















































Proof For v = 8, 28, 48, 68, 88 the result follows from the previous lemma.
For v = 108 the proof is exactly the same as that of lemma 5.4.

Lemma 6.4 o(v, 5, 14) = o(v, 5, 14) for v = 12, 32, 52, 72, 92.

Proof =~ For v = 12 the construction is as follows:

1) Take a (12, 5, 2) minimal covering design as presented in [29]. Take the
block (2 6 9 11 12) and change the point 12 to 4. After this change, the pair {9,
12} appears only once, the pairs {2,4}, {9,4} appear four times, the pairs {3,12},
{8,9} appear 3 times and each other pair appears at least twice.

2) Take a (12, 5, 4) minimal covering design [11]. This design has a triple,
say, {2, 4, 9} the pairs of which appear in six blocks.

3) Take a (12, 5, 4) optimal packing design [14]. This design has a pair, say,
{2, 4} that appears in zero blocks while each other pair appears in four blocks.
Furthermore, assume in this design we have the block

(1 2 512 3) where {1, 5} are arbitrary numbers. In this block change the point
3 to 9.

4) Again, take a (12, 5, 4) optimal packing design, and assume {4, 9} appears
in zero blocks. Furthermore, assume we have the block (1 2 5 8 9). In this block
change 9 to 3. Now it is easy to check that the above four steps give a (12, 5, 14)

minimal covering design.

For v = 32, 52, 72, 92 the construction is as follows:

1) Take a (v, 5, 4) minimal covering design and assume that the pairs of the
triple {1, 2, 3} appear in six blocks.

2) Take a (v, 5, 4) optimal packing design and assume that the pair {1, 2}
appears in zero blocks.

3) Again take a (v, 5, 4) optimal packing design and assume that the pair
{1, 3} appears in zero blocks.

4) Take a (v, 5, 2) covering design with a hole of size 8: For a (32, 5, 2) and
(52, 5, 2) covering design with a hole of size 8 see [29], and for a (72, 5, 2) and
(92, 5, 2) covering design with a hole of size 8 see [6].

But the (8, 5, 2) minimal covering design has a triple, say, {1, 2, 3} the pairs of
which appear in five blocks [29]. It is readily checked that the above four
steps yield a (v, 5, 14) minimal covering design for v = 32, 52, 72, 92.
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Lemma 6.5 Letv= 12 (mod 20) be a positive integer. Then a(v, 5, 14) = ¢(v, 5,
14).

Proof  For v = 12, 32, 52, 72, 92 the result is given in the previous lemma.

For v = 112, v # 132, simple calculation shows that v can be written in the form
v = 20m + 4u + h + s where m, u, h and s are chosen so that:

1) there exists a RMGDI[5, 1, 5, 5m];

2) there exists a GD[3, 14, {4, s*}, 4m+s];

3) 4u +h +s =12, 32, 52, 72, 92;

4) 0_<_usm—1,saO(mod4)apdh=0.

Now apply theorem 2.6 with A = 14 to get the result.

For v = 132 apply theorem 23 withn =7, h =0, A= 14, and u = 3.

In this section we have shown:

Theorem 6.1 Letv= 0 (mod 4) be a positive integer greater than 4. Then o(v,
5, 14) = ¢(v, 5, 14).

7. COVERING WITH INDEX 15

Lemma 7.1 Letv=4 (mod 20), v 2 24, be a positive integer. Then a(v, 5, 15) =
$(v, 5, 15).

Proof Forallv= 4 (mod 20), v 2 24, a (v, 5, 15) minimal covering design can
be constructed as follows:

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a
triple the pairs of which appear in six blocks. Assume, in both copies, the
triple is {a, b, ¢} [8], [11].

2) Take a (v, 5, 4) optimal packing design. This design has a pair, say, {a, b}
that appears in zero blocks while each other pair appears in four blocks.

3) Take a (v, 5, 3) minimal covering design. By lemma 4.1 this design has a
block of size two, say, (b, c) which we delete.

Now it is readily checked that the above three steps yield a (v, 5, 15) minimal

covernig design for all v = 4 (mod 20), v = 24.
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Lemma 7.2 Letv= 8 (mod 20) be a positive integer. Then o(v, 5, 15) = ¢(v, 5,
15).

