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Abstract 

We consider local and global combinatorial constraints on embeddings of 
a simple closed curve in a rectangular array of unit squares in which the 
curve lies entirely within the rectangular array and passes through each 
unit square once. Geographical terminology is convenient to describe the 
embeddings. We study shortest segments of the embedded curve with no 
clockwise quarter turns (bays) and a prescribed number of anti clockwise 
quarter turns (headlands). We also study embeddings which either max­
imise or minimise the number of quarter turns. Enumerative questions 
related to these embeddings have recently been studied by Kwong and 
Rogers, as Hamiltonian cycles in grid graphs. 

1 Introduction 

Consider the problem of embedding a simple closed curve in an m X n rectangular 
array of unit squares so that the curve lies entirely within the rectangular array and 
passes through each unit square once (Figure 1). For simplicity we shall require 
that the curve does not pass through the corner of any of the unit squares. What 
characteristics must such an embedding have? 

The analogy with geographical maps is strong, so geographical terminology con­
veniently comes to our aid. The interior of the simple closed curve is land, the 
exterior is sea. The simple closed curve itself is coastline, outlining a continent. The 
unit squares are quadrates. The rectangular array of quadrates, with the continent in 
place, is a chart. To measure distances on our chart let us call the length of one side of 
a quadrate a league and the area of one quadrate a quad, so 1 quad = 1 square league. 
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Figure 1: A simple closed curve embedded in a 6 x 7 array of unit squares. 

The coastline within a quadrate can be one of only three essentially different 
types: when described in the positive sense, the coastline enters the quadrate through 
one side (the entrance) and emerges through one of the other three sides (the exit), 
since it cannot re-enter the quadrate it has just left (Figure 1). If the exit is on 
the left of the entrance, the coastline in the quadrate is a headland (H). If the exit 
is on the right of the entrance, the corresponding coastline is a bay (B), and if the 
exit is opposite the entrance, the corresponding coastline is a beach (5'): we choose 
the symbol S because it is a Straight Sandy Stretch of Shoreline. For simplicity we 
restrict each of these portions of coastline to be a standard smooth curve, chosen 
so that each quadrate contains one league of coastline, and a quarter quad of land 
when the coastline is a headland, a half quad of land when the quad is a beach, and 
three-quarters of a quad of land when the coastline is a b~y. 

We orient our charts so that an m X n chart has m leagues of latitude in the 
north-south direction) and n leagues of longitude (in the east-west direction). So 
that the coastline can indeed form a simple closed curve, we require m ~ 2 and 
n ~ 2. 

Three consecutive headlands can only occur if the next quadrate also contains 
a headland. The result is a continent of area 1 quad and coastline of length 4 
leagues on a 2 x 2 chart. In every larger chart, at most two headlands can occur 
consecutively. Similarly if three consecutive bays occurred on a coastline, the next 
quadrate would also have to contain a bay; this would lead to a simple closed curve 
oriented clockwise, surrounded by land and having a lake in its interior. We reject 
this possibility as being inconsistent with the chosen orientation of the simple closed 
curve, and conclude that no chart has three consecutive bays. 

For an m x n continent, the coastline can be represented as a (cyclic) word of mn 
symbols from the alphabet {B,H,S}, subject to certain restrictions which we have 
already started to notice, such as not containing the block B3, and not containing 
the block H3 if mn > 4. 

We adopt the convention that the coastline of a continent is described in the 
positive sense, usually beginning at the quadrate in the north-west corner of the 
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chart. For example, the continent in Figure 1 has coastline 

Let h) h) and s denote the number of bays, headlands and beaches in any coastline. 
The continent in Figure 1 has b = 15, h = 19, s = 8. 

2 Some fundamental properties of coastlines 

How are the parameters m) n) h) hand s related? First note that the total number 
of quadrates in an m x n chart is mn, and each contains just one bay, headland or 
beach, so 

b+ h + s mn. (1) 

We now show that this sum is even. 

