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Abstract. Let G be a graph. An edge subversion strategy of G is a set of edges 
T in G \vhose incident vertices are deleted from G. The survival-subgraph is de­
noted by G IT. The edge-neighbor-integrity of G. ENI( G). is defined to be ENI( G) 
= min {ITI + w'( G/T)}, where T is anv edge subversion strategv of G. and w'( G/T) 
T~E(G) • • 

is the maximum order of the components of G IT. In this paper. we find the lower 
and upper bounds of ENI for all graphs related to some well-known graphic pa­
rameters. and we also discuss some properties of the graphs with ENI equal to the 
bounds. 

I. Introduction 

The integrity and the edge-integrity were introduced by Barefoot. Entringer. 
and Swart as a measure of the yulnerability of graphs to disruption caused by the 
removal of vertices or edges. [1.2] Goddard and Swart investigated further the 
bounds and properties of the integrity of the graphs. [8] 

A spy network can be modeled by a graph whose vertices represent the stations 
and whose edges represent the lines of communication. If a station is destroyed. 
the adjacent stations will be betrayed so that the betrayed stations become useless 
to network as a whole. [9] Therefore instead of considering the integrity of a 
communication graph. in [6.7] we discussed the vertex-neighbor-integrity of graphs 

a measure of the vulnerability of graphs to disruption caused by the removal 
of vertices and all of their adjacent vertices. Similarly. we can consider the edge 
analogue of (vertex )-neighbor-integrity - a measure of the vulnerability of graphs 
to disruption caused by the removal of edges. their incident vertices, and all of their 
incident edges. [4] 

Let G = (V ,E) be a graph. The integrity of G. I( G ), is defined to be 

I(G) = min {lSI + m(G S)}, 
S~V(G) 

where nd G S) is the maximUlTl order of the components of G-S. A subset S' of 
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V is called an I-set of G if I(G) = IS'I + m(G - S'). The edge-integrity of G, I'(G), 
is defined to be 

I'(G) = min {ITI + m(G T)}. 
T~E(G) 

A subset T' ofE is called an I'-setofG ifI'(G) = IT'I +m(G T'). 

Let 'U be a vertex in G. N(u) = {v E V(G)lv f=. u, v and u are adjacent} is 
the open neighborhood of u, and N[u] = {u} U N( u) denotes the closed neighborhood 
of u. A vertex u in G is said to be subverted if the closed neighborhood N[u] is 
deleted from G. A set of vertices S = {UI' U2, ... , urn} is called a vertex subversion 
strategy of G if each of the vertices in S has been subverted from G. Let GjS be the 
s'urvival-subgraph when S has been a vertex subversion strategy of G. The closed 
neighborhood of a vertex s'ubset S, N[SL is UuEsN[u]. Hence GjS = G-N[S] = 
G-(UuEsN[u]). The vertex-neighbor-integrity of a graph G, VNI( G), is defined to 
be 

VNI(G) = min {lSI +w(GjS)}, 
S~V(G) 

where S is any vertex subversion strategy of G, and w( G jS) is the maximum order 
of the components of GjS. A subset S* of V is called a VNI-set of G if VNI(G) = 
IS*I +w(GjS*). 

Let e [v, w] be an edge in G. The edge e [v, w] is said to be subverted if 
the edge e, all of its incident edges, and the two ends of e, v and w, are removed 
from G. (For simplicity, an edge e = [v, w] is subverted if the two ends of the edge 
e, v and w, are deleted from G.) A set of edges T = {el' e2, .. " e r } is called an edge 
s'ubversion strategy of G if each of the edges in T has been subverted from G. Let 
GjT be the survival-subgraph when T has been an edge subversion strategy of G. 
The edge-neighbor-integrity of a graph G, ENI( G L is defined to be 

ENI(G) = min {ITI + w(GjT)}, 
T~E(G) 

where T is any edge subversion strategy of G, and w(GjT) is the maximum order 
of the components of GjT. A subset T* of E is called an ENI-set of G if ENI(G) = 
IT*I +w(GjT*). 

f x 1 is the smallest integer greater than or equal to x. l x J is the greatest integer 
less than or equal to x, 

Example 1.1: KI,n-I, where n 2 3, is a star. By the definitions, it is clear that 
I(KI,n-l) 2, I'(KI,n-l) = n, VNI(KI,n-l) = 1, and ENI(KI,n-r} = 2. 

