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Abstract 

vVe prove that if G is a 2-edge-connected graph of order n 2: 14 and 
max{d{u),d(v)} > n3!) for each pair of nonadjacent vertices u~ v of G. 
then G contains a spanning Eulerian subgraph and hence the line graph 
of G is Hamiltonian. 

1. Introduction 

We use [1] for basic terminology and notation not defined here and consider simple 
graphs only. 

Let G be a graph with vertex-set V(G) and edge-set E(G). G is called Eulerian 
if it is connected and every vertex has even degree. For a subgraph H of G, we call H 
a spanning Eulerian subgraph if it is Eulerian and V(H) = V( G); and a dominating 
Eulerian subgraph if it is an Eulerian subgraph and E(V( G) - V( H)) = 0. Obviously, 
any spanning Eulerian sub graph is a dominating Eulerian sub graph. The line graph 
L( G) of G is a graph which has E( G) as its vertex set and in which two vertices 
are joined if and only if they are adjacent edges in G. For a vertex v of G, we will 
denote its degree and neighborhood in G by dc(v) and Nc(v), respectively. 

Several Hamiltonian results about the line graph of the given graph have been 
discovered based on the typical degree conditions. The following result is proved in 
[2]. 
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'Theorem 1.1 (Catlin [2]). Let G be a 2-edge-connected graph of order n 2:: 100 in 
which dG(u) + dG(v) > 2n;1D for each pair of nonadjacent vertices u, v of G. Then 
G contains a spanning Eulerian subgraph and hence L( G) is Hamiltonian. 

In present paper we will prove a Fan-like condition for a graph to contain a 
spanning Eulerian subgraph. Our main result is as follows. 

Theorem 1.2. Let G be a 2-edge-connected graph of order n 2:: 14 in which 
max{dG(u),dG(v)} > n;5 for each pair of nonadjacent vertices u,v of G. Then 

G contains a spanning Eulerian subgraph and hence L( G) is Hamiltonian. 

Remarks. Theorem 1.2 is best possible in the sense that the bound on the degree 
cannot be lowered. To see this, we construct the graph Go from the disjoint union 
of three copies of the complete graph K ~ (n == 2 mod 3) and two copies of K I, set 

3 . 

HI e:! Hz e:! KI and H3 ~ H4 e:! H5 e:! K!!.=l, by adding an edge between each Hi 
3 

(i = 1,3,4) and each Hj (j = 2,5). It is seen easily that Go is 2-edge-connected 
graph and there exists nonadjacent vertices u, v of G with max { dG( u), dG( v)} = n;5. 

However, Go contains no sp~g Eulerian subgraph since Gol ""~ K 2,3. 

Let HI, H2, H3 be three disjoint copies oft.he complete graph K n-;:l (n == 1 mod 3) 

and let H4 be a copy of K I , disjoint from HI, Hz, H3. The graph Gn consists of the 
union of HI,Hz,H3 and H4 by adding an edge between Hi and Hi+I,(i = 1,2,3,4, 
the indices taken modulo 4). It is easy to check that the graph Gn satisfies the 
conditions of Theorem 1.2, but not that of Theorem 1.1 when n 2: 40. In fact,}t is 
shown easily that Theorem 1.2 and Theorems 1.1 are incomparable. 

2. Preliminaries 

In [2] Catlin introduced the following concept. A graph G is collapsible if for every 
subset S of V( G) of even cardinality there is a subgraph H of G such that G - E( H) 
is connected and dH(V) is odd for each vertex v of S. It is clear that Kn is collapsible 
if and only if n :j:. 2 

We now define an equivalence relation rv on V( G) by setting u "" v if and only 
if there is a collapsible subgraph H of G which contains both u and v. By Catlin's 
Theorem [2] the union of two collapsible sub graphs with non-null intersection is 
collapsible, we see that an equivalence class under rv induce a maximal collapsible 
sub graph of G. 

Let {Hili = 1,2, ... ,k} be the collection of all maximal collapsible subgraphs 
of G. Write GI "" for the graph obtained from G by deleting Uf=1 E(Hi) and then 
contracting in turn HI , Hz, ... , H k to k new vertices VI, vz, ... , vk so that no edge 
of E(G) - Uf=1 E(Hd is lost. We call G/ rv the quotient graph ofG and call Hi the 
preimages of Vi in G. Catlin showed the following result. 
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Theorem 2.1 (Catlin[2]). Let G be a graph and let G/ rv be its quotient graph. 
Then 

raj. G/ rv is simple graph and K 3 -free; 
(b). G has a spanning Eulerian subgraph if and only if G / I'.J has a spanning 

Eulerian subgraph; 

{cJ. Let V4 = {v E V(G/ 1'.J)[dG1",(v) < 4}. If G/ rv is nontrivial and 2-edge-
connected, then IV4 1 ~ 4, and ifequality holds, then G / rv is Eulerian. 

The next theorem will be needed in the proof of our main result. 

Theorem 2.2 (Harary and Nash-Williams[3]). The line graph L(G) of a simple 
graph G with at least three edges is Hamiltonian if and only if G has a dominating 
Eulerian subgraph. 