Proof ~ The blocks of a (v, 5, 15) minimal covering design are the blocks of a
(v, 5, 8) and a (v, 5, 7), v # 28, minimal covering designs.

For v = 28 let X = Z,,U{a, b}. Then on Z,; construct a B[26, 5, 12]. Furthermore,
take the following blocks under the action of the group Z,¢.

(0123a) (02511a (031116a) (041116Db)

(041216b) (061319b) (0817ab)

Lemma 7.3 There exists a (v, 5, 3) covering design with a hole of size 8 for v =
32, 52, 72, 92.

Proof  For v = 32, see [16].
For v = 52, 72, 92 see the following table.

v Point Set Base Blocks
52 Z44UH g 0261424)(013720)(012618)

0919 30)u{hy} 1, 03 10 25)0{h}s_s (05 18 3D0(hy, hy)
(0 8 17 29)u{hs, hy} (0 3 11 24)U{hg, hg} (0 5 14 21)u{hy, hg)

72 ZgUH, (013 749) 3 times (0 8 19 32 44) 3 times
(0526 35)U(hy) 1y 01027 alyulhg}_ o (0526 35)0(hy, hy)
(05 26 35)uhs, hy} (0 10 27 41)U{hs, hg} (0 10 27 41)u{hg, hg)

92 z4,UH, (0 4203547y (0 13 735)(0 5 15 45 63)
(0 820 44 67) (0 13 27 46 68) (0 1 3 7 15)
(0528 38 60) (0 13 9 27)(0 10 21 46 64)
(01125 42)u{hi}?=1 (01137 50)u{hi}?=5 (0 9 30 44yu{hy, hy}
(05 33 50)u{h3, hy} (0 7 16 69)u{hs, hg} (0 13 32 55)u{hy, hg)

Lemma 7.4 o(v, 5, 15) = ¢(v, 5, 15) for v = 12, 32, 52, 72, 92.

Proof For v = 12, the construction is as follows:
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1) Take two copies of a (12, 5, 4) optimal packing design on Z,,u{a, b}. In
this design there is one pair that appears in zero blocks while each other pair
appears in four blocks. Assume that in both copies this pair is {a, b}.

2) Take a (12, 5, 4) minimal covering design. This design has a triple, say,
{a, b, c} the pairs of which appear in six blocks.

3) Take a (12, 5, 3) minimal covering design such that one of its pairs
appears in ten blocks. To construct such design let X=Z,, u{a, b} then take
the blocks (0 2 4 6 8)+, i€ Z,(0125 9) (mod 10)(0 3 5 a b) (mod 10).

It is easy to check that the above three steps yield the blocks of a (12, 5, 15)
minimal covering design

For v = 32, 52, 72, 92 the construction is as follows:

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a
triple the pairs of which appear in six block‘s. Assume, in the first design the
triple is {0, 2, 4} and in the second the triple is {0, 4, 6}.

2) Take a (v, 5, 4) optimal packing design. In this design there is a pair,
say, {0, 4} that appears in zero blocks while each other pair appears in four
blocks.

3) Take a (v, 5, 3) covering design with a hole of size 8. On the hole
construct an (8, 5, 3) minimal covering design where X=Z, and blocks are (0 2
4 6)+i,1€Z,, (0 1 3 4 5) (mod 8). Close observation of this design shows that the
pairs {0, 4} and {2, 6} appear five times while each other pair appears at least
three times. From this design delete the block (0 2 4 6). '
Since {0, 4} and {2, 6} appear five times in the blocks of (v, 5, 3) minimal
covering design, and since we assume that the pairs of the triples {0, 2, 4} and
{0, 4, 6} appear exactly six times, it is easy to see that when we delete the block
(0 2 4 6) we actually did not lose any pair and that the above three steps yield a
(v, 5, 15) minimal covering design for v = 32, 52, 72, 92.

Lemma 7.5 Let v = 12 (mod 20) be a positive integer. Then a(v, 5, 15) = ¢(v, 5,
15).

