
































Proof For v = 8, 28, 48, 68, 88 the result follows from the previous lemma. 

For v ~ 108 the proof is exactly the same as that of lemma 5.4. 

Lemma 6.4 a(v, 5, 14) = <I>(v, 5, 14) for v = 12, 32, 52, 72, 92. 

Proof For v = 12 the construction is as follows: 

1) Take a (12, 5, 2) minimal covering design as presented in [29]. Take the 

block (2 6 9 11 12) and change the point 12 to 4. After this change, the pair {9, 

12} appears only once, the pairs {2,4}, {9,4} appear four times, the pairs {3,12}, 

{8,9} appear 3 times and each other pair appears at least twice. 

2) Take a (12, 5, 4) minimal covering design [11]. This design has a triple, 

say, {2, 4, 9} the pairs of which appear in six blocks. 

3) Take a (12, 5, 4) optimal packing design [14]. This design has a pair, say, 

{2, 4} that appears in zero blocks while each other pair appears in four blocks. 

Furthermore, assume in this design we have the block 

(1 2 5 12 3) where {I, 5} are arbitrary numbers. In this block change the point 

3 to 9. 

4) Again, take a (12, 5, 4) optimal packing design, and assume {4, 9} appears 

in zero blocks. Furthermore, assume we have the block (1 2 5 8 9). In this block 

change 9 to 3. Now it is easy to check that the above four steps give a (12, 5, 14) 

minimal covering design. 

For v = 32, 52, 72, 92 the construction is as follows: 

I) Take a (v, 5, 4) minimal covering design and assume that the pairs of the 

triple {I, 2, 3} appear in six blocks. 

2) Take a (v, 5, 4) optimal packing design and assume that the pair {I, 2} 

appears in zero blocks. 

3) Again take a (v, 5, 4) optimal packing design and assume that the pair 

{1, 3} appears in zero blocks. 

4) Take a (v, 5, 2) covering design with a hole of size 8: For a (32, 5, 2) and 

(52, 5, 2) covering design with a hole of size 8 see [29], and for a (72, 5, 2) and 

(92, 5, 2) covering design with a hole of size 8 see [6]. 

But the (8, 5, 2) minimal covering design has a triple, say, {I, 2, 3} the pairs of 

which appear in five blocks [29]. It is readily checked that the above four 

steps yield a (v, -5, 14) minimal covering design for v = 32, 52, 72, 92. 
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Lemma 6.5 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 14) = <I>(v, 5, 

14 ). 

Proof For v = 12, 32, 52, 72, 92 the result is given in the previous lemma. 

For v ~ 112, v if::. 132, simple calculation shows that v can be written in the form 

v = 20m + 4u + h + s where m, u, hand s are chosen so that: 

1) there exists a RMGD[5, 1, 5, 5m]; 

2) there exists a GD[5, 14, {4, s*}, 4m+s]; 

3 ) 4u + h + s = 12, 32, 52, 72, 92; 

4) 0 ~ u ~ m-1, s == 0 (mod 4) and h = O. 

Now apply theorem 2.6 with '). = 14 to get the result. 

For v = 132 apply theorem 2.3 with n = 7, h = 0, A = 14, and u = 3. 

In this section we have shown: 

Theorem 6.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 14) = <1>(v, 5, 14). 

7. COVERING WITH INDEX 15 

Lemma 7.1 Let v == 4 (mod 20), v ~ 24, be a positive integer. Then a(v, 5, 15) 

<1> (v, 5, 15). 

Proof For all v == 4 (mod 20), v ~ 24, a (v, 5, 15) minimal covering design can 

be constructed as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a 

triple the pairs of which appear in six blocks. Assume, in both copies, the 

triple is {a, b, c} [8], [11]. 

2) Take a (v, 5, 4) optimal packing design. This design has a pair, say, {a, b} 

that appears in zero blocks while each other pair appears in four blocks. 

3) Take a (v, 5, 3) minimal covering design. By lemma 4.1 this design has a 

block of size two, say, (b, c) which we delete. 

Now it is readily checked that the above three steps yield a (v, 5, 15) minimal 

covernig design for all v == 4 (mod 20), v ~ 24. 
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Lemma 7.2 Let v == 8 (mod 20) be a positive integer. Then a.(v, 5, 15) = <1>(v, 5, 

15). 