3. The Proof of Theorem 1.2 

Proof. Let H I ,H2 , ••• ,Hk denote all the maximal collapsible subgraphs of G. Set 
Set G* = G / rv and v.( G*) = {'QI, V2, ... , Vk}, where Hi is the preimage of Vi for 
i = 1,2, ... , k. We may assume without loss of generality that 

Now we assume that G contains no the spanning Eulerian subgraph. Then The
orem 2.1(b) implies that G* contains also no spanning Eulerian subgraph. Since 
G is 2-edge-connected, G* is 2-edge-connected. Therefore, Theorem 2.1( c) asserts 
dG*(V5) ::; 3. 

Claim 1. If IV(Hdl .~ 4 for 1 ::; i ::; 5, then there is a vertex hi E V(Hi) such that 
NG(~) ~ V(Hi). 

Since G* is simple graph and dG* ( Vi) ::; 5 for 1 ::; i ::; 5, the claim follows. 

Claim 2. If Hi s:! Hj ~ KI with 1 ::; i < j ::; 5, then Vi and Vj is adjacent in G*. 
Assume the contrary. Since the preimages of Vi and Vj in G are themselves, 

ViVj ~ E(G*) implies ViVj ~ E(G) and so max{dG(vd,dG(vj)} > n3 5. Since 
max.:{dG(vi),dG(vj)} = max{dG*(vd,dG*(vj)} ::; 3, it follow that n < 14, contra
dicting the assumption n ~ 14. 

We now consider two cases. 

Case 1. HI s:! KI for some 1 ::; i ::; 5. 
Suppose that Ha = K I , 1 ::; a ::; 5. In this case, we can first conclude that 

Hi ~ K 3 ,1 ::; i ::; 5. Otherwise set Hb = K 3 , 1 ::; b =/: a ::; 5. Since G* is simple 
graph and dG*(va ) ::; 3, there exists a vertex h in Hb with dG(h) ::;·3 such that h 
and Va is nonadjacent in G. Hence, it follows from the degree condition that 

n-5 . 
-3- < max{dG(h),dG(va )} ::; 3, 
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which gives that n < 14 contradicting the assumption n 2::: 14. Moreover, since G* is 
K 3-free, Claim 2 implies that the set {Hili = 1,2, ... , 5} contains at most two ele
ments being isomorphic to K1 • Notice that K2 is not collapsible and the collapsible 
graphs with three vertices are isomorphic to K 3 . We have that IV(Hj)1 2::: 4 for each 
Hi ';p Kl, 1 ::s; i ::s; 5. Hence, Claim 1 asserts that there is a vertex hj E Hj so that 
NG(hj) ~ V(Hj). This implies that Vahj ~ E(G) and so max{dG(va),dG(hj)} > 
n;-5. Since dG(va) = dG"(va)::S; 3 ::s; n;-5, it follows that 

Thus, we obtain 

n-5 
dG(hj) > -3- for each hj E Hi ~ Kl, 1 ::s; i ::s; 5. 

n IV(G)I 2::: I:f=lIV(Hi)1 
> I:H;$H<l IV(Hi)1 + 2 

1<i<5 

2::: I:H~~~l (dG(hd + 1) + 2 
1<i<5 

> 3(n~S-+ 1) + 2 = n, 

a contradiction, which completes the proof of Case 1. 

Case 2. Hi ';p Kl for all 1 ::s; i ::s; 5. 
In this case, we first can conclude that the set {Hili = 1,2, ... , 5} contains 

at most one graph isomorphic to K3 • Otherwise assume that Ha ~ Hb ~ K3 , 

1::S; a < b ::s; 5. Since G* is simple and dG*(va) ::s; dG*(Vb) ::; 3, there exists the 
vertex ha E Ha and the vertex hb E Hb such that max{dG(ha),dG(hb)} ::; 3 and 
hahb ~ E( G). Thus we obtain 

n-5 
- -3- < max{dG(ha),dG(hb)} ::s; 3, 

which implies n < 14. This contradicts the assumption N 2::: 14. Again because 
f{ '2 is not collapsible and the collapsible graphs with three vertices are isomorphic 
to K 3 , we have that [V(Hj)[ 2::: 4 for each Hj ~ K 3 , 1 ::s; j ::s; 5. Hence Claim 1 asserts 
that there is a vertex hj E Hj ~ K 3 ,1 ::; j ::; 5, such that NG(hj) ~ V(Hj) and 
so {hj E Hj ~ K 3 [1 ::; j ::; 5} is a independent set of G. By the hypothesis of the 
theorem, we see that there are at least three such vertices hj whose degree of each 
vertex is greater than n;-5. Therefore, we obtain 

n = [V(G)I 2::: I:f=lIV(Hdl 
2::: I:Hi~K3 IV(Hi)1 + 3 

1<i<5 

2::: I:H~~:;'l (dG(hi) + 1) + 3 
1<i<5 

> 3(n~s-+ 1) + 3 = n + 1, 

a contradiction, which completes the proof of this case and Theorem 1.2. 0 
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