Theorem 1 For any m x n chart) mn is even. 

Proof. Colour the quadrates of the chart black and white, in checkerboard fashion. 
The coastline passes alternately through black and white quadrates. Since it passes 
through every quadrate the total number mn must be even. 0 

Theorem 2 For any chart) h - b = 4. 

Proof. The winding number of a simple closed curve about an interior point is l. 
In each headland the coast makes a quarter turn anticlockwise, and in each bay a 
quarter turn clockwise, so the number of headlands must exceed the number of bays 
by 4. 0 

Theorem 2 implies h 2:: 4. Indeeed the four corner quadrates of a chart can only 
contain headlands. If these were the only headlands the coastline could not enter any 
interior quadrates, so h 2:: 5 must hold whenever m 2:: 3 and n 2:: 4. In fact h 2:: 6. 

Theorem 3 For any chart) s is even. 

Proof. From equation (1) and Theorem 2, s = mn - 2h + 4. But mn is even, by 
Theorem 1, so s is even. 0 

Thus, a continent has an even number of beaches. Also, the number of headlands 
has the same parity as the number of bays, by Theorem 2, but these numbers can 
be odd (Figure 1) or even (Figure 2). 

Theorem 4 The area of the continent in an m x n chart is ~mn 1) and the length 
of the coastline is mn leagues. 
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Proof. Summing the land area over all quadrates, the area A of the continent is 

h 3b s 
A=-+-+-. 

4 4 2 

By (1), this is 
h 

4 
Now Theorem 2 gives the stated result for the area. The length of coastline is 

immediate from the requirement that the length in each quadrate is 1 league. 0 

Theorem 5 The number of lattice points on the continent of an m x n chart is 
~mn -1 . 

Proof. Each lattice point on land is incident with 4 adjacent quadrates. A quadrate 
which is incident with x lattice points on land contains a headland, a beach or a bay 
when x 1,2 or 3 respectively, and in each case contains land of area x/4 quads. 
It follows that the total land area equals the total number of lattice points on land, 
and the claimed result follows from Theorem 4. 0 

Corollary 1 An m x n chart has Hm+2)(n+2) lattice points in the ocean, 2m+2n 
of which are on the edge of the chart. 

3 Local constraints 

Coastlines are subject to both local and global constraints. The global constraints 
correspond to restrictions on the values of b, hand s, while local constraints cor­
respond to restrictions on the strings of symbols from {B ,H ,S} which are possible 
blocks in the cyclic word for some chart. The local constraints reflect the require­
ments that the coastline must pass through every quadrate, without self-intersection. 

An admissible block is a string of symbols from {B ,H ,S} which occurs in a cyclic 
word for some chart. An admissible block is general if it occurs in the cyclic words of 
arbitrarily large charts; otherwise it is special. For example, the admissible block H2 
is general, whereas H3 is special, since it only occurs in the cyclic word H4. Again, 
the admissible block H S H S2 H S H is special, since it only occurs in the cyclic word 
HSHS2HSH2B2H. 

As noted in the previous section, the cyclic word for any chart contains at least 
four H's. This minimum is achieved when m = 2: the unique 2 x n chart has cyclic 
word H2 sn-2 H2 sn-2. Any chart with m 2:: 3 requires at least five H's and one B. 

We shall consider just one form of local constraint: which are the shortest general 
B-free blocks which contain exactly r occurrences of H? (We do not study special 
blocks here since they correspond to exceptions, whereas general blocks correspond 
to typical local constraints.) The blocks Hand H2 are the unique solutions for r = 1 
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and r 2 respectively. We have already seen that H3 is not a general block; the 
shortest general B-free blocks with r = 3 are H2SH and HSH2 • These two blocks 
are reversals of each other. We regard them as equivalent since a rotation, followed 
by a reflection, transforms the coastline corresponding to one into the coastline cor­
responding to the other. It is straightforward to verify that H2 S2 H2 is the unique 
shortest general B-free block when r = 4. 