Proof The blocks of a (v, 5, 15) minimal covering design are the blocks of a 

(v, 5, 8) and a (v, 5, 7), v *' 28, minimal covering designs. 

For v = 28 let X = Z26u{a, b}. Then on Z26 construct a B[26, 5, 12]. Furthermore, 

take the following blocks under the action of the group Z26. 

(0 1 23 a) (025 11 a) (03 11 16 a) (04 11 16 b) 

(0 4 12 16 b) (0 6 13 19 b) (0 8 17 a b) 

Lemma 7.3 There exists a (v, 5, 3) covering design with a hole of size 8 for v = 

32, 52, 72, 92. 

Proof For v = 32, see [16]. 

For v = 52, 72, 92 see the following table. 

Y.. Point Set 

52 

72 

92 

Base Blocks 

(0 2 6 14 24) (0 1 3 7 20) (0 1 26 18) 
4 8 

(09 19 30)u{hi}i=1 (03 10 25)u{hi }i=5 (0 5 18 31)u{h1, h2} 

(0 8 17 29)u{h3, h4 } (03 11 24)u{h5, h6} (05 14 21)u{h7, h8} 

(0 1 3 7 49) 3 times (0 8 19 32 44) 3 times 
4 8 

(0526 35)u{hi }i=1 (0 1027 41)u{hi}i=5 (05 26 35)u{h 1, h2 } 

(05 26 35)u{h3, h4 } (0 1027 41)u{h5, h6} (0 1027 41)u{h7, h8} 

(0 4 20 35 47) (0 1 3 7 35) (0 5 15 45 63) 

(0 8 20 44 67) (0 13 27 46 68) (0 1 3 7 15) 

(0 5 28 38 60) (0 1 3 9 27) (0 10 21 46 64) 
4 8 

(0 11 25 42)u{hi }i=1 (0 11 37 50)u{hi}i=5 (0930 44)u{h 1, h2 } 

(05 33 50)u{h3, h4 } (07 16 69)u{h5, h6} (0 13 32 55)u{h7, h8} 

Lemma 7.4 a.(v, 5, 15) = <1>(v, 5, 15) for v = 12, 32, 52, 72, 92. 

For v = 12, the construction is as follows: 
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1) Take two copies of a (12, 5, 4) optimal packing design on z10u{a, b}. In 

this design there is one pair that appears in zero blocks while each other pair 

appears in four blocks. Assume that in both copies this pair is {a, b}. 

2) Take a (12, 5, 4) minimal covering design. This design has a triple, say, 

{a, b, c} the pairs of which appear in six blocks. 

3) Take a (12, 5, 3) minimal covering design such that one of its pairs 

appears in ten blocks. To construct such design let X= Z 10 u{ a, b} then take 

the blocks (0 2 4 6 8)+i, ie Z2 (0 1 2 5 9) (mod 10) (0 3 5 a b) (mod 10). 

It is easy to check that the above three steps yield the blocks of a (12, 5, 15) 

minimal covering design . 

For v = 32, 52, 72, 92 the construction is as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design. This design has a 

triple the pairs of which appear in six blocks. Assume, in the first design the 

triple is {O, 2, 4} and in the second the triple is {O, 4, 6}. 

2) Take a (v, 5, 4) optimal packing design. In this design there is a pair, 

say, {O, 4} that appears in zero blocks while each other pair appears in four 

blocks. 

3) Take a (v, 5, 3) covering design with a hole of size 8. On the hole 

construct an (8, 5, 3) minimal covering design where x=Zg and blocks are (0 2 

4 6)+i, ie Z2' (0 1 3 4 5) (mod 8). Close observation of this design shows that the 

pairs {O, 4} and {2, 6} appear five times while each other pair appears at least 

three times. From this design delete the block (0 2 4 6). 

Since {O, 4} and {2, 6} appear five times in the blocks of (v, 5, 3) minimal 

covering design, and since we assume that the pairs of the triples {O, 2, 4} and 

{O, 4, 6} appear exactly six times, it is easy to see that when we delete the block 

(0 2 4 6) we actually did not lose any pair and that the above three steps yield a 

(v, 5, 15) minimal covering design for v = 32, 52, 72, 92. 

Lemma 7.5 Let v == 12 (mod 20) be a positive integer. Then a(v, 5, 15) = <\lev, 5, 

15). 