Example 1.2: P n, where n 2 2, is a path with n vertices, We have known 
that I(Pn ) f2Vn+T1 - 2 (ref. [1]), I'(Pn) = f2y'nl - 1 (ref. [lD, VNI(Pn) = 
f2vn + 31 - 4 (ref. [6]), and ENI(Pn ) = f2vn + 21 - 3 (ref. [4]). 
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Example 1.3: K n , where n ~ 1, is a complete graph. It is clear that I(Kn) 
I'(Kn ) = n. VNI(Kn) = 1, and ENI(Kn ) = fn/2l 

In Section III and Section IV, we find the lower and upper bounds of ENI for all 
graphs related to some well-known graphic parameters. (Hence for the completeness 
of the paper, we present the related graphic parameters and properties in Section 
II.) Furthermore, we discuss some properties of the graphs with ENI equal to the 
bounds. 

II. Related Graphic Parameters and Basic Properties 

In this section, we present the related graphic parameters and some basic prop­
erties. All other undefined terminology and notations are taken from [3]. 

Let G (V,E) be a graph and T = {el. C-2, ... , er } be a subset of E. T is called 
an edge cut strategy of G if the survival-subgraph G/T is disconnected, or is a 
single vertex, or is 0. The edge-neighbor-connectivity of G, A(G), is defined to be 
the minimum size of all edge cut strategies T of G. [5] 

A subset C of V is called a covering of G if every edge of G has at least one end 
in C. A covering C is a minimum covering if G has no covering C' with IC'I < Ic!· 
The covering number of G, ()I 0 ( G), is the number of vertices in a minimum covering 
of G. 

A subset I of V is called an independent set of G if no two vertices of I are 
adjacent in G. An independent set I is maximum if G has no independent set I' 
with WI > III. The independence number of G, /3o(G), is the number of vertices in 
a maximum independent set of G. 

A subset M of E is called a matching in G if no two edges of M are incident 
in G. A matching M is maximum if G has no matching M' with IM'I > IMI. Let 
81 (G) be the number of edges in a maximum matching in G. 

A subset L of E is called an edge covering of G if each vertex of G is an end of 
some edge in L. An edge covering L is a minimum edge covering if G has no edge 
covering l' with 11'1 < ILl. The edge covering number of G, D:l(G), is the number 
of edges in a minimum edge covering of G. 

The following properties will be used later. 

Lemma 2.1: For any graph G, D:o(G) + Po(G) = IV(G)I. [3] 
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Lemma 2.2: For any graph G, 81 (G) S; o:o( G). [3] 

Lemma 2.3: Let G = (V,E) be a graph, and T be an edge subset of E. Then 
A(G) S; A(G/T) + ITI. [5} 

Lemma 2.4: Let G = (V,E) be a graph. Then A(G) S; lIVI/2J. [5] 

Lemma 2.5: Let G = (V,E) be a graph, and T* be an edge subset of E. Then 
ENI(G) S; ENI(G/T*) + IT*I· 

Proof: Let T' be an ENI-set of G/T* and T** = T' U T*, then IT**I = IT'I + IT*I 
and G/T** = G/(T' U T*) = (G/T*)/T'. 

ENI(G)= min {ITI+w(G/T)} 
T~E(G) 

S; IT**I +w(G/T**) 

= IT'I + IT*I +w((G/T*)/T') 

= ENI(G/T*) + IT*I. QED. 

III. Lower Bounds of Edge-Neighbor-Integrity 

For any graph G = (V,E), A(G), VNI(G), and fI(G)/21 are all lower bounds 
of ENI(G). 