Lemma 1 Let H sal H Sbl H sa2 H Sb2 H be an admissible block. If al 2:: a2 - 1 then 
bl 2:: b2 + 2. 

Proof. Suppose al 2:: a2 1. The corresponding spiral portion of coastline has 
consecutive straight stretches of lengths aI, bI, a2 and b2. The alternate pairs are 
parallel and bound an a x b rectangle of quadrates, where a = min{ aI, a2} and b = bI . 

The continuation of the coastline passes through all quadrates in this rectangle, and 
there must be at least two quadrates on the boundary of the rectangle where it 
connects with coastline outside the rectangle. Since no quadrates adjacent to the 
straight stretch of coastline of length b2 are available for this, b 2:: b2 + 2. 0 

Lemma 2 Let H sal H Sb 1 H sa2 H Sb2 H sa3 H Sb3 H be an admissible block with a2 2:: 
a3 and bi ::; b2. Then at least one of the following holds: 

(1) a2 2:: al + a3 + 4; (2) b2 2:: bi + b3 + 4. 

PrQof. Since a2 2:: a3 we have b2 2:: b3 + 2 by Lemma 1. Similarly bl ::; b2 implies 
al + 2 ::; a2 by the contrapositive of Lemma 1. Thus the corresponding portion of 
coastline is a double spiral with six straight stretches, of maximum length a2 in the 
a-direction and b2 in the b-direction. Relative to the first headland, the position 
vector of the seventh headland is (al - a2 + a3 + 1, bi - b2 + b3 + 1), where the first 
component is in the a-direction (positive in the sense of the first straight stretch) and 
the second component is in the b-direction (positive in the sense of the second straight 
stretch). The continuation of the coastline passes through all quadrates within the 
double spiral, so there must be at least two quadrates in a line between the first and 
seventh headlands for the coastline to connect with the region outside the double 
spiral. Such a pair of quadrates is present in the a-direction if al a2 + a3 + 1 < -2, 
whence (1). If this does not hold, there must be an appropriate pair of quadrates in 
the b-direction, which requires bi - b2 + b3 + 1 < whence (2). 0 

Together Lemmas 1 and 2 enable us to solve our local constraint problem. They 
show that the sequence of lengths of alternate straight stretches of an admissible B­
free block must be monotonic or unimodal, and if both are unimodal their maxima 
are adjacent. The shortest admissible block with a fixed number of H's has both the 
sequences unimodal, with maxima as nearly central as possible. We omit the details 
of the proof. 

Theorem 6 A shortest general B-free block with exactly r occurrences of H) for 
r 2:: 5) is 
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where X Sk+l HS2k+3 if r = 2k + 5) k 2: 0) and X = S2k+2 if r = 2k + 4) k 2: l. 
When r is odd) the block is unique up to reversal) and has length (k + 3)2 j when 

r is even) the block is unique) and has length (k + 2)(k + 3). 

4 Charts with many beaches 

In the rest of this paper we will study the range of values that b, hand s can take for 
charts of a given dimension. Notice that if we know the value of anyone of b) hand 
s, the values of the other two easily follow from equation (1) and Theorem 2. Thus 
it's sufficient to consider the range of values that s can take. It will be convenient 
in what follows to use the word turn to mean either a bay or a headland. When the 
number of turns, b + h is minimized, the number of beaches s is maximised. In this 
section we study this case. All maps will be m x n, and we will assume without loss 
of generality that m :::; n. 

For k ::; m, a k x k corner square of a chart is a k x k square block of quadrates 
one (or more) of which is a corner quadrate of the chart. Such a quadrate is a chart 
corner of the k x k corner square (and is unique when k < m). 

Theorem 7 A k x k corner square contains at least k turns. 

