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Abstract 

We construct several new (v; r, 8; A) supplementary difference sets with 
v odd and T' + .5 = A + (v - 1) /2. They give rise to D-optimal designs of 
order 2v. D-optimal designs of orders 158, 194, and 290 are constructed 
here for the first time. We also give an up to date survey of this class of 
supplementary difference sets in arbitrary Abelian groups of odd order 
v < 100. 

o. Introduction 

Supplementary difference sets (SDS) in finite Abelian groups is an active topic of 
research. Examples of supplementary difference sets were given as early as 19:39 in a 
paper of Bose [1]. More recently, these have been formally defined and popularized 
in the work of J. Seberry (Wallis) [1.5, 17, 18, 19]. 

In this paper we consider only one special class of supplementary difference sets 
(X, Y) in a finite Abelian group G of order v. This means that every a E G, a #- 0, 
can be represented as a = x - y with x, y E X or x, y E Y in A ways (in total), where 
A is a constant independent of a. If IXI = T' and IY\ = 8, we say that (X, Y) have 
parameters (v; r, 8; A). Furthermore we require that v be odd and r+8 = A+( v-I) /2. 
Such supplementary difference sets will be called D-optimal because they give rise to 
D-optimal designs of order 2v. D-optimal SDS's have been studied by many authors 
starting with Ehlich [9]. There is only one infinite series of such sets known at the 
present time (see [11]). 

We present several new D-optimal SDS's with v = 27,49,73,79,97,11:3, and 14.5. 
In particular, we construct for the first time D-optimal designs of orders 1.58, 194, 
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and 290. For v = 27,49 our SDS's lie in an elementary Abelian group. No such 
SDS's were known before for these values of v. For v = 73 the known SDS has 
parameters (73; 36, 28; 28) and we construct three non-equivalent SDS's having a 
different set of parameters, namely (73; 42, 30; 36). For v = 113 a D-optimal design 
of order 2v is known, it belongs to an infinite series constructed by A.L. Whiteman 
[20]. His construction does not use SDS's. The first example of SDS with parameters 
(113; 49, 49; 42) was found recently (see [12]). Our SDS with the same parameters is 
not equivalent to that example. 

We collect in Table 1 all known results about the existence of D-optimal SDS's, 
with parameters (v; r, s; .\), v < 100, that satisfy the known necessary conditions. 
There are a number of undecided cases indicated by the question mark. 

1. D-optimal Supplementary Difference Sets 

Let G be a finite Abelian group (written multiplicatively) of order v, and ZG 
its group ring over Z (the ring of integers). For X C G let X' G\X denote the 
complement of X in G, and let 

N(X) = (LX) . (L x- l
) E ZG. 

xEX xEX 

We also set 
T = LX. 

xEG 

We say that the ordered k-tuple (Xl, ... ,Xk ), with Xi c G, are supplementary 
difference sets (SDS) with parameters (v; nl,···, nk; A) if IXil = ni for i = 1,· .. ,k, 
and 

~N(X;) = (~ni -A) .1+ AT, 

where 1 EGis the identity element. For k = 1 we obtain the definition of difference 
sets. 

We now introduce a special class of SDS. 

Definition (1.1) We say that (v; r, S; A) supplementary difference sets are D-optimal 
if v is odd and r + s = A + (v - 1) /2. 

We shall see in the next section why these SDS's are important. The following 
two propositions are well known. 

Proposition (1.2) If (X, Y) are D-optimal SDS, then the same is true for (X', Y), 
(X, yl), and (X', Y'). III 

Proposition (1.3) If (X, Y) are D-optimal SDS with parameters (v; r, S; A), then 

2(2v - 1) = (v - 2r)2 + (v 2S)2. (1.1) 

II 
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We shall say that the parameters (Vi r, Si A) are feasible if v is odd, r + s = 
A + (v - 1)/2, and (1.1) holds. Table 1 contains the list of all feasible parameters 
with v < 100. We shall be mainly concerned with the following question: If the 
parameters (Vi r, Si A) are feasible and G is an Abelian group of order v, does there 
exist SDS in G with these parameters? 

Let (X, Y) be aD-optimal SDS in G. The following elementary operations produce 
again D-optimal SDS: 

(i) (X, Y) -7 (X', Y)i 

(ii) (X, Y) -7 (X, yl)i 

(iii) (X, Y) -7 (Y, X)i 

(iv) (X, Y) -7 (aX, Y), a E Gj 

(v) (X, Y) -7 (X, aY), a E Gi 

(vi) (X, Y) -7 «(J(X), (J(Y», where (J is an automorphism of G. 

We say that two D-optimal SDS's are equivalent if one can be obtained from the 
other by a finite number of elementary operations. 

2. D-optimal Designs 

Let H be a {±1 }-matrix of order n. We shall write In for the identity matrix of 
order n, and I n for the matrix of order n having all entries equal 1. The well known 
Hadamard inequality implies that 

(2.1 ) 

Furthermore, if equality holds, then H is a Hadamard matrix, i.e., H HT = In, where 
HT is the transpose of H. 

From now on we assume that n = 2v where v is odd. If v > 1, there are no 
Hadamard matrices of order n, and so the inequality (2.1) is always strict. In fact 
Ehlich [9] has shown that a stronger inequality is valid: 

(2.2) 

Definition (2.1) A {±1 }-matrix H of order n = 2v, v odd, for which equality holds 
in (2.2) is called maximal. 

If A and B are commuting {±l}-matrices of order v, such that 

(2.3) 

then 

(2.4 ) 

is a maximal matrix. 
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Definition (2.2) The maximal matrices of order n = 2v, v odd, given by (2.4), 
where A and B commute and satisfy (2.3), are called D-optimal designs. 

