply theorem 2.6 to get the result. 

For v = 128 apply theorem 2.3 with n = 7. 



For v = 168 apply theorem 2.7 with m = 8 and u = 1. 

For v = 208 take a T[5, 17, 40]. Add 8 points to the groups and on the first four 

groups construct a (48, 5, 17) minimal covering design and on the other 

groups construct a (48, 5, 17) covering design with a hole of size 8. Such 

design can be constructed the same as in lemma 8.2 by taking a (48, 5, 14) 

covering design with a hole size 8 and a (48, 5, 3) packing design with a hole of 

size 8 [12]. The excess graph of the (48, 5, 14) covering design with a hole of 

size 8 is a two I-factor while the complement graph of the (48, 5, 3) packing 

design is a 1-factor. Now apply theorem 3.1 to get the result. 

For v = 268 take a RGD[5, 1, 5, 65] [19] and inflate this design by a factor of 4. To 

each of 2 parallel classes of blocks size 5 add 4 points and replace their blocks 

by the blocks of a GD[5, 17, 4, 24]. On the remaining parallel classes construct a 

GD [5, 17, 4, 20]. Finally, on the groups costruct a (20, 5, 17) minimal covering 

design. It is clear that this construction yields a (268, 5, 17) covering design 

with a hole of size 8. hence, a(268, 5, 17) = 4>(268, 5, 17). 

Lemma 8.4 a(v, 5, 17) = q,(v, 5, 17) for v = 12, 32, 52, 72, 92. 

For v = 12 the construction is as follows: 

1) Take two copies of a (12, 5, 4) optimal packing design [14]. In this design 

there is one pair that appears in zero blocks while each other pair appears in 

precisely four blocks. Assume in the first copy the pair is {I, 2} and in the 

second copy the pair is {2, 3}. 

2) Take a (12, 5, 4) minimal covering design. This design has a triple, say, 

{I, 2, 3} the pairs of which appear in six blocks. 

3) Take a (12, 5, 5) minimal covering design [5]. Close observation of this 

design shows that its excess graph contains the following subgraph. 

The above three steps give us a design such that each of its pans appear in at 

least 17 blocks except the pair {2, 3} which appears in precisely 16 blocks. To 

fix this assume in the (12, 5, 4) optimal packing design we have the block (5 6 7 

2 4). In this block change 4 to 3. Furthermore, assume in the (12, 5, 4) minimal 

covering design we have the block (5 6 7 1 3). In this block change 3 to 4. It is 
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readily checked that the above construction yields a (12, 5, 17) minimal 

covering design. 

For v = 32 the construction is as follows: 

1) Take a (32, 5, 4) optimal packing design and assume that the pair 

{ 1, 3} appears in zero blocks. 

2) Take two copies of a (32, 5, 4) minimal covering design. This design has 

a triple the pairs of which appear in six blocks. Assume in the first copy the 

triple is {I, 2, 3} and in the second copy the triple is {I, 3. 4}. 

3) Take a (32, 5, 5) minimal covering design. This design has a block of size 

4, say, (1 2 3 4) [5], which we delete. 

4) Assume in the (32, 5, 4) optimal packing design we have the block (5 6 7 

3 2) and in the (32, 5, 4) minimal covering design we have the block (5 6 7 4 1). 

In the first block change 2 to 1 and in the second block change 1 to 2. Now it is 

easy to check that the above four steps yield the blocks of a (32, 5, 17) minimal 

covering design. 

For v ~ 52, in [5] we have shown that a (v, 5, 5) minimal covering design with a 

hole of size 12 or 32 exists. Hence, by invoking the previous constructions, a 

(v, 5, 17) minimal covering design exists for all v == 12 (mod 20), v ~ 52. 

In this section we have shown: 

Theorem 8.1 Let v == 0 (mod 4) be a positive integer greater than 8. Then a(v, 

5, 17) = <1> (v, 5, 17) with the possible exception of v = 28. 

9. COVERING WITH INDEX 18 

Lemma 9.1 Let v == 4 (mod 20) be a positive integer greater than 4. Then a(v, 

5, 18) = <1>(v, 5, 18). 

Proof For all v == 4 (mod 20), v ~ 24, the construction is as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design and assume in 

both copies the pairs of the triple {v-2, v-I, v} appear in six blocks. 

2) Take two copies of a (v, 5, 4) optimal packing design. Assume in the first 

copy the pair {v-2, v-I} appears in zero blocks and in the second copy the pair 

{v-I, v} appears in zero blocks. 
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3) Take a (v, 5, 2) minimal covering design. It is readily checked that the 

above three steps yield a (v, 5, IS) minimal covering design for all v == 4 (mod 

20), v ;;:: 24. 

Lemma 9.2 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 18) = <\lev, 5, 

IS). 