Proof. We use induction on k. The coastline in any corner quadrate of the chart 
must be a headland, so the theorem holds when k 1. Now suppose it holds for 
some k - 1, with k > 1. Consider a k x k corner square and let C be be the coastline 
in the corner quadrate of the square which is diagonally opposite its chart corner. 
Then C is either a turn or a beach. In the case C S, the set of k boundary 
quadrates of the corner square in the line of this beach must contain a turn since the 
coastline cannot leave the chart. Thus in every case the k ~ k corner square contains 
at least one more turn than the (k - 1) x (k - 1) corner square nested within it, 
which contains at least k - 1 turns by the induction hypothesis. 0 

Theorem 8 An m x n chart with m :::; n contains at least 2m turns. Whenever m 

is even and 2 ::; m ::; n) there is an m x n chart with exactly 2m turns 

Proof. Case (i): m = 2k. Each of the four k x k corner squares in the chart contains 
k turns, by Theorem 7, so the chart contains at least 4k = 2m turns. 

Case (ii): m = 2k + 1. Now n must be even, by Theorem 1, and so strictly greater 
than m. Therefore the k x k corner squares in the northwest and southeast corners 
and the (k + 1) x (k + 1) corner squares in the northeast and southwest corners do 
not intersect. By Theorem 7 these corner squares contain at least 4k + 2 = 2m turns. 

Thus 2m is a lower bound in each case. When m 2k, the bound is achieved 
by a continent with k peninsulas as shown in Figure 3 for the case m = 6. In this 
construction it is clear that n can be changed without altering the number of turns, 
so 2m turns are achieved whenever m is even and 2 :::; m ::; n. 0 
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Figure 2: A 6 x 7 chart with 12 turns 

We say a maximal row or column of quadrates is a line of the chart. The line is 
odd or even according to the parity of the number of quadrates it contains. 

Theorem 9 Any line 'contains an even number of turns. If the line is even) then it 
contains an even number of beaches. If the line is odd) it contains at least two turns. 

Proof. Each connected component of coastline contained in the line is either a beach 
traversing the line or begins and ends with a turn, so the total number of turns is 
even. If the line is even it follows that it contains an even number of beaches. Now 
consider an odd line. If the line contained no turns each component of land lying 
within it would be bounded by a pair of beaches traversing the line. Then the number 
of beaches would be even, and every quadrate would contain a traversing beach. But 
the line is odd, a contradiction. Hence the line contains at least one turn. Since the 
line contains an even number of turns, there are at least two turns. 0 

Theorem 10 An m x n chart with m < nand m odd contains at least 2n turns. 
Whenever m < nand m odd there is an m x n chart with exactly 2n turns. 

Proof. The chart may be partitioned into n lines, each containing m quadrates. 
Since m is odd, Theorem 9 implies each north-south line contains at least 2 turns, 
giving 2n turns altogether. If n = 2k a construction similar to that in Figure 2, with 
k peninsulas pointing north rather than west, attains the bound. 0 

5 Charts with few beaches 

In this section we obtain lower bounds on s in an m x n chart. As in the last 
section we assume m :::; n. We find that the minimum depends on whether m is odd, 
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Figure 3: 2 x 2 beach-free squares in which the coastline does not intersect the 
horizontal boundaries. 

congruent to 0 modulo 4 or to 2 modulo 4, and also to which of these 3 classes n 
belongs. We cannot have both m and n odd so there are 32 

- 1 = 8 combinations to 
consider. We obtain lower bounds on s in each of these 8 cases, and show that in 4 
of them the bounds are best possible. The other cases are open: our bounds are not 
best possible. 

We say a set of k adjacent lines running north-south is an m x k zone and a set 
of k lines running west to east is a k X n zone. 

