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Abstract. Let G be a graph. An edge subversion strategy of G is a set of edges
T in G whose incident vertices are deleted from G. The survival-subgraph is de-
noted by G/T. The edge-neighbor-integrity of G. ENI(G). is defined to be ENI(G)
=T8?Ei(ncn {|IT| + w(G/T)}, where T is any edge subversion strategy of G.and w(G/T)

is the maximum order of the components of G/T. In this paper. we find the lower
and upper bounds of ENI for all graphs related to some well-known graphic pa-
rameters. and we also discuss some properties of the graphs with ENT equal to the

bounds.

I. Introduction

The integrity and the edge-integrity were introduced by Barefoot, Entringer.
and Swart as a measure of the vulnerability of graphs to disruption caused by the
removal of vertices or edges. [1.2] Goddard and Swart investigated further the
bounds aud properties of the integrity of the graphs. [8]

A spy network can be modeled by a graph whose vertices represent the stations
and whose edges represent the lines of communication. If a station is destroyed.
the adjacent stations will be betrayed so that the betrayed stations become useless
to network as a whole. [9]  Therefore instead of considering the integrity of a
communication graph. in [6.7] we discussed the vertex-neighbor-integrity of graphs
— & measure of the vulnerability of graphs to disruption caused by the removal
of vertices and all of their adjacent vertices. Similarly, we can consider the edge
analogue of {vertex )-neighbor-integrity — a measure of the vulnerability of graphs
to disruption caused by the removal of edges, their incident vertices, and all of their
incident edges. [4]

Let G = (V.E) be a graph. The integrity of G. I(G), is defined to be
I(G)= mi - S)},
(G) Sg;FG){}SI+m(G S)},

where m(G — S) is the maximum order of the components of G—S. A subset S’ of
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V is called an I-set of G if I(G) = |S'| + m(G = S'). The edge-integrity of G, I'(G),
is defined to be .
I'(G)= min {|T|+m(G-T)}.
TCE(G)

A subset T of E is called an I'-set of G if I'(G) = |T'| + m(G = T').

Let u be a vertex in G. N(u) = {v € V(G)|v # u, v and u are adjacent} is
the open neighborhood of u, and N[u] = {u} UN(u) denotes the closed neighborhood
of u. A vertex u in G is said to be subverted if the closed neighborhood N[u] is
deleted from G. A set of vertices S = {uy,us, ..., un } is called a vertez subversion
strategy of G if each of the vertices in S has been subverted from G. Let G/S be the
survival-subgraph when S has been a vertex subversion strategy of G. The closed
neighborhood of a wertez subset S, N[S], is UyesN[u]. Hence G/S = G-N[§] =
G—(UyesN[u]). The vertez-neighbor-integrity of a graph G, VNI(G), is defined to
be S

VNI(G) = Sg}(nG){ISI +w(G/9)},
where S is any vertex subversion strategy of G, and w(G /S) is the maximum order
of the components of G/S. A subset §* of V is called a VNI-set of G if VNI(G) =
|S*| 4+ w(G/S™).

Let e = [v,w] be an edge in G. The edge ¢ = [v,w] is said to be subverted if
the edge e, all of its incident edges, and the two ends of ¢, v and w, are removed
from G. (For simplicity, an edge ¢ = [v,w] is subverted if the two ends of the edge
e. v and w. are deleted from G.) A set of edges T = {e1,€2,...,€r} is called an edge
subversion strategy of G if each of the edges in T has been subverted from G. Let
G/T be the survival-subgraph when T has been an edge subversion strategy of G.
The edge-neighbor-integrity of a graph G, ENI(G), is defined to be

ENI(G) = min {IT] +w(G/T)},

where T is any edge subversion strategy of G, and w(G/T) is the maximum order
of the components of G/T. A subset T* of E is called an ENI-set of G if ENI(G) =
IT*| +w(G/T").

[2] is the smallest integer greater than or equal to . |z] is the greatest integer
less than or equal to z.

Example 1.1: K; ,,-;, where n > 3, is a star. By the definitions, it is clear that
Ky 1) =2, I'(Kj n1) = n, VNI(K; 1) = 1, and ENI(K; 1) = 2.

Example 1.2: P,, where n > 2, is a path with n vertices. We have known
that I(P,) = [2v/n +1] — 2 (ref. [1]), I'(Pn) = [2y/n] =1 (zef. [1]), VNI(Pn) =
[2v/n + 3] — 4 (vef. [6]), and ENI(P,) = [2v/n + 2] — 3 (ref. [4]).
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Example 1.3: K,, where n > 1, is a complete graph. It is clear that I(K,) =
(K,) = n. VNI(K,) = 1, and ENI(K,) = [n/2].