Proof For v = 12, 32, 52, 72, 92 the result follows from the previous lemma. For

v 2 112 the proof is the same as that of lemma 6.5.

In this section we have shown:
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Theorem 7.1 Letv=0 (mod 4) be a positive integer greater than 4. Then a(v,
5, 15) = ¢(v, 5, 15).

8. COVERING WITH INDEX 17

Lemma 8.1 (@ Letv=4 (mod 20) be a positive integer greater than 4. Then
a(v, 5, 17) = ¢(v, 5, 17) with the possible exception of v = 44.
(b) There exists a (24, 5, 17) covering design with a hole of size 4.

Proof For all positive integers v = 4 (mod 20), v # 44, the blocks of a (v, 5, 17)
minimal covering design are the blocks of a (v, 5, 4) and a (v, 5, 13) minimal
covering design.

(b) For a (24, 5, 17) covering design with a hole of size 4 proceeds as follows:
1) Take 3 copies of a (23, 5, 2) optimal packing design [9]. In this design
there is a triple, say, {21, 22, 23} the pairs of which appear in zero blocks.

2) Take 6 copies of a B[25, 5, 1]. Assume in each copy we have the block (21
22 23 24 25) which we delete and in all other blocks change 25 to 24.

3) Take a (24, 5, 5) covering design with a hole of size 4 [5].

Lemma 8.2 (v, 5, 17) = ¢(v, 5, 17) for v = 8, 48, 68, 88.

Proof The construction of these designs are as follows:

1) Take a (v, 5, 14) minimal covering design (lemma 6.2). Close obsevation
of these designs shows that their excess graphs are two 1-factor.

2) Take a (v, 5, 3) optimal packing design [12]. Close observation of these
designs shows that their complement graphs are a  1-factor.

Now apply theorem 3.1 to get the result.

Lemma 8.3 Letv= 8 (mod 20) be a positive integer. Then a(v, 5, 17) = ¢(v, 5,

17) with the possible exception of v = 28.

Proof For v = 8, 48, 68, 88 the result follows from the previous lemma. For v 2
108, v = 128, 168, 208, 268, write v = 20m + 4u + h + s where m, u, h and s are
chosen the same as in lemma 5.2 with the difference that 4u + h + s = 8, 48, 68,
88. Now apply theorem 2.6 to get the result.

For v = 128 apply theorem 2.3 with n = 7.




For v

168 apply theorem 2.7 with m = 8 and u = 1.
208 take a T[5, 17, 40]. Add 8 points to the groups and on the first four

groups construct a (48, 5, 17) minimal covering design and on the other

For v

groups construct a (48, 5, 17) covering design with a hole of size 8. Such
design can be constructed the same as in lemma 8.2 by taking a (48, 5, 14)
covering design with a hole size 8 and a (48, 5, 3) packing design with a hole of
size 8 [12]. The excess graph of the (48, 5, 14) covering design with a hole of
size 8 is a two l-factor while the complement graph of the (48, 5, 3) packing
design is a 1-factor. Now apply theorem 3.1 to get the result.

For v = 268 take a RGD[5, 1, 5, 65] [19] and inflate this design by a factor of 4. To
each of 2 parallel classes of blocks size 5 add 4 points and replace their blocks
by the blocks of a GD[5, 17, 4, 24]. On the remaining parallel classes construct a
GD[5, 17, 4, 20]. Finally, on the groups costruct a (20, 5, 17) minimal covering
design. It is clear thét this construction yields a (268, 5, 17) covering design
with a hole of size 8. hence, a(268, S, 17) = ¢(268, 5, 17).

Lemma 84 o(v, 5, 17) = ¢(v, 5, 17) for v = 12, 32, 52, 72, 92.

Proof For v = 12 the construction is as follows:
1) Take two copies of a (12, 5, 4) optimal packing design [14]. In this design
there is one pair that appears in zero blocks while each other pair appears in
precisely four blocks. Assume in the first copy the pair is {1, 2} and in the
second copy the pair is {2, 3}.
2) Take a (12, 5, 4) minimal covering design. This design has a triple, say,
{1, 2, 3} the pairs of which appear in six blocks.
3) Take a (12, 5, 5) minimal covering design [5]. Close observation of this
design shows that its excess graph contains the following subgraph.