Theorem 11 If m == 2 (mod 4)) any m X 3 zone contains at least 2 beaches) and 
similarly if n == 2 (mod 4)) any 3 x n zone contains at least 2 beaches 

Proof. Suppose some m X 3 zone contain no beaches. Partition its two western 
lines into 2 x 2 squares, totalling ~m in all. Consider the northernmost 2 x 2 square. 
The coastline cannot cross its northern edge as this is a boundary of the chart. The 
only 2 x 2 squares which contain no beaches and in which the coastline does not 
cross the northern boundary are shown in Figure 3. Note that in each of these the 
coastline does not cross the southern boundary either. It follows that the coastline 
does not cut the northern boundary of the next 2 x 2 square to the south, so this 
also is one of those in Figure 3. Continuing in this way we see that each 2 x 2 square 
in the partition is a copy of one of those in Figure3. In ea€h of the first two of these 
the coastline crosses the north-south bisector of the squares. It must do this an even 
number of times, for each time the coastline crosses the bisector it must return. Since 
~m is odd, at least one of the 2 x 2 squares is of the third type in Figure 3. The 
western half of this square is not the eastern half of any square in Figure 3 so the 
eastern m X 2 zone of the chosen m x 3 zone contains a 2 x 2 square not appearing 
in Figure 3. This is impossible if the m x 3 zone contains no beaches. Hence the 
m x 3 zone contains at least one beach. By Theorem 9 the number of beaches in an 
m X 3 zone is even and so at least 2. 0 

Theorem 12 Any 2k x 2k corner square contains at least k beaches. 

Proof. We use induction on k. It is easily seen that the theorem holds when k = 1. 
Now suppose it holds for some k - 1, with k > 1. Consider the L-shaped set of 
quadrates which are in a 2k x 2k corner square but not in the 2( k - 1) x 2( k - 1) 
corner square within it. Partition this set into 2k - 1 2 x 2 squares, and suppose 
that none contains a beach. As in the proof of Theorem 11 each 2 x 2 square in the 
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Figure 4: Charts with m == 0 (mod 4) which attain the bound of Theorem 13. 

northsouth arm of the L-shaped region must be one of those in Figure 3. A similar 
argument shows that each 2 x 2 square in the eastwest of the L-shaped region is a 
copy of one of those in Figure 3, but rotated through 90 degrees. Thus the 2 x 2 
square in the corner of the region is one of those in Figure 3, and also a copy of one 
of these rotated through 90 degrees. This is impossible so we conclude the L-shaped 
region contains at least beach. Thus in every case the 2k x 2k corner square contains 
at least one more beach than the 2(k 1) x 2(k - 1) corner square nested within it, 
which contains at least' k - 1 beaches by the induction hypothesis. 0 

Tbeorem 13 An mxn chart with m == 0 (mod 4) has at least m beaches. Whenever 
m == 0 (mod 4) there is an m x n chart with exactly m beaches. 

Proof. Let m 4k. Each 2k x 2k corner square of the chart contains k beaches, by 
Theorem 12, so the chart contains at least 4k = m beaches. 

To see that this bound is attained consider the two charts in Figure 4, one 8 x 9, 
the other 8 x 10. Each contains 8 beaches and extending each shows that this 
number can be held fixed while n is increased in multiples of 2. Clearly, m can also 
be increased or decreased in multiples of 4 while keeping the number of beaches equal 
to m. 0 

Theorem 14 An m x n chart with m odd has at least n beaches. Whenever m == 1 
(mod 2)) n 0 (mod 4) there is an m x n chart with exactly n beaches. 

Proof. By Theorem 9, each north-south line contains at least one beach so we have 
at least n beaches altogether. If n == 0 (mod 4) a construction like that of Figure 4 
achieves this bound. 0 

