A Sufficient Condition for The Existence of a Spanning Eulerian Subgraph in 2-edge-Connected Graphs *

Gao Taiping Department of Mathematics Shanxi University Taiyuan, Shanxi 030006, P. R. China

Wang Jianzhong Department of Mathematics North China Institute of Technology Taiyuan, Shanxi 030051, P. R. China

Abstract

We prove that if G is a 2-edge-connected graph of order $n \ge 14$ and $\max\{d(u), d(v)\} > \frac{n-5}{3}$ for each pair of nonadjacent vertices u, v of G, then G contains a spanning Eulerian subgraph and hence the line graph of G is Hamiltonian.

1. Introduction

We use [1] for basic terminology and notation not defined here and consider simple graphs only.

Let G be a graph with vertex-set V(G) and edge-set E(G). G is called Eulerian if it is connected and every vertex has even degree. For a subgraph H of G, we call H a spanning Eulerian subgraph if it is Eulerian and V(H) = V(G); and a dominating Eulerian subgraph if it is an Eulerian subgraph and $E(V(G) - V(H)) = \emptyset$. Obviously, any spanning Eulerian subgraph is a dominating Eulerian subgraph. The line graph L(G) of G is a graph which has E(G) as its vertex set and in which two vertices are joined if and only if they are adjacent edges in G. For a vertex v of G, we will denote its degree and neighborhood in G by $d_G(v)$ and $N_G(v)$, respectively.

Several Hamiltonian results about the line graph of the given graph have been discovered based on the typical degree conditions. The following result is proved in [2].

^{*}Supported by the National Natural Science Foundation of China

Theorem 1.1 (Catlin [2]). Let G be a 2-edge-connected graph of order $n \ge 100$ in which $d_G(u) + d_G(v) > \frac{2n-10}{5}$ for each pair of nonadjacent vertices u, v of G. Then G contains a spanning Eulerian subgraph and hence L(G) is Hamiltonian.

In present paper we will prove a Fan-like condition for a graph to contain a spanning Eulerian subgraph. Our main result is as follows.

Theorem 1.2. Let G be a 2-edge-connected graph of order $n \ge 14$ in which $max\{d_G(u), d_G(v)\} > \frac{n-5}{3}$ for each pair of nonadjacent vertices u, v of G. Then G contains a spanning Eulerian subgraph and hence L(G) is Hamiltonian.

Remarks. Theorem 1.2 is best possible in the sense that the bound on the degree cannot be lowered. To see this, we construct the graph G_0 from the disjoint union of three copies of the complete graph $K_{\frac{n-2}{3}}$ $(n \equiv 2 \mod 3)$ and two copies of K_1 , set $H_1 \cong H_2 \cong K_1$ and $H_3 \cong H_4 \cong H_5 \cong K_{\frac{n-2}{3}}$, by adding an edge between each H_i (i = 1, 3, 4) and each H_j (j = 2, 5). It is seen easily that G_0 is 2-edge-connected graph and there exists nonadjacent vertices u, v of G with $\max\{d_G(u), d_G(v)\} = \frac{n-5}{3}$. However, G_0 contains no spanning Eulerian subgraph since $G_o/ \sim \cong K_{2,3}$.

Let H_1, H_2, H_3 be three disjoint copies of the complete graph $K_{\frac{n-1}{2}}$ $(n \equiv 1 \mod 3)$ and let H_4 be a copy of K_1 , disjoint from H_1, H_2, H_3 . The graph G_n consists of the union of H_1, H_2, H_3 and H_4 by adding an edge between H_i and $H_{i+1}, (i = 1, 2, 3, 4,$ the indices taken modulo 4). It is easy to check that the graph G_n satisfies the conditions of Theorem 1.2, but not that of Theorem 1.1 when $n \geq 40$. In fact, it is shown easily that Theorem 1.2 and Theorems 1.1 are incomparable.