8 3

6 5
The above three steps give us a design such that each of its pairs appear in at

least 17 blocks except the pair {2, 3} which appears in precisely 16 blocks. To

fix this assume in the (12, 5, 4) optimal packing design we have the block (5 6 7
2 4). In this block change 4 to 3. Furthermore, assume in the (12, 5, 4) minimal
covering design we have the block (5 6 7 1 3). In this block change 3 to 4. It is

112




readily checked that the above construction yields a (12, 5, 17) minimal
covering design.

For v = 32 the construction is as follows:

1) Take a (32, 5, 4) optimal packing design and assume that the pair

{1, 3} appears in zero blocks.

2) Take two copies of a (32, 5, 4) minimal covering design. This design has
a triple the pairs of which appear in six blocks. Assume in the first copy the
triple is {1, 2, 3} and in the second copy the triple is {1, 3, 4}.

3) Take a (32, 5, 5) minimal covering design. This design has a block of size
4, say, (1 2 3 4) [5], which we delete.

4) Assume in the (32, 5, 4) optimal packing design we have the block (5 6 7
3 2) and in the (32, 5, 4) minimal covering design we have the block (56 7 4 1).
In the first block change 2 to 1 and in the second block change 1 to 2. Now it is
easy to check that the above four steps yield the blocks of a (32, 5, 17) minimal
covering design.

For v = 52, in [5] we have shown that a (v, 5, 5) minimal covering design with a
hole of size 12 or 32 exists. Hence, by invoking the previous constructions, a

(v, 5, 17) minimal covering design exists for all v = 12 (mod 20), v 2 52.
In this section we have shown:

Theorem 8.1 Letv= 0 (mod 4) be a positive integer greater than 8. Then a(yv,
5, 17) = ¢(v, 5, 17) with the possible exception of v = 28.

9. COVERING WITH INDEX 18

Lemma 9.1 Letv= 4 (mod 20) be a positive integer greater than 4. Then o(v,
5, 18) = o(v, 5, 18).

Proof Forall v= 4 (mod 20), v = 24, the construction is as follows:

1) Take two copies of a (v, 5, 4) minimal covering design and assume in
both copies the pairs of the triple {v-2, v-1, v} appear in six blocks.

2) Take two copies of a (v, 5, 4) optimal packing design. Assume in the first
copy the pair {v-2, v-1} appears in zero blocks and in the second copy the pair

{v-1, v} appears in zero blocks.
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3) Take a (v, 5, 2) minimal covering design. It is readily checked that the
above three steps yield a (v, 5, 18) minimal covering design for all v =4 (mod
20), v 2 24.

Lemma 9.2 Letv= 8 (mod 20) be a positive integer. Then a(v, 5, 18) = ¢(v, 5,
18).

Proof A (v, 5, 18) minimal covering design, v = 8 (mod 20) can be constructed
as follows:

1) Take a (v, 5, 8) minimal covering design. This design has a triple, say,
{a, b, ¢} the pairs of which appear in ten blocks [8].

2) Take a (v, 5, 8) optimal packing design. This design has a pair, say, {a, b}
that appears in four blocks while each other pair appears in eight blocks [13].
3) Take a (v, 5, 2) minimal covering design. Simple calculation shows that
the number of repeated pairs in this design is greater than v. If this design
has a pair, say, {a, b} that appears at least four times, then the above three
steps give a (v, 5, 18) minimal covering design and we are done. Otherwise, we
may assume that the pairs {a, b} and {a, 4} appear three times where 4 is an
arbitrary number. In this case the above three steps give a design where each
pair appears at least 18 times except the pair {a, b} which appears only 17
times. To have {a, b} appear at least 18 times assume in the (v, 5, 2) minimal
covering design we have the block (1 2 3 4 a) where {1, 2, 3} are arbitrary
numbers. In this block change a to c.

Furthermore, assume in the (v, 5, 8) optimal packing design we have the block
{123 Dbc). In this block change ¢ to a. Now it is easy to check that the above

construction yields a (v, 5, 18) minimal covering design.