Lemma 3.1: Let G = (V,E) be a graph and T* be an ENI-set of G. Then T* is 
an edge cut strategy of G. 

Proof: If G is complete and T* is an ENI-set of G, then G/T* is a single vertex or 
0. Hence T* is an edge cut strategy of G. 

If G is incomplete and T* is an ENI-set of G, we assume that T* is not an edge 
cut strategy of G. So G/T* is a connected graph with IV(G/T*)I ;::::: 2. Then there 
is an edge e in G/T* and w(G/T*) ;::::: w(G/(T* U {e})) + 2. Since T* U {e} is an 
edge subset of E( G ), we have 

ENI(G) = min ITI + w( G/T) 
T~E(G) 

= IT*I +w(G/T*) 

;::::: IT*I +w(G/(T* U {e})) + 2 

= IT* U {e}\ +w(G/(T* U {e})) + 1 

;::::: ENI(G) + 1 > ENI(G), 

a contradiction. Therefore T* is an edge cut strategy of G. QED. 
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Theorem 3.2: For any graph G = (V,E), A(G) :::; ENI(G). 

Proof: Let T* be an ENI-set of G. By Lemma 3.1, T* is an edge cut strategy of 
G, so A(G) :::; IT*I :::; IT*I + w(G/T*) = ENI(G). QED. 

Corollary 3.3: For any graph G = (V,E), if ENI(G) = A(G), then every ENI-set 
T* of Gis a minimum edge cut strategy of G and G/T*=0. 

Proof: Let T* be an ENI-set of G. By Lemma 3.1, T* is an edge cut strategy of 
G, so A(G) :::; IT*I. 

Since ENI(G) = A(G), we have A(G) = IT*I +w(G/T*), and IT*I :::; A(G). 

Therefore IT*I = A(G) and w(G/T*) = O. That is, T* is a minimum edge cut 
strategy of G and G/T*=0. QED. 

Theorem 3.4: For any graph G = (V,E), VNI( G) :::; ENI( G). 

Proof: Let T* = {[UI, vd, [U21 V2], ... , [u r , vr ]} be an ENI-set and S* be a set of one 
end of each edge in T*. Then IS*I :::; IT*I and {UI 1 U2, .... , U r , Vl, U2, ... , Vr } ~ N[S*]. 
Thus G/S* = G - N[S*] ~ G - {UI' U2, ... , Un VI, V2, ... , Vr } = G/T* 1 and 
IS*I +w(G/S*):::; IT*I +w(G/T*) = ENI(G). Therefore 

VNI(G) = min {lSI +w(G/S)}:::; IS*I +w(G/S*):::; ENI(G). QED. 
S~V(G) 

Corollary 3.5: If ENI(G) = VNI(G), then every ENI-set T* of G must be a 
mat ching in G. 

Proof: Let T* = {[UI, VI], [U21 V2], ... , [U r1 v r ]} be an EN I-set of G. Assume that T* 
is not a matching, so w.l.o.g., let 'Uj = Uk, for some J' =I- k, and S*={uil[Ui,Vi] E 
T*, where i = L2, ... ,r}, so IS*I < IT*I = r, and {UI,U2, ... ,Ur ,Vl,V2, ... ,Vr } ~ 
N[S*]. 

VNI(G) = min {lSI + w(G/S)} 
S~V(G) 

:::; IS*I + w(G/S*) 

= IS*I + m(G - N[S*]) 

:::; IS*I + meG - {UI,U2, ... ,Un Vl,V2, ... ,Vr }) 

< IT*I + (.v'( G/T*) = ENI(G), 

a contradiction. Therefore T* must be a matching in G. QED. 

The converse of the above corollary is not true, see the following example: 

Example 3.1: Let C6 = (V,E), where V = {viiI:::; i :::; 6}, and E = {eiiei = 
[Vi, Vi+l], 1 :::; i :::; 6, the addition is taken modulo 6}. 
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TI = {£I,e4}, T2 = {e2,e5}, T3 = {e3,e6}, T4 = {el,e3,ed, and T5 = 
{£2,e4,e6} are all ENI-sets ofG, and T I , T 2 , T3, T4, and T5 are matchings in G. 
But VNl(G) = 2 f=- ENl(G) = 3. 