In Section III and Section IV, we find the lower and upper bounds of ENT for all
graphs related to some well-known graphic parameters. (Hence for the completeness
of the paper, we present the related graphic parameters and properties in Section
II.) Furthermore, we discuss some properties of the graphs with ENI equal to the
bounds.

II. Related Graphic Parameters and Basic Properties

In this section, we present the related graphic parameters and some basic prop-
erties. All other undefined terminology and notations are taken from [3].

Let G = (V.E) be a graph and T = {e1,€2,...,¢,} be a subset of E. T is called
an edge cut strategy of G if the survival-subgraph G/T is disconnected, or is a
single vertex, or is . The edge-neighbor-connectivity of G, A(G), is defined to be
the minimum size of all edge cut strategies T of G. [5]

A subset C of V is called a covering of G if every edge of G has at least one end
in C. A covering C is a minimum covering if G has no covering C' with [C'| < |C|.
The covering number of G, ao(G), is the number of vertices in a minimum covering

of G.

A subset I of V is called an independent set of G if no two vertices of I are
adjacent in G. An independent set I is maximum if G has no independent set r
with |I'| > |I|. The independence number of G, 34(G), is the number of vertices in
a maximum independent set of G.

A subset M of E is called a matching in G if no two edges of M are incident
in G. A matching M is maximum if G has no matching M’ with |M'| > |[M|. Let
51(G) be the number of edges in a maximum matching in G.

A subset L of E is called an edge covering of G if each vertex of G is an end of
some edge in L. An edge covering L is a minimum edge covering if G has no edge
covering L’ with |L'| < |L|. The edge covering number of G, a1(G), is the number
of edges in a minimum edge covering of G.

The following properties will be used later.

Lemma 2.1: For any graph G, ao(G) + 5u(G) = |V(G)|. [3]
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Lemma 2.2: For any graph G, 51(G) < ao(G). [3]

Lemma 2.3: Let G = (V.E) be a graph, and T be an edge subset of E. Then
A(G) < A(G/T) + |T}. [8]

Lemma 2.4: Let G = (V.E) be a graph. Then A(G) < ||V]/2]. [5]
Lemma 2.5: Let G = (V.E) be a graph, and T* be an edge subset of E. Then
ENI(G) < ENI(G/T") + |T*|.
Proof: Let T' be an ENIset of G/T* and T** = T' U T*, then |T**| = |T'| + |T"|
and G/T* = G/(T'UT*) = (G/T")/T".

= 1 T )

ENI(G) = min {ITI+w(G/T)}

< IT |+ w(G/T™)

= T + |T* + w((G/T")/T")

=ENI(G/T") + |T*|. QED.

ITI. Lower Bounds of Edge-Neighbor-Integrity

For any graph G = (V,E), A(G), VNI(G), and [I(G)/2] are all lower bounds
of ENI(G).

Lemma 3.1: Let G = (V,E) be a graph and T* be an ENI-set of G. Then T* is
an edge cut strategy of G.

Proof: If G is complete and T* is an ENI-set of G, then G/T* is a single vertex or
0. Hence T* is an edge cut strategy of G.

If G is incomplete and T* is an ENI-set of G, we assume that T* is not an edge
cut strategy of G. So G/T* is a connected graph with [V(G/T")| > 2. Then there
is an edge ¢ in G/T* and w(G/T*) > w(G/(T" U{e})) + 2. Since T* U {e} is an
edge subset of E(G), we have

ENI(G)= min |T|+w(G/T)
TCE(G)
=|T*| + w(G/TY)
> T +w(G/T" U {e})) +2
= |T*U{e}| +w(G/(T U {e})) + 1
> ENI(G) +1 > ENKG),
a contradiction. Therefore T* is an edge cut strategy of G.  QED.
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Theorem 3.2: For any graph G = (V,E), A(G) < ENI(G).

Proof: Let T* be an ENI-set of G. By Lemma 3.1, T* is an edge cut strategy of
G, so A(G) < |T* < |T*|+ w(G/T") = ENI(G). QED.

Corollary 3.3: For any graph G = (V,E), if ENI(G) = A(G), then every ENI-set
T* of G is a minimum edge cut strategy of G and G/T*=0.

Proof: Let T* be an ENI-set of G. By Lemma 3.1, T* is an edge cut strategy of
G, so A(G) < |T*|.

Since ENI(G) = A(G), we have A(G) = |T¥| +w(G/T"), and |T*| < A(G).
Therefore |T*| = A(G) and w(G/T") = 0. That is, T* is a minimum edge cut
strategy of G and G/T*=0. QED.
Theorem 3.4: For any graph G = (V,E), VNI(G) < ENIG).