Lemma 9.3 a(v, 5, 18) = ¢(v, 5, 18) for v = 12, 32, 52, 72, 92.
Proof The construction of these minimal covering designs is as follows:

1) Take a (v, 5, 11) optimal packing design [10]. Close observation of these
designs shows that their complement graphs are 1-factor.

2) Take a (v, 5, 7) minimal covering design. Close observation of these
designs shows that their excess graphs contain a subgraph that is I-factor.
But ¢(v, 5, 7) + w(v, 5, 11) = ¢(v, 5, 18), hence, by theorem 3.1, a(v, 5, 18) = ¢(v, 5,
18).
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Lemma 94 Letv= 12 (mod 20) be a positive integer. Then o(v, 5, 18) = ¢(v, 5,

18).

Proof For v = 12, 32, 52, 72, 92 the result follows from lemma 9.3. For v = 112

the proof is the same as that of lemma 6.5.

In this section we have shown:

Theorem 9.1 Letv= 0 (mod 4) be a positive integer greater than 4. Then a(v,

5, 18) = ¢(v, 5, 18).

10. COVERING WITH INDEX 19

Lemma 10.1 Let v= 0 (mod 4) be a positive integer greater than 4. Then a(v,

5, 19) = ¢(v, 5, 19).

Proof The blocks of a (v, 5, 19) minimal covering design, v = 4, 8 or 12 (mod

20), v # 44, are the blocks of a (v, 5, 6) and a (v, 5, 13) minimal covering design.

Since a (44, 5, 13) minimal covering design is still unknown, we need to

construct a (44, 5, 19) minimal covering design. For this purpose, let X = Z,,,

then take the following base blocks under the action of the group Z,.
(0124 8)5 times, (0 3 12 19 32) 5 times, (0 5 14 26 31) 5 times

(0 6 14 23 33) 5 times, (0 1 3 18 25) 4 times, (0 4 14 23 28) 4 times

(0 6 13 24 36) 4 times, (0 1 4 1032) (013913) (02 16 24 29)
05112234y (012517) (013511) (0392533 (04152231)
(0513 22 34).

In this section, we have shown:

Theorem 10.1 Letv= 0 (mod 4) be a positive integer greater than four.
o(v, 5, 19) = ¢(v, 5, 19).

11. COVERING WITH INDEX 21
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Since covering design with index one and v = 0 (mod 4), v 2 8, is far from
being settled, it is worth looking at covering designs with index 21 and v =0
(mod 4).

Lemma 11.1 There exists a (v, 5, 12) minimal covering‘design for all v = 4 (mod
20) such that the excess graph consists of v—4 isolated vertices and the

following graph on the remaining four vertices.

v—3 P v-2

9 v—1

Proof  For all v = 4 (mod 20) v > 24 the construction is as follows.

1) Take a (v,5,4) optimal packing design [ 14 ] and assume that the pair {9, v-
2} appears in zero blocks.

2) Take two copies of a (v,5,4) minimal covering design [ 8 ,11 ]. This design
has a triple the pairs of which appear in six blocks. Assume that in the first
copy the triple is {9, v—1, v=2} and in the second copy the triple is

{9, v—2, v—3}.

Lemma 11.2 (a) There exists ‘a (24, 5, 21) covering design with a hole of size 4.
5
) alv, 5, 21) = ¢(v, 5, 21) for v = 24, 44, 64, 84. ‘

Proof
(a) For a (24, 5, 21) covering design with a hole of size 4 proceed as
follows:

1) Take a (24, 5, 5) covering design with a hole of size 4, [5].

2) Take four copies of a (23, 5, 2) packing design with a hole of size 3,

(8. .

3) Take eight copies of a B[25, 5, 1] and in each copy assume we have the
block (21 22 23 24 25) which we delete and in all other blocks we change 25 to
24.