Theorem 15 An m x n chart with m == 2 (mod 4) contains at least m + 2 + 2l(n­
m - 2)/3 J beaches whenever n 2:: m + 2) and at least m + 2 beaches whenever n = m 

or n m + 1. 
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Proof. Let m 4k + 2. First suppose that n 2:: m + 2. The 2k x 2k corner square in 
the northwest corner contains at least k beaches and the (2k + 2) x (2k + 2) corner 
square in the southwest contains at least k + 1 beaches. This gives a total of at least 
2k+ 1 beaches in the westernmost m x (2k+2) zone, but the number of beaches there 
must be even by Theorem 9 so in fact we have at least 2k + 2 beaches. Similarly we 
have at least 2k + 2 beaches in the easternmost m x (2k + 2) zone, giving at least 
4k + 4 m + 2 beaches so far. Between the regions so far considered there are at 
least l(n - m 2)/3J disjoint m x 3 zones. Each of these contains at least 2 beaches 
by Theorem 11, which gives the required bound. 

When n m the westernmost and easternmost m x (k+2) zones are not disjoint, 
so the previous argument does not hold. There are at least k beaches in each 2k x 2k 
corner square and at least k+ 1 in each of the 4 overlapping (2k + 2) x (2k+ 2) corner 
squares. Hence each m x (2k + 2) corner zone contains at least 2k + 1 beaches, and 
since the number of beaches here is even by Theorem 9, it must be at least 2k + 2. If 
there were only 4k + 2 beaches altogether we would need exactly k beaches in each 
2k x 2k corner and another 2 beaches in the 2 x 2 square in the centre of the chart. 
But this arrangement would not allow an even number of beaches in each of the lines 
intersecting this 2 x 2 square, and so we conclude that the chart contains at least 
4k + 4 = m + 2 beaches. 

When n = m + 1 a similar argument shows that we certainly need at least 
m = 4k + 2 beaches. If there were only this number of beaches altogether we'd 
have exactly k beaches in each 2k x 2k corner square. By similar considerations 
to the n m case we find the remaining 2 beaches must lie in the 2 central cells 
of the central north-south line, and that the adjacent north-south lines contain no 
beaches. We consider two cases. If these two beaches both run north-south the cell 
immediately to their north is a turn. North of this is an odd number of cells which, 
as in the proof of Theorem 9, must contain an even number of turns and therefore 
at least one beach. 

Suppose instead that the two beaches both run east-west. They may be connected 
by a pair of turns in the cells immediately to the east (respectively west), but then 
the two cells to the west (respectively east) contain turns away from the centre. As 
is the previous case we have an odd number of cells above the centre which must 
contain another beach. 

Thus in either case we get an extra beach giving at least 4k + 3 altogether. Since 
the total number of beaches must be even we will have at least 4k + 4 = m + 2 as 
required. 0 

The Table summarises the bounds from Theorems 13, 14 and 15. Recall that we 
cannot have both m and n odd by Theorem 1. We have only been able to show that 
these bounds are best possible in 4 of 7 cases. Indeed in the other cases we believe 
the bounds are not best possible. Note that in each of these m or n is congruent to 
2 modulo 4. 

Figure 5 shows an 18 x 26 chart with 28 beaches (compared with the lower bound 
of 24 from Theorem 15). Note that the western 10 north-south lines contain 10 
beaches 2k + 2 in the notation of the proof of Theorem 15) and the next 6 north-
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(J..I (" 1\ ("t\ ('1"\ rl'\ ,1\ ("" ("I"'-. ("I"'-. (" 1'\ ('1"\ (' 1'\ '-" \..1"\ I \.. V \..J..I \..1-/ \.. I.) \'1.) \..~ \.~ \..1-/ \..~ \.. ~ \.. i-- j..J 

(J..I \.1'\ { '\ 
\,1"\ , l..J I , 1"\ ,1"\ ( 1"\ I" 1'\ I"t"\ ('1'\ (' 1\ 1"1\ I" '-- 1"'\ 1"1../ 
(1-/ \.. 1'\ \..1.) \.L.J \..1.) \..1-/ \..1-/ \..1-/ \..\.J \.. I.) \..1.) I" I.) \.." 
\..1"\ , 1-/ ("I"'-. (""\ ("1'\ ,1'\ ("1\ ("1\ ("1\ , , ("1'\ \..1\ ,..J 