A (v, 5, 18) minimal covering design, v == 8 (mod 20) can be constructed 

as follows: 

1) Take a (v, 5, 8) minimal covering design. This design has a triple, say, 

{a, b, c} the pairs of which appear in ten blocks [S]. 

2) Take a (v, 5, 8) optimal packing design. This design has a pair, say, {a, b} 

that appears in four blocks while each other pair appears in eight blocks [13]. 

3) Take a (v, 5, 2) minimal covering design. Simple calculation shows that 

the number of repeated pairs in this design is greater than v. If this design 

has a pair, say, {a, b} that appears at least four times, then the above three 

steps give a (v, 5, 18) minimal covering design and we are done. Otherwise, we 

may assume that the pairs {a, b} and {a, 4} appear three times where 4 is an 

arbitrary number. In this case the above three steps give a design where each 

pair appears at least 18 times except the pair {a, b} which appears only 17 

times. To have {a, b} appear at least 18 times assume in the (v, 5, 2) minimal 

covering design we have the block (1 2 3 4 a) where {I, 2, 3} are arbitrary 

numbers. In this block change a to c. 

Furthermore, assume in the (v, 5, 8) optimal packing design we have the block 

(1 2 3 b c). In this block change c to a. Now it is easy to check that the above 

construction yields a (v, 5, 18) minimal covering design. 

Lemma 9.3 a(v, 5, 18) = <\lev, 5, IS) for v = 12, 32, 52, 72, 92. 

Proof The construction of these minimal covering designs is as follows: 

1) Take a (v, 5, 11) optimal packing design [10]. Close observation of these 

designs shows that their complement graphs are I-factor. 

2) Take a (v, 5, 7) minimal covering design. Close observation of these 

designs shows that their excess graphs contain a sub graph that is I-factor. 

But <\lev, 5,7) + ",(v, 5, 11) = <\lev, 5, 18), hence, by theorem 3.1, a(v, 5, 18) = <\lev, 5, 

IS). 
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Lemma 9.4 Let v == 12 (mod 20) be a positive integer. Then (X(v, 5, 18) = <I>(v, 5, 

18). 

Proof For v = 12, 32, 52, 7.2, 92 the result follows from lemma 9.3. For v ;:: 112 

the proof is the same as that of lemma 6.5. 

In this section we have shown: 

Theorem 9.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 18) = <I>(v, 5, 18). 

10. COVERING WITH INDEX 19 

Lemma 10.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 19) = <I>(v, 5, 19). 

The blocks of a (v, 5, 19) minimal covering design, v == 4, 8 or 12 (mod 

20), v ::/! 44, are the blocks of a (v, 5, 6) and a (v, 5, 13) minimal covering design. 

Since a (44, 5, 13) minimal covering design is still unknown, we need to 

construct a (44, 5, 19) minimal covering design. For this purpose, let X = Z44, 

then take the following base blocks under the action of the group Z 44' 

(0 1 2 4 8) 5 times, (0 3 12 19 32) 5 times, (0 5 14 26 31) 5 times 

(0 6 14 23 33) 5 times, (0 1 3 18 25) 4 times, (0 4 14 23 28) 4 times 

(0 6 13 24 36) 4 times, (0 1 4 10 32) (0 1 3 9 13) (0 2 16 24 29) 

(05 11 2234) (0 1 2517) (0 1 3511) (03 92533) (04 15 2231) 

(0 5 13 22 34). 

In this section, we have shown: 

Theorem 10.1 Let v == 0 (mod 4) be a positive integer greater than four. Then 

(X(v, 5, 19) = <I>(v, 5, 19). 

11. COVERING WITH INDEX 21 

115 



Since covering design with index one and v == 0 (mod 4), v ~ 8, is far from 

being settled, it is worth looking at covering designs with index 21 and v == 0 

(mod 4). 

Lemma 11.1 There exists a (v,S, 12) minimal covering design for all v == 4 (mod 

20) such that the excess graph consists of v-4 isolated vertices and the 

following graph on the remaining four vertices. 

v-3 ~ v-2 

9 ~ v-I 

Proof For all v == 4 (mod 20) v ~ 24 the construction is as follows. 

1) Take a (v,5,4) optimal packing design [ 14 and assume that the pair {9, v-

2} appears in zero blocks. 

2) Take two copies of a (v,5,4) minimal covering design [ 8 ,11]. This design 

has a triple the pairs of which appear in six blocks. Assume that in the first 

copy the triple is {9, v-I, v-2} and in the second copy the triple is 

{9, v-2, v-3}. 

Lemma 11 2 (a) There exists a (24, 5, 21) covering design with a hole of size 4. 

(b) <x(v, 5, 21) = <1>(v, 5, 21) for v = 24, 44, 64, 84. 

Proof 

(a) For a (24, 5, 21) covering design with a hole of size 4 proceed as 

follows: 

1) Take a (24, 5, 5) covering design with a hole of size 4, [5]. 

2) Take four copies of a (23, 5, 2) packing design with a hole of size 3, 

[8] . 