(b) For v = 24, let X=2%,,UH,. Then the blocks are:

1) (h1 h2 h3 hg)

2) Adjoin a point "=" to X and on Xu{e} costruct 12 copies of a B{25, 5, 1]
such that (hy hy h3 hgq =) is a block, which we delete. In the first 3 copies of
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B[25, 5, 1] replace "=" by hj, in the second 3 copies replace "e" by h2, in the
third 3 copies replace "=" by h3 and in the last 3 copies replace "e" by h,
3) Furthermore, take the following base blocks under the action of the
group Z,,.

(0 4 8 12 16)+i, iez,, three times.

(Ohyhphzhg) (01237 (0131013) (0261015 (0127 10)
0271114y (0124hy) (01410hp) (02715h3) (03 8 14 hy)

(039 14)u{hi}?___1.

For v = 44, 64, 84 the construction is as follows:

1) Take a (v=1, 5, 1) minimal covering design with a hole of size 3, say, {v-3,
v-2, v—1}, [26]. The excess.graph of these designs contain a subgraph which is
1-factor on v-4 points. In addition to the 1-factor,assume that (4,5} appears one
more time. Furthermore, assume in this design we have the block (1 2 3 9 v-1)
where {1, 2, 3, 9} are arbitrary numbers. In this block change v-1 to v.

2) Take a Bfv+1, 5, 1] and assume in this design we have the block

(1 23 v v+l). In this block change v+l to v-1 and in all other blocks change v+1
to v.

3) Take a (v-2, 5, 1) optimal packing design, [12]. The complement graph of

this design is a 1-factor. We may assume that the 1-factor contains (v-3, v-2)
(v=4)

and another )

pairs on the remaining v-4 points. Furthermore, we may

v-4)
2

excess graph of the design in (1).
4) Take a B[v+1, 5, 1] and assume we have the block (1 2 3 v v+1) where {1, 2,

3} are arbitrary numbers. In this block change v+l to v—1 and in all other

assume that these pairs of the 1-factor are precisely the 1-factor in the

blocks change v+1 to v.

5) Again take a B[v+1, 5, 1] and assume we have the block (1 2 3 v=1 v+1). In
this block change v+1 to v and in all other blocks change v+1 to - v—1.

6) Take a (v, 5, 4) optimal packing design [14]. In this design each pair
appears exactly 4 times except one pair, say, {v-1, v} which appears in zero
blocks.

7) Take a (v, 5, 12) minimal covering design such that its excess graph is

the same as in lemma 11.1.
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The above seven steps gives us a design such that the pair {v-3, v—1} appears
twenty times {4,5} {9,v—=3}, {9,v—1}, {v—=2, v—1} at least twenty two times and

each other pair appears at least twenty one times.

To have (v—3, v—1) appear twenty one times assume in designs (1) and (2) we
have the blocks <a b ¢ 5 v=3> <abc 9 v—I> where {a b c} are arbitrary numbers.
In the first block change v—3 to 9 and in the second block change 9 to v—3. But
in this case the pair {5, v—3} appears only twenty times. To fix this, assume in

design (4) and (5) we have the blocks <d e f 5 4> and <d e f v-3 9> where {d e f}
are arbitrary numbers. In the first block change 4 to v—3 and in the second

block change v—3 to 4.

For all other values of v, the proof is the same as lemma 5.2.

Lemma 11.3 Letv= 8 or 12 (mod 20) be a positive integer. Then a(v, 5, 21) =
$(v, 5, 21).

Proof ©Forv= 8 (mod 20) the blocks of a (v, 5, 21) minimal covering design are
the blocks of a (v, 5, 13) and (v, 5, 8) minimal covering design.
For v = 12 (mod 20) the blocks of a (v, 5, 21) minimal covering design are the

blocks of a (v, 5, 16) and (v, 5, 5) minimal covering design.
In this section we have shown:

Theorem 11.1 Letv=0 (mod 4) be a positive integer. ~Then o(v, 5, 21) = ¢o(v, 5,
21).

12. CONCLUSION
To conclude our result, we have shown (theorem 4.1 - theorem 11.1) that o(v, 5,

A) = ¢(v, 5,A) for all v= 4 (mod 20), v= 0 (mod 4), v > 4, provided 11 <) < 21 with
the possible exceptions of (v, A) = (44, 13), (28, 17), (44, I7).
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