Proof: Let T* = {[uy,v1}, [u2, va], -y [ur, v,]} be an ENI-set and S* be a set of one
end of each edge in T*. Then |S*| < |T*| and {uy, ug, ..., up, V1, 2, ...,ur.} © N[S*].
Thus G/S* = G — N[S*] C G — {u1,uz, ..., up, 01, V2, v} = G/T", and

IS*] + w(G/S™) < |T*| + w(G/T") = ENI(G). Therefore

VNI G) = sg’/i&;)“& +w(G/9)} <|S*| +w(G/S*) <ENI(G). -~ QED.

Corollary 3.5: If ENI(G) = VNI(G), then every ENL-set T* of G must be a
matching in G.

Proof: Let T* = {[u1,v1], [uz,v2], ..., [ur, vr]} be an ENI-set of G. Assume that T*
is not a matching, so w.Lo.g., let u; = ug, for some j # k, and S*={u;|[ui, vi] €
T*, where i = 1,2,...,7}, so |S*| < |T*| = r, and {ug, g, oy tip, V1,02, .0, Ur ) C

N[S"].
VNI(G) = Sénvi(%) {IS] +w(G/S)}

< |S*] + w(G/S")

=|S*| +m(G — N[S™])

< IS*| 4+ m(G — {ug, Uz, ooy Uy, V1,02, s V7 })
< |T*| 4+ w(G/T") = ENI(G),

a contradiction. Therefore T* must be a matching in G.  QED.

The converse of the above corollary is not true, see the following example:

Example 3.1: Let Cs = (V.E), where V = {v;]1 <1 < 6}, and E = {e;le; =
[vi,vi41),1 <@ < 6, the addition is taken modulo 6}.
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T, = {61,64}7 T, = {Gzﬁes}a T = {53&36}» Ty = {61783,65}, and Ts =
{eq,e4.¢6} are all ENI-sets of G, and Ty, Ty, T3, T4, and T are matchings in G.
But VNI(G) = 2 # ENKG) = 3.

Theorem 3.5: For any graph G = (V,E), [[(G)/2] < ENI(G).

Proof: Let T*={[uy,v1],[us, 03], .., [ur,vr]} be an ENIset of G, so ENI(G) =
IT* +w(G/T") = r+w(G/T"). Let S*= {uy, ug,..., up,v1, V2, ..., vy }. Since T* may
not be a matching in G, |S*| < 2r.

G) =Sg_nvi<ré){lsl+m(G—S>}
<|S*|+m(G —S*)
<2r +w(G/T)
< 2r +w(G/T")) = 2. ENI(G).

Therefore [I(G)/2] < ENI(G). QED.
IV. Upper Bounds of Edge-Neighbor-Integrity

The integrity and the edge—integfity are upper bounds of the edge-neighbor-
integrity as described below:

Theorem 4.1: For any graph G = (V,E), ENI(G) < I(G) < I'(G).
Proof: It is easy to obtain I(G) < I'(G). [2]
If G is complete, then ENI(G)=[|V|/2] < |V|=I(G).

Now we assume that G is incomplete and let $* = {uy,us,...,u,} be an I-set
of G. Then S* is a vertex cut-set of G (ref. [8]), and u;, where 1 <7 < r, is not
an isolated vertex of G. Let T* = {[u;,v;] € E(G)| for some vertex v; € V,u; €
S*, where i =1,2,..,7}, then |T*| = |S*| =r.

G/T"=G - {ul,uz, ey Upy V1 Vg, e Up b
=G - (S*U {U,‘ (S V(G)|[uz,vz] € T* u; € S*}) CcG-5%

and hence w(G/T") < m(G — S*).

ENIG) = min {|T|+(G/T)}

ST+ w(G/T7)
<[S*+m(G —S*) =1(G). QED.
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Lemma 4.2: Let G = (V,E) be a graph. Then I[(G) < I(G — Sy) + [S1], for any
vertex subset S; C V.

Proof: Let S* be an I-set of G—S;. Then
[(G)= JSn {ISI+m(G = 8)}
<IS1US* +m(G —(S; USY))
=[S;| 4+ [S*| + m((G —S;) ~ S*)
=[S:|+ KG ~5y). QED.

We can improve the upper bound of ENI(G), I(G), as described below. Let S
be an I-set of G, and M = {ey,€q,...,¢,} be a maximum matching in < S >, the
induced subgraph of G by S. Then we have the following theorem.

Theorem 4.3: For any graph G = (V.E), ENI(G) < I(G) —r.