For v = 12, 32, 52, 72, 92 the result follows from the previous lemma. For 

v ;;::= 112 the proof is the same as that of lemma 6.5. 

In this section we have shown: 
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Theorem 7.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 15) = <\lev, 5, 15). 

8. COVERING WITH INDEX 17 

Lemma 8.1 (a) Let v == 4 (mod 20) be a positive integer greater than 4. Then 

a(v, 5, 17) = <\l(v, 5, 17) with the possible exception of v = 44. 

(b) There exists a (24, 5, 17) covering design with a hole of size 4. 

For all positive integers v == 4 (mod 20), v * 44, the blocks of a (v, 5, 17) 

minimal covering design are the blocks of a (v, 5, 4) and a (v, 5, 13) minimal 

covering design. 

(b) For a (24, 5, 17) covering design with a hole of size 4 proceeds as follows: 

1) Take 3 copies of a (23, 5, 2) optimal packing design [9]. In this design 

there is a triple, say, {21, 22, 23} the pairs of which appear in zero blocks. 

2) Take 6 copies of a B[25, 5, 1]. Assume in each copy we have the block (21 

22 23 24 25) which we delete and in all other blocks change 25 to 24. 

3) Take a (24, 5, 5) covering design with a hole of size 4 [5]. 

Lemma 8.2 a(v, 5, 17) = <\lev, 5, 17) for v = 8, 48, 68, 88. 

Proof The construction of these designs are as follows: 

1) Take' a (v, 5, 14) minimal covering design (lemma 6.2). Close obsevation 

of these designs shows that their excess graphs are two I-factor. 

2) Take a (v, 5, 3) optimal packing design [12]. Close observation of these 

designs shows that their complement graphs are a I-factor. 

Now apply theorem 3.1 to get the result. 

Lemma 8.3 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 17) = <\l(v, 5, 

17) with the possible exception of v = 28. 

Proof For v = 8, 48, 68, 88 the result follows from the previous lemma. For v ~ 

108, v *' 128, 168, 208, 268, write v = 20m + 4u + h + s where m, u, hand s are 

chosen the same as in lemma 5.2 with the difference that 4u + h + s = 8, 48, 68, 

88. Now apply theorem 2.6 to get the result. 

For v = 128 apply theorem 2.3 with n = 7. 



For v = 168 apply theorem 2.7 with m = 8 and u = 1. 

For v = 208 take a T[5, 17, 40]. Add 8 points to the groups and on the first four 

groups construct a (48, 5, 17) minimal covering design and on the other 

groups construct a (48, 5, 17) covering design with a hole of size 8. Such 

design can be constructed the same as in lemma 8.2 by taking a (48, 5, 14) 

covering design with a hole size 8 and a (48, 5, 3) packing design with a hole of 

size 8 [12]. The excess graph of the (48, 5, 14) covering design with a hole of 

size 8 is a two I-factor while the complement graph of the (48, 5, 3) packing 

design is a 1-factor. Now apply theorem 3.1 to get the result. 

For v = 268 take a RGD[5, 1, 5, 65] [19] and inflate this design by a factor of 4. To 

each of 2 parallel classes of blocks size 5 add 4 points and replace their blocks 

by the blocks of a GD[5, 17, 4, 24]. On the remaining parallel classes construct a 

GD [5, 17, 4, 20]. Finally, on the groups costruct a (20, 5, 17) minimal covering 

design. It is clear that this construction yields a (268, 5, 17) covering design 

with a hole of size 8. hence, a(268, 5, 17) = 4>(268, 5, 17). 

Lemma 8.4 a(v, 5, 17) = q,(v, 5, 17) for v = 12, 32, 52, 72, 92. 

For v = 12 the construction is as follows: 

1) Take two copies of a (12, 5, 4) optimal packing design [14]. In this design 

there is one pair that appears in zero blocks while each other pair appears in 

precisely four blocks. Assume in the first copy the pair is {I, 2} and in the 

second copy the pair is {2, 3}. 

2) Take a (12, 5, 4) minimal covering design. This design has a triple, say, 

{I, 2, 3} the pairs of which appear in six blocks. 

3) Take a (12, 5, 5) minimal covering design [5]. Close observation of this 

design shows that its excess graph contains the following subgraph. 