TheoreITl 3.5: For any graph G = (V,E), il(G)/21 ~ ENl(G). 

Proof: Let T*={[UI' VI], [uz. V2], " .. [Un vrn be an ENI-set of G, so ENl(G) = 
IT*I +w(G/T*) = l' +w(G/T*). Let S*= {UI' UZ, ... , 'Un VI, VZ, "', v r }. Since T* may 
not be a matching in G, IS*I ~ 21'. 

l(G) = min {lSI + meG - S)} 
S~V(G) 

~ IS*I + meG - S*) 

~ 21' + w(G/T*) 

~ 2(1' + w(G/T*)) = 2· ENl(G). 

Therefore iI(G)/21 ~ ENl(G). QED. 

IV. Upper Bounds of Edge-Neighbor-Integrity 

The integrity and the edge-integrity are upper bounds of the edge-neighbor­
integrity as described below: 

TheoreITl 4.1: For any graph G = (V,E), ENl(G) ~ l(G) ~ l'(G). 

Proof: It is easy to obtain I( G) ~ l' (G). [2] 

If G is complete, then ENl(G)=iIVI/21 ~ IVI = l(G). 

Now we assume that G is incomplete and let S* = {UI, Uz, ... , u r } be an I-set 
of G. Then S* is a vertex cut-set of G (ref. [8]), and Ui, where 1 ~ i ~ 1', is not 
an isolated vertex of G. Let T* = {[Ui' Vi] E E(G)I for some vertex Vi E V, Ui E 
S*, where i = 1,2, ... , 1'}, then IT*I = IS*I = 1'. 

= G - (S* U {Vi E V(G)I[ui,Vi] E T*,Ui E S*}) <;;;; G - S*, 

and hence w( G /T*) ~ rn( G - S*). 

ENl(G) = min {ITI + w(G/T)} 
T~E(G) 

:::; IT*I + w(G/T*) 

:::; IS*I + meG - S*) = I(G). 
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Lemma 4.2: Let G = (V,E) be a graph. Then I(G) ~ I(G - Sd + ISll, for any 
vertex subset SI ~ V. 

Proof: Let S* be an I-set of G-S1 . Then 

I(G) = min {lSI + m(G - S)} 
S~V(G) 

~ lSI U S*I + m(G - (SI U S*)) 

= lSI I + IS*I + m((G - Sd S*) 

= ISll + I(G - Sd. QED. 

We can improve the upper bound of ENI(G), I(G), as described below. Let S 
be an I-set of G, and M = {el,e2, ... ,e r } be a maximum matching in < S >, the 
induced subgraph of G by S. Then we have the following theorem. 

Theorem 4.3: For any graph G = (V,E), ENI(G) ~ I(G) - r. 

Proof: Let ei = [Ui,Vi], where Ui,Vi are in S, -£ 1,2,,3, ... ,r. Let S' = S-
{Ul, U2, ... , 'Un VI, V2, ... , V r }. 

G - S = G - (S' U {Ul,U2, ... ,U r ,VI,V2, ... ,Vr }) 

= (G - {Ul,U2, ... ,'U r ,Vl,V2, ... ,Vr }) - S' (GjM) - S'. 

Since S is an I-set of G, I(G)=ISI + meG - S) IS'I + 2r + m((G/M) - S'). 

I(G/M) = I(G - {Ul,U2, ... ,U r ,Vl,V2, ... ,Vr }) 

~ I( G) - 2r (by Lemma 4.2) 

= IS'I + m((G/M) - S') ~ I(G/M). 

Hence I(G/M)=IS'I + m((G/M) - S'), and S' is an I-set of G/M. 

ENI(G) ~ ENI(G/M) + r (by Lemma 2.5) 

~ I( G /M) + r (by Theorem 4.1) 

= IS'I + m((G/M) - S') + r 

= I(G) - r. QED. 