Proof: Let e; = [u;,v;], where u;,v; are in S, ¢ = 1,2,,3,...,7. Let 8’ =S —
{u17u27"‘7 ur7v17U27"'7vT}'

G—S=G~—(SU{ur,uz, .y, 01,02, ...;0r })
= (G — {uq, g, s Uy, 01, V2, oy 0,}) — S’ = (G/M) = S'.
Since S is an I-set of G, I(G)=|S| + m(G — S) = |S'| + 2r + m((G/M) = §').

I(G/M) = I(G _ {ul,’U,z, ey Up, V1, V2, ...,?)T})
>1(G)—2r (by Lemma 4.2)
= [S'[ + m((G/M) = §') 2 I(G/M).

Hence I(G/M)=|S'| + m((G/M) — S'), and S' is an I-set of G/M.

ENI(G) < ENI(G/M) +r (by Lemma 2.5)
<IHG/M)+r (by Theorem 4.1)
=18+ m((G/M) —=S") +r
~1(G) -1 QED.

Corollary 4.4: Let G = (V,E) be a graph. If ENI(G) = I(G), then the induced
subgraph of G, < S >, must be a null graph, where S is an I-set of G.

Proof: Let S = {v1,v2,...,v,} be an I-set of G. If there is an edge in < S >, then
by Theorem 4.3, ENI(G) < I(G) — 1, a contradiction. Therefore < S > must be a
null graph.  QED.
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The converse of the above corollary is not true, as shown in the following
example: :

Example 4.1: The graph G is shown in Figure 4.1. S = {a,b,c} is an L-set
of G. I(G) = S|+ m(G —S) =3+2 =5 T = {er, ez} is an ENI-set of G.
ENI(G)=|T| + w(G/T) =2+ 1 =3 <S> is anull graph with 3 vertices, but
ENI(G) # I[(G).

€2

Figure 4.1

Next we describe the relationships between the edge-neighbor-integrity and the
graphic parameters, ag, a1, fo, and f1.

Theorem 4.5: For any graph G = (V,E), ENI(G) < a:1(G).

Proof: Let L be a minimum edge covering of G. Since each vertex of G is an end
of some edge in L, G/L=0 and w(G/L) = 0. Hence

ENI(G) = min, {ITI+w(G/T)}

< LI +w(G/L) = a1(G). QED.

Theorem 4.6: For any graph G = (V,E), ENI(G) < 51(G) + 1.

Proof: Let M be a maximum matching in G. G/M=0 or a set of isolated vertices,
since otherwise we may get a matching with the size larger than [M|. Thus,

ENI(G) = min_ {/T|+(G/T)}
< M| +w(G/M) < 2(G) +1. QED.

By the above theorem, it is easy to get an upper bound, [|[V(G)|/2], of the
edge-neighbor-integrity.
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Corollary 4.7: For any graph G = (V,E), ENI(G) < [|V|/2].
Proof: Let M be a maximum matching, so M| = $1(G) < |[V]/2].

(i) If 3;1(G) = [|V]/2], then G/M = @ (if [V] is even), or a single vertex (if |V| is
odd), and

ENI(G) < M|+ w(G/M)

{ L%LJ = [D-Z/l], if [V] is even;

(M) 1= [, i V] s odd.
(ii) If 41(G) < ||V]/2], then by Theorem 4.6,

ENIG) < (G + 1< |1 +1
Therefore

ENI(G) < LMJ < [—2—1. QED.

Theorem 4.8: For any graph G = (V.E), ENI(G) < ao(G) + 1.
Proof: By Lemma 2.2 and Theorem 4.6, we obtain that ENI(G)< ag(G)+1. QED.

~ As described above, a1, ag + 1. and 3 + 1 are upper bounds of ENI. However,
the independence number, fy, has no such a relationship with ENL See the following
examples:

Example 4.2: K, is a complete graph with n vertices. o(K,) =1 and ENI(K,) =
/2], ENI(Kn) > fo(Kn) + 1 > fo(Kn), if n > 5.

Example 4.3: K; 1, where n > 3, isastar. fo(Kyn-1)=n-1 and ENI(K; ,—1)
= 2. ENI(Kj n-1) < Bo(Kin-1) < fo(Kin-1)+1,ifn >4

Example 4.4: K, ,, is a complete bipartite graph with a bipartition (X,Y), where
IX| =n and |Y| = m. Go(K, m) = max(n,m) and

n=m = Go(Kpnm), ifn=m;

ENI(K, ,,) =
min(n.m)+1< Bo(Knm)+1, ifn#m

Example 4.5: ENI(C7) = 4 = §o(Cr) + 1.
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