3) Take eight copies of a B[25, 5, 1] and in each copy assume we have the 

block (21 22 23 24 25) which we delete and in all other blocks we change 25 to 

24. 

(b) For v = 24, let x=Z20UH4' Then the blocks are: 

1 ) (h 1 h2 h3 h4 ) 

2) Adjoin a point "00" to X and on Xu{oo} costruct 12 copies of a B[25, 5,1] 

such that (h 1 h2 h3 h4 00) is a block, which we delete. In the first 3 copies of 
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B[25, 5, 1] replace "00" by hI, in the second 3 copies replace "00" by h2, in the 

third 3 copies replace "00" by h3 and in the last 3 copies replace "00" by h 4' 

3) Furthermore, take the following base blocks under the action of the 

group Z20' 

(048 12 I6)+i, ie Z4' three times. 

(0 hI h2 h3 h4) (0 1 2 3 7) (0 1 3 10 13) (0 2 6 10 15) (0 1 2 7 10) 

(0 2 7 11 14) (0 1 2 4 hI) (0 1 4 10 h2) (0 2 7 15 h3) (0 3 8 14 h4) 
4 

(03914)u{hi}i=1' 

For v = 44, 64, 84 the construction is as follows: 

1) Take a (v-I, 5, 1) minimal covering design with a hole of size 3, say, {v-3, 

v-2, v-I}, [26]. The excess graph of these designs contain a sub graph which is 

I-factor on v-4 points. In addition to the I-factor,assume that {4,5} appears one 

more time. Furthermore, assume in this design we have the block (1 2 3 9 v-I) 

where {l, 2, 3, 9} are arbitrary numbers. In this block change v-I to v. 

2) Take a B[v+l, 5, 1] and assume in this design we have the block 

(1 2 3 v v+ 1). In this block change v+ 1 to v-I and in all other blocks change v+ 1 

to v. 

3) Take a (v-2, 5, 1) optimal packing design, [12]. The complement graph of 

this design is a I-factor. We may assume that the I-factor contains (v-3, v-2) 

and another <V;4) pairs on the remaining v-4 points. Furthermore, we may 

assume that these <V;4) pairs of the I-factor are precisely the I-factor in the 

excess graph of the design in (1). 

4) Take a B[v+I, 5, 1] and assume we have the block (1 2 3 v v+l) where {I, 2, 

3} are arbitrary numbers. In this block change v+ 1 to v-I and in all other 

blocks change v+ 1 to v. 

5) Again take a B(v+l, 5, 1] and assume we have the block (1 2 3 v-I v+l). In 

this block change v+ 1 to v and in all other blocks change v+ 1 to v-I. 

6 ) Take a (v, 5, 4) optimal' packing design [14]. In this design each pair 

appears exactly 4 times except one pair, say, {v-I, v} which appears in zero 

blocks. 

7) Take a (v, 5, 12) minimal covering design such that its excess graph is 

the same as in lemma 11.1. 
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The above seven steps gives us a design such that the pair {v-3, v-I} appears 

twenty times {4,5} {9,v-3}, {9,v-I}, {v-2, v-I} at least twenty two times and 

each other pair appears at least twenty one times. 

To have (v-3, v-I) appear twenty one times assume in designs (1) and (2) we 

have the blocks <a b c 5 v-3> <a b c 9 v-I> where {a b c} are arbitrary numbers. 

In the first block change v-3 to 9 and in the second block change 9 to v-3. But 

in this case the pair {5, v-3} appears only twenty times. To fix this, assume in 

design (4) and (5) we have the blocks <d e f 5 4> and <d e f v-3 9> where {d e f} 

are arbitrary numbers. In the first block change 4 to v-3 and in the second 

block change v-3 to 4. 

For all other values of v, the proof is the same as lemma 5.2. 

Lemma 11.3 Let v == 8 or 12 (mod 20) be a positive integer. Then a(v, 5, 21) = 

<I> (v, 5, 21). 

Proof For v == 8 (mod 20) the blocks of a (v, 5, 21) minimal covering design are 

the blocks of a (v, 5, 13) and (v, 5, 8) minimal covering design. 

For v == 12 (mod 20) the blocks of a (v, 5, 21) minimal covering design are the 

blocks of a (v, 5, 16) and (v, 5, 5) minimal covering design. 

In this section we have shown: 

Theorem 11.1 Let v == 0 (mod 4) be a positive integer. Then a(v, 5, 21) = <I>(v, 5, 

21 ). 

12. CONCLUSION 

To conclude our result, we have shown (theorem 4.1 - theorem 11.1) that a(v, 5, 

A.) = <I>(v, 5, A.) for all v == 4 (mod 20), v == 0 (mod 4), v > 4, provided 11 :::;; A. :::;; 21 with 

the possible exceptions of (v, A.) = (44, 13), (28, 17), (44, 17). 
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