2. Preliminaries

In [2] Catlin introduced the following concept. A graph G is collapsible if for every subset S of V(G) of even cardinality there is a subgraph H of G such that G - E(H) is connected and $d_H(v)$ is odd for each vertex v of S. It is clear that K_n is collapsible if and only if $n \neq 2$

We now define an equivalence relation \sim on V(G) by setting $u \sim v$ if and only if there is a collapsible subgraph H of G which contains both u and v. By Catlin's Theorem [2] the union of two collapsible subgraphs with non-null intersection is collapsible, we see that an equivalence class under \sim induce a maximal collapsible subgraph of G.

Let $\{H_i | i = 1, 2, ..., k\}$ be the collection of all maximal collapsible subgraphs of G. Write G/\sim for the graph obtained from G by deleting $\bigcup_{i=1}^{k} E(H_i)$ and then contracting in turn $H_1, H_2, ..., H_k$ to k new vertices $v_1, v_2, ..., v_k$ so that no edge of $E(G) - \bigcup_{i=1}^{k} E(H_i)$ is lost. We call G/\sim the quotient graph of G and call H_i the preimages of v_i in G. Catlin showed the following result.

26

Theorem 2.1 (Catlin[2]). Let G be a graph and let G/\sim be its quotient graph. Then

(a). G/\sim is simple graph and K_3 -free;

(b). G has a spanning Eulerian subgraph if and only if G/\sim has a spanning Eulerian subgraph;

(c). Let $V_4 = \{v \in V(G/\sim) | d_{G/\sim}(v) < 4\}$. If G/\sim is nontrivial and 2-edge-connected, then $|V_4| \ge 4$, and if equality holds, then G/\sim is Eulerian.

The next theorem will be needed in the proof of our main result.

Theorem 2.2 (Harary and Nash-Williams[3]). The line graph L(G) of a simple graph G with at least three edges is Hamiltonian if and only if G has a dominating Eulerian subgraph.

3. The Proof of Theorem 1.2

Proof. Let H_1, H_2, \ldots, H_k denote all the maximal collapsible subgraphs of G. Set Set $G^* = G/\sim$ and $V(G^*) = \{v_1, v_2, \ldots, v_k\}$, where H_i is the preimage of v_i for $i = 1, 2, \ldots, k$. We may assume without loss of generality that

$$d_{G^*}(v_1) \leq d_{G^*}(v_2) \leq \cdots \leq d_{G^*}(v_k).$$

Now we assume that G contains no the spanning Eulerian subgraph. Then Theorem 2.1(b) implies that G^* contains also no spanning Eulerian subgraph. Since G is 2-edge-connected, G^* is 2-edge-connected. Therefore, Theorem 2.1(c) asserts $d_{G^*}(v_5) \leq 3$.

Claim 1. If $|V(H_i)| \ge 4$ for $1 \le i \le 5$, then there is a vertex $h_i \in V(H_i)$ such that $N_G(h_i) \subseteq V(H_i)$.

Since G^* is simple graph and $d_{G^*}(v_i) \leq 5$ for $1 \leq i \leq 5$, the claim follows.

Claim 2. If $H_i \cong H_j \cong K_1$ with $1 \le i < j \le 5$, then v_i and v_j is adjacent in G^* .

Assume the contrary. Since the preimages of v_i and v_j in G are themselves, $v_iv_j \notin E(G^*)$ implies $v_iv_j \notin E(G)$ and so $\max\{d_G(v_i), d_G(v_j)\} > \frac{n-5}{3}$. Since $\max\{d_G(v_i), d_G(v_j)\} = \max\{d_{G^*}(v_i), d_{G^*}(v_j)\} \leq 3$, it follow that n < 14, contradicting the assumption $n \geq 14$.

We now consider two cases.

Case 1. $H_1 \cong K_1$ for some $1 \le i \le 5$.