("I.) \. I--1-/ \.I.J \.1.) \.~ \..1.) \..1.) \. I.) \.. I.) '-17 '= '--17 \:.:, 

I , 1"\ ,t\ ,f\ ,1"\ ,1'\ ( f\ ,t"\ ("1'\ ,t"\ 1"1\ I" 1\ 1"" I 
\.l..J \.1-/ \.1-/ \.1.) \..1-/ \..1-/ \..1-/ \..1-/ \..\.J \.. ',.J \..1.) \.1.) q') 

Figure 6: Charts with odd m and even n. 
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south lines contain 2 disjoint 18 x 3 zones and 4 beaches, both values predicted 
by Theorem 15. The final 10 lines contain 14 beaches rather than the predicted 
10. The excess is because we have had to extend the central "key pattern" strip to 
the eastern boundary of the chart. A generalisation of this construction produces 
(m + 2)/2 beaches in the western (m + 2)/2 vertical lines, 2l(n - (m + 2)/2)/3J 
beaches for the key pattern, (m - 4) /2 from eastern corner squares and one extra 
beach to give an even total. This total is then 

m + 2l(2n - m - 2)/6J. (2) 

This is the best we have been able to do for m 2: 10, m == 2 (mod 4). In the 
case m = 6 the key pattern strip lies on the boundary of the chart which leads, for 
some values of n, to a slight reduction in the number of beaches given by (2). When 
m = 2 we cannot have fewer than 2n - 4 beaches. 

The final case to consider is when m is odd and n == 2 (mod 4). Our best 
constructions for this case are shown in Figure 6 where we have a 9 x 26 chart and 
a 11 x 26 chart, with 28 and 30 beaches respectively. These can be generalised for 
any m == 1 (mod 4) or m == 3 (mod 4) providing m > 1. An analysis like that above 
shows we can construct charts with n + ( m - 5) /2 beaches and n + ( m - 3) /2 beaches 
as m is congruent to 1 or 3 modulo 4 respectively. 

Charts with few Beaches 
2 ~ m~ n 

m n Lower Bound on s Least s by construction 
a (mod 4) a (mod 4) m m . 
a (mod 4) 2 (mod 4) m m 
a (mod 4) 1 (mod 2) m m 
2 (mod 4) a (mod 4) m + 2 + 2l(n - m - 2)/3J m + 2l(2n - m - 2)/6J 
2 (mod 4) 2 (mod 4) m + 2 + 2l(n - m - 2)/3J rn + 2l(2n - m - 2)/6J 
2 (mod 4) 1 (mod 2) m + 2 + 2l(n - m - 2)/3J m + 2l(2n - m 2)/6 J 
1 (mod 2) a (mod 4) n n 
1 (mod 4) 2 (mod 4) n n+(m-5)/2 
3 (mod 4) 2 (mod 4) n n+(m-3)/2 

6 Discussion 

We have found upper and lower bounds on the number of beaches in an m x n chart 
which depend on the residue classes of m and n modulo 4. These lead to bounds on 
the number of bays and headlands via (1) and Theorem 2. In some cases the bounds 
are best possible but in others there is a substantial gap between our bounds and 
our best construction. It would be nice to close this gap. 

The sort of questions we have been discussing could also be asked for higher 
dimensions, or for charts on other surfaces. How would things change if the chart 
were cylindrical (a pair of opposite boundaries identified) or toroidal (both pairs 
identified) or spherical (the northern and eastern boudaries identified and the western 
and southern identified)? A question we have not considered is: How many different 
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ways are there of drawing a coastline in an m x n chart? This appears to be difficult 
and has been studied in a disguised setting by Kwong and Rogers [1]. A question 
similar to those we have been considering appeared recently as a problem in the 
American Mathematical Monthly [2]. This concerns a path which begins in the 
northwest quadrate of a chart and ends in the southeast. 
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