The above three steps give us a design such that each of its pans appear in at 

least 17 blocks except the pair {2, 3} which appears in precisely 16 blocks. To 

fix this assume in the (12, 5, 4) optimal packing design we have the block (5 6 7 

2 4). In this block change 4 to 3. Furthermore, assume in the (12, 5, 4) minimal 

covering design we have the block (5 6 7 1 3). In this block change 3 to 4. It is 
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readily checked that the above construction yields a (12, 5, 17) minimal 

covering design. 

For v = 32 the construction is as follows: 

1) Take a (32, 5, 4) optimal packing design and assume that the pair 

{ 1, 3} appears in zero blocks. 

2) Take two copies of a (32, 5, 4) minimal covering design. This design has 

a triple the pairs of which appear in six blocks. Assume in the first copy the 

triple is {I, 2, 3} and in the second copy the triple is {I, 3. 4}. 

3) Take a (32, 5, 5) minimal covering design. This design has a block of size 

4, say, (1 2 3 4) [5], which we delete. 

4) Assume in the (32, 5, 4) optimal packing design we have the block (5 6 7 

3 2) and in the (32, 5, 4) minimal covering design we have the block (5 6 7 4 1). 

In the first block change 2 to 1 and in the second block change 1 to 2. Now it is 

easy to check that the above four steps yield the blocks of a (32, 5, 17) minimal 

covering design. 

For v ~ 52, in [5] we have shown that a (v, 5, 5) minimal covering design with a 

hole of size 12 or 32 exists. Hence, by invoking the previous constructions, a 

(v, 5, 17) minimal covering design exists for all v == 12 (mod 20), v ~ 52. 

In this section we have shown: 

Theorem 8.1 Let v == 0 (mod 4) be a positive integer greater than 8. Then a(v, 

5, 17) = <1> (v, 5, 17) with the possible exception of v = 28. 

9. COVERING WITH INDEX 18 

Lemma 9.1 Let v == 4 (mod 20) be a positive integer greater than 4. Then a(v, 

5, 18) = <1>(v, 5, 18). 

Proof For all v == 4 (mod 20), v ~ 24, the construction is as follows: 

1) Take two copies of a (v, 5, 4) minimal covering design and assume in 

both copies the pairs of the triple {v-2, v-I, v} appear in six blocks. 

2) Take two copies of a (v, 5, 4) optimal packing design. Assume in the first 

copy the pair {v-2, v-I} appears in zero blocks and in the second copy the pair 

{v-I, v} appears in zero blocks. 
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3) Take a (v, 5, 2) minimal covering design. It is readily checked that the 

above three steps yield a (v, 5, IS) minimal covering design for all v == 4 (mod 

20), v ;;:: 24. 

Lemma 9.2 Let v == 8 (mod 20) be a positive integer. Then a(v, 5, 18) = <\lev, 5, 

IS). 

A (v, 5, 18) minimal covering design, v == 8 (mod 20) can be constructed 

as follows: 

1) Take a (v, 5, 8) minimal covering design. This design has a triple, say, 

{a, b, c} the pairs of which appear in ten blocks [S]. 

2) Take a (v, 5, 8) optimal packing design. This design has a pair, say, {a, b} 

that appears in four blocks while each other pair appears in eight blocks [13]. 

3) Take a (v, 5, 2) minimal covering design. Simple calculation shows that 

the number of repeated pairs in this design is greater than v. If this design 

has a pair, say, {a, b} that appears at least four times, then the above three 

steps give a (v, 5, 18) minimal covering design and we are done. Otherwise, we 

may assume that the pairs {a, b} and {a, 4} appear three times where 4 is an 

arbitrary number. In this case the above three steps give a design where each 

pair appears at least 18 times except the pair {a, b} which appears only 17 

times. To have {a, b} appear at least 18 times assume in the (v, 5, 2) minimal 

covering design we have the block (1 2 3 4 a) where {I, 2, 3} are arbitrary 

numbers. In this block change a to c. 

Furthermore, assume in the (v, 5, 8) optimal packing design we have the block 

(1 2 3 b c). In this block change c to a. Now it is easy to check that the above 

construction yields a (v, 5, 18) minimal covering design. 

Lemma 9.3 a(v, 5, 18) = <\lev, 5, IS) for v = 12, 32, 52, 72, 92. 