Corollary 4.4: Let G = (V,E) be a graph. If ENI( G) I( G), then the induced 
subgraph of G, < S >, must be a null graph, where S is an I-set of G. 

Proof: Let S = {VI, V2, ... , v r } be an I-set of G. If there is an edge in < S >, then 
by Theorem 4.3, ENI(G) ~ I(G) - 1, a contradiction. Therefore < S > must be a 
null graph. QED. 
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The converse of the above corollary is not true, as shown in the following 
example: 

Example 4.1: The graph G is shown in Figure 4.1. S = {a, b, c} is an I-set 
of G. I(G) = lSI + m(G - S) = 3 + 2 = 5. T = {ell e2} is an EN I-set of G. 
ENI(G)=ITI + w(G/T) = 2 + 1 = 3. < S > is a null graph with 3 vertices, but 
ENI(G) =1= I(G). 

a 

G: 

c 

Figure 4.1 

Next we describe the relationships between the edge-neighbor-integrity and the 
graphic parameters, 0:0, 0:1, /30, and /31' 

Theorem 4.5: For any graph G = (V,E), ENI(G) :::; O:l(G). 

Proof: Let L be a minimum edge covering of G. Since each vertex of G is an end 
of some edge in L, G /L=0 and w( G /L) = O. Hence 

ENI(G) = min {ITI +w(G/T)} 
T~E(G) 

:::; ILl +w(G/L) = O:l(G). QED. 

Theorem 4.6: For any graph G = (V,E), ENI(G) :::; /31(G) + 1. 

Proof: Let M be a maximum matching in G. G /M=0 or a set of isolated vertices, 
since otherwise we may get a matching with the size larger than IMI. Thus, 

ENI(G) = min {ITI + w(G/T)} 
T~E(G) 

:::; IMI +w(G/M):::; /31 (G) + 1. QED. 

By the above theorem, it is easy to get an upper bound, IIV(G)I/2l, of the 
edge-neighbor-in tegri ty. 
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Corollary 4.7: For any graph G = (V,E), ENI(G) ~ flVI/2l 

Proof: Let M be a maximum matching, so IMI = (31 (G) ~ lIVI/2 J. 

(i) If (3d G) = lIVI/2J, then G /M = 0 (if IVI is even), or a single vertex (if IVI is 
odd), and 

ENI(G) ~ IMI +w(G/M) 

{ 
l J.¥l J = flfl, if IVI is even; 

= ll~IJ + 1 = fl~ll, if IVI is odd. 

(ii) If (31(G) < lIVI/2J, then by Theorem 4.6, 

ENI(G):::; pdG) + 1 < ll~IJ + 1. 

Therefore 

ENI(G) ~ ll~IJ ~ rl~ll QED. 

Theorem 4.8: For any graph G = (V,E), ENI(G) ~ ao(G) + 1. 

Proof: By Lemma 2.2 and Theorem 4.6, we obtain that ENI(G)~ ao( G )+1. QED. 

As described above, aI, ao + 1. and (31 + 1 are upper bounds of EN!. However, 
the independence number, Po, has no such a relationship with EN!. See the following 
examples: 

Example 4.2: Kn is a complete graph with n vertices. (3o(Kn) = 1 and ENI(Kn) = 
fn/2l ENI(Kn) > (3o(Kn) + 1 > (3o(Kn), if n ~ 5. 

Example 4.3: Kl,n-l, where n 2 3, is a star. (3o(Kl ,n-l) = n -1 and ENI(K1,n-l) 
= 2. ENI(Kl,n-d < f3o(K1.n-d < tJo(K1,n-d + 1, if n ~ 4. 

Example 4.4: Kn,m is a complete bipartite graph with a bipartition (X,Y), where 
IXI = nand IYI = m. tJo(Kn,m) = max(n,m) and 

{ 

n = m = f3o(K n,m), 
ENI(Kn m) = 

, min(n. m) + 1 < (3o(I{n,m) + 1, if n i- m. 

if n = m; 
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