Suppose that $H_a = K_1$, $1 \le a \le 5$. In this case, we can first conclude that $H_i \not\cong K_3, 1 \le i \le 5$. Otherwise set $H_b = K_3, 1 \le b \ne a \le 5$. Since G^* is simple graph and $d_{G^*}(v_a) \le 3$, there exists a vertex h in H_b with $d_G(h) \le 3$ such that h and v_a is nonadjacent in G. Hence, it follows from the degree condition that

$$rac{n-5}{3} < \max\{d_G(h), d_G(v_a)\} \leq 3,$$

which gives that n < 14 contradicting the assumption $n \ge 14$. Moreover, since G^* is K_3 -free, Claim 2 implies that the set $\{H_i | i = 1, 2, \ldots, 5\}$ contains at most two elements being isomorphic to K_1 . Notice that K_2 is not collapsible and the collapsible graphs with three vertices are isomorphic to K_3 . We have that $|V(H_j)| \ge 4$ for each $H_i \not\cong K_1, 1 \le i \le 5$. Hence, Claim 1 asserts that there is a vertex $h_j \in H_j$ so that $N_G(h_j) \subseteq V(H_j)$. This implies that $v_a h_j \notin E(G)$ and so $\max\{d_G(v_a), d_G(h_j)\} > \frac{n-5}{3}$. Since $d_G(v_a) = d_{G^*}(v_a) \le 3 \le \frac{n-5}{3}$, it follows that

$$d_G(h_j) > rac{n-5}{3} ext{ for each } h_j \in H_i
ot\cong K_1, 1 \leq i \leq 5.$$

Thus, we obtain

$$egin{array}{rcl} n & = & |V(G)| \geq \sum_{i=1}^5 |V(H_i)| \ & \geq & \sum_{\substack{H_i
ot \in X_i \ 1 \leq i \leq 5}} |V(H_i)| + 2 \ & \geq & \sum_{\substack{H_i
ot \in X_i \ 1 \leq i \leq 5}} |V(G_i)| + 1) + 2 \ & > & 3(rac{n-5}{3}+1) + 2 = n, \end{array}$$

a contradiction, which completes the proof of Case 1.

Case 2. $H_i \not\cong K_1$ for all $1 \leq i \leq 5$.

In this case, we first can conclude that the set $\{H_i | i = 1, 2, \ldots, 5\}$ contains at most one graph isomorphic to K_3 . Otherwise assume that $H_a \cong H_b \cong K_3$, $1 \leq a < b \leq 5$. Since G^* is simple and $d_{G^*}(v_a) \leq d_{G^*}(v_b) \leq 3$, there exists the vertex $h_a \in H_a$ and the vertex $h_b \in H_b$ such that $\max\{d_G(h_a), d_G(h_b)\} \leq 3$ and $h_a h_b \notin E(G)$. Thus we obtain

$$\frac{n-5}{3} < \max\{d_G(h_a), d_G(h_b)\} \le 3,$$

which implies n < 14. This contradicts the assumption $N \ge 14$. Again because K_2 is not collapsible and the collapsible graphs with three vertices are isomorphic to K_3 , we have that $|V(H_j)| \ge 4$ for each $H_j \not\cong K_3$, $1 \le j \le 5$. Hence Claim 1 asserts that there is a vertex $h_j \in H_j \not\cong K_3$, $1 \le j \le 5$, such that $N_G(h_j) \subseteq V(H_j)$ and so $\{h_j \in H_j \not\cong K_3 | 1 \le j \le 5\}$ is a independent set of G. By the hypothesis of the theorem, we see that there are at least three such vertices h_j whose degree of each vertex is greater than $\frac{n-5}{3}$. Therefore, we obtain

$$\begin{array}{lll} n & = & |V(G)| \geq \sum_{i=1}^{5} |V(H_i)| \\ & \geq & \sum_{\substack{H_i \not\cong K_3}} |V(H_i)| + 3 \\ & \geq & \sum_{\substack{H_i \not\cong K_1}} (d_G(h_i) + 1) + 3 \\ & 1 \leq i \leq 5 \\ & > & 3(\frac{n-5}{3} + 1) + 3 = n + 1, \end{array}$$

a contradiction, which completes the proof of this case and Theorem 1.2.

Acknowledgement

We would like to thank the referees for many helpful suggestions to this paper.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan Co. New York, 1976.
- [2] P. A. Catlin, Contractions of graphs with no spanning Eulerian subgraphs, Combinatorica, 8(1988), 229-239.
- [3] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, *Canada Math. Bull.* 9(1965), 701-710.

(Received 1/12/95)