Proof The construction of these minimal covering designs is as follows: 

1) Take a (v, 5, 11) optimal packing design [10]. Close observation of these 

designs shows that their complement graphs are I-factor. 

2) Take a (v, 5, 7) minimal covering design. Close observation of these 

designs shows that their excess graphs contain a sub graph that is I-factor. 

But <\lev, 5,7) + ",(v, 5, 11) = <\lev, 5, 18), hence, by theorem 3.1, a(v, 5, 18) = <\lev, 5, 

IS). 
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Lemma 9.4 Let v == 12 (mod 20) be a positive integer. Then (X(v, 5, 18) = <I>(v, 5, 

18). 

Proof For v = 12, 32, 52, 7.2, 92 the result follows from lemma 9.3. For v ;:: 112 

the proof is the same as that of lemma 6.5. 

In this section we have shown: 

Theorem 9.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 18) = <I>(v, 5, 18). 

10. COVERING WITH INDEX 19 

Lemma 10.1 Let v == 0 (mod 4) be a positive integer greater than 4. Then a(v, 

5, 19) = <I>(v, 5, 19). 

The blocks of a (v, 5, 19) minimal covering design, v == 4, 8 or 12 (mod 

20), v ::/! 44, are the blocks of a (v, 5, 6) and a (v, 5, 13) minimal covering design. 

Since a (44, 5, 13) minimal covering design is still unknown, we need to 

construct a (44, 5, 19) minimal covering design. For this purpose, let X = Z44, 

then take the following base blocks under the action of the group Z 44' 

(0 1 2 4 8) 5 times, (0 3 12 19 32) 5 times, (0 5 14 26 31) 5 times 

(0 6 14 23 33) 5 times, (0 1 3 18 25) 4 times, (0 4 14 23 28) 4 times 

(0 6 13 24 36) 4 times, (0 1 4 10 32) (0 1 3 9 13) (0 2 16 24 29) 

(05 11 2234) (0 1 2517) (0 1 3511) (03 92533) (04 15 2231) 

(0 5 13 22 34). 

In this section, we have shown: 

Theorem 10.1 Let v == 0 (mod 4) be a positive integer greater than four. Then 

(X(v, 5, 19) = <I>(v, 5, 19). 

11. COVERING WITH INDEX 21 
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Since covering design with index one and v == 0 (mod 4), v ~ 8, is far from 

being settled, it is worth looking at covering designs with index 21 and v == 0 

(mod 4). 

Lemma 11.1 There exists a (v,S, 12) minimal covering design for all v == 4 (mod 

20) such that the excess graph consists of v-4 isolated vertices and the 

following graph on the remaining four vertices. 

v-3 ~ v-2 

9 ~ v-I 

Proof For all v == 4 (mod 20) v ~ 24 the construction is as follows. 

1) Take a (v,5,4) optimal packing design [ 14 and assume that the pair {9, v-

2} appears in zero blocks. 

2) Take two copies of a (v,5,4) minimal covering design [ 8 ,11]. This design 

has a triple the pairs of which appear in six blocks. Assume that in the first 

copy the triple is {9, v-I, v-2} and in the second copy the triple is 

{9, v-2, v-3}. 

Lemma 11 2 (a) There exists a (24, 5, 21) covering design with a hole of size 4. 

(b) <x(v, 5, 21) = <1>(v, 5, 21) for v = 24, 44, 64, 84. 

Proof 

(a) For a (24, 5, 21) covering design with a hole of size 4 proceed as 

follows: 

1) Take a (24, 5, 5) covering design with a hole of size 4, [5]. 

2) Take four copies of a (23, 5, 2) packing design with a hole of size 3, 

[8] . 

3) Take eight copies of a B[25, 5, 1] and in each copy assume we have the 

block (21 22 23 24 25) which we delete and in all other blocks we change 25 to 

24. 

(b) For v = 24, let x=Z20UH4' Then the blocks are: 

1 ) (h 1 h2 h3 h4 ) 

2) Adjoin a point "00" to X and on Xu{oo} costruct 12 copies of a B[25, 5,1] 

such that (h 1 h2 h3 h4 00) is a block, which we delete. In the first 3 copies of 
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B[25, 5, 1] replace "00" by hI, in the second 3 copies replace "00" by h2, in the 

third 3 copies replace "00" by h3 and in the last 3 copies replace "00" by h 4' 

3) Furthermore, take the following base blocks under the action of the 

group Z20' 

(048 12 I6)+i, ie Z4' three times. 

(0 hI h2 h3 h4) (0 1 2 3 7) (0 1 3 10 13) (0 2 6 10 15) (0 1 2 7 10) 

(0 2 7 11 14) (0 1 2 4 hI) (0 1 4 10 h2) (0 2 7 15 h3) (0 3 8 14 h4) 
4 

(03914)u{hi}i=1' 

For v = 44, 64, 84 the construction is as follows: 

1) Take a (v-I, 5, 1) minimal covering design with a hole of size 3, say, {v-3, 

v-2, v-I}, [26]. The excess graph of these designs contain a sub graph which is 

I-factor on v-4 points. In addition to the I-factor,assume that {4,5} appears one 

more time. Furthermore, assume in this design we have the block (1 2 3 9 v-I) 

where {l, 2, 3, 9} are arbitrary numbers. In this block change v-I to v. 

2) Take a B[v+l, 5, 1] and assume in this design we have the block 

(1 2 3 v v+ 1). In this block change v+ 1 to v-I and in all other blocks change v+ 1 

to v. 

3) Take a (v-2, 5, 1) optimal packing design, [12]. The complement graph of 

this design is a I-factor. We may assume that the I-factor contains (v-3, v-2) 

and another <V;4) pairs on the remaining v-4 points. Furthermore, we may 

assume that these <V;4) pairs of the I-factor are precisely the I-factor in the 

excess graph of the design in (1). 

4) Take a B[v+I, 5, 1] and assume we have the block (1 2 3 v v+l) where {I, 2, 

3} are arbitrary numbers. In this block change v+ 1 to v-I and in all other 

blocks change v+ 1 to v. 

5) Again take a B(v+l, 5, 1] and assume we have the block (1 2 3 v-I v+l). In 

this block change v+ 1 to v and in all other blocks change v+ 1 to v-I. 

6 ) Take a (v, 5, 4) optimal' packing design [14]. In this design each pair 

appears exactly 4 times except one pair, say, {v-I, v} which appears in zero 

blocks. 

7) Take a (v, 5, 12) minimal covering design such that its excess graph is 

the same as in lemma 11.1. 
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The above seven steps gives us a design such that the pair {v-3, v-I} appears 

twenty times {4,5} {9,v-3}, {9,v-I}, {v-2, v-I} at least twenty two times and 

each other pair appears at least twenty one times. 

To have (v-3, v-I) appear twenty one times assume in designs (1) and (2) we 

have the blocks <a b c 5 v-3> <a b c 9 v-I> where {a b c} are arbitrary numbers. 

In the first block change v-3 to 9 and in the second block change 9 to v-3. But 

in this case the pair {5, v-3} appears only twenty times. To fix this, assume in 

design (4) and (5) we have the blocks <d e f 5 4> and <d e f v-3 9> where {d e f} 

are arbitrary numbers. In the first block change 4 to v-3 and in the second 

block change v-3 to 4. 

For all other values of v, the proof is the same as lemma 5.2. 

Lemma 11.3 Let v == 8 or 12 (mod 20) be a positive integer. Then a(v, 5, 21) = 

<I> (v, 5, 21). 

Proof For v == 8 (mod 20) the blocks of a (v, 5, 21) minimal covering design are 

the blocks of a (v, 5, 13) and (v, 5, 8) minimal covering design. 

For v == 12 (mod 20) the blocks of a (v, 5, 21) minimal covering design are the 

blocks of a (v, 5, 16) and (v, 5, 5) minimal covering design. 

In this section we have shown: 

Theorem 11.1 Let v == 0 (mod 4) be a positive integer. Then a(v, 5, 21) = <I>(v, 5, 

21 ). 

12. CONCLUSION 

To conclude our result, we have shown (theorem 4.1 - theorem 11.1) that a(v, 5, 

A.) = <I>(v, 5, A.) for all v == 4 (mod 20), v == 0 (mod 4), v > 4, provided 11 :::;; A. :::;; 21 with 

the possible exceptions of (v, A.) = (44, 13), (28, 17), (44, 17). 
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