Now let (X, Y) be aD-optimal SDS in an Abelian group G of order v. Define a 
{±I}-matrix A = (aX,y) of order v (indexed by elements X,y E G) by 

{
-I, if xy-l E X; 

ax,y = 1, otherwise. 

Define B = (bx,y) similarly by using Y instead of X. The matrices A and B satisfy 
(2.3), and so by inserting these matrices into the array (2.4) we obtain aD-optimal 
design. We shall refer to D-optimal designs constructed in this way from D-optimal 
SDS as being of Abelian type. If the group G is cyclic, these designs are known as 
D-optimal designs of circular type. 

Koukouvinos, Kounias, and Seberry [11] used a theorem of Spence [16, Theorem 
1] to construct an infinite series of D-optimal SDS's. 

Theorem (2.3) [16, 11] If q is a prime power then there exists aD-optimal SDS of 
circular type with parameters (v = q2 + q + 1; q2, q2;). = q( q - 1) /2). II 

Another important result is due to A.L. Whiteman. 

Theorem (2.4) [20] If q is an odd prime power and v = 2q2 + 2q + 1, then there 
exist D-optimal designs of order n = 2v. II 

The D-optimal designs constructed by Whiteman do not arise from SDS's. They 
are derived from the infinite series of SBIBD's constructed by A.E. Brouwer [2], by 
using an idea of Kharaghani [10]. It is an open question whether D-optimal designs 
of Abelian type exist for the orders n given in Whiteman's theorem. For some partial 
results in this direction see [12] and Section 6. 

Let us say that two D-optimal designs of Abelian type are equivalent if the cor­
responding D-optimal SDS's are equivalent in the sense defined in Section l. 

The equivalence classes of circular D-optimal designs of order n = 2v were enu­
merated by Yang [23] for v ::; 9 and by Kounias, Koukouvinos, Nikolaou and Kakos 
[13, 14] for v ::; 27 and v = 33,45. For the number of equivalence classes of arbitrary 
D-optimal designs of order 2v with v ::::; 9 see the recent paper of Cohn [7]. 

3. Some New Cyclic D-optimal SDS '8 

We give the first example of D-optimal SDS with parameters (79; 37, 31; 29). At 
the same time this provides the first example of a D-optimal design of order 158. 

Let F = Z 79 be the finite field of order 79, and F* its multiplicative group. 
Denote by H the subgroup of order 3 of F*. Thus H = {1,23,55}. The 26 cosets of 
H in F* are enumerated as follows: 

ao = H, a2 = 2H, a4 = 3H, a6 = 4H, as = 5H, 
alO = 6H, a12 = 8H, a14 = 9H, a16 = llH, 
alS = 12H, a20 = 15H, a22 = 18H, a24 = 22H, 

224 



and a2i+1 = -a2i for ° ::; i ::; 12. 
We now list two non-equivalent SDS's (X, Y), with parameters (79; 48, 42; 51), in 

the additive group of F. In both cases X and Yare unions of some cosets ai, i.e., 

X= Uai, Y= U ai, (3.1 ) 
iEJ iEK 

and so it suffices to list the index sets J and K. For the first SDS we have: 

J {0,2,4,6,7,9,10,11,12,13,17,19,20,21,22,23}, 

I{ {0,4,5,6,7,11,12,14,15,16,18,23,24,25}, 

and for the second: 

J {0,1,2,4,6,7,12,13,14,15,17,20,21,22,24,25}, 

I{ {0,3,4,8,11,12,13,17,18,20,21,22,24,25}. 

By replacing X and Y by their complements in F, we obtain SDS (yl, X') with 
parameters (79; 37, 31; 29). 

Next we give the first example of aD-optimal SDS with parameters (97;46,39;37), 
and also the first .example of a D-optimal design of order 194. Let F = Z97 be the 
finite field of order 97, and H = {1, 35, 61} the subgroup of order 3 of F*. We 
enumerate the 32 cosets of H in F* as follows: 

ao = H, a2 = 2H, a4 = 3H, a6 = 4H, 
a8 = 5H, alO = 6H, a12 = 7 H, a14 = 9H, 
a16 = lOH, a18 = 12H, a20 = 13H, a22 = 15H, 
a24 = 18H, a26 = 20H, a28 = 23H, a30 26H, 

and a2i+l = -a2i for ° ::; i ::; 30. We have found (by using a computer s~arch) an 
SDS (X, Y) with parameters (97; 51, 39; 42) in the additive group of F. Again the 
sets X and Y have the form (3.1) where now 

J {2,4,6,7,11,13,16,20,21,22,24,25,27,28,29,30,31}, 

I{ {0,1,11,12,14,18,20,21,23,25,26,28,31}. 

The SDS (X', Y) has parameters (97; 46, 39; 37). 
We now consider the case v = 73. D-optimal SDS (X, Y) with parameters (73; 

37, 28; 29) are known, they belong to the infinite series mentioned in Theorem (2.3). 
By replacing X with X' the parameters are replaced with (73; 36, 28; 28). We have 
constructed several non-equivalent D-optimal SDS's (X, Y) with parameters (73; 42, 
30; 36). No SDS's with these parameters were known before. 

Let F Z73 be the finite field of order 73, and H the subgroup of order 3 of F*. 
Thus H {1, 8, 64}. We enumerate the 24 cosets of H in F* as follows: 

aO = H, a2 = 2H, a4 = 3H, a6 = 4H, 
a8 = 5H, alO = 6H, a12 = 7 H, a14 = llH 
a16 = 12H, a18 = 13H, a20 = 14H, a22 = 21H, 
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and D:'2+i+l -D:'2i for ° ::; i ::; II. 
We shall list three non-equivalent SDS's (X, Y) with parameters (73; 42, 30; 36). 

In all three cases X and Y have the form (3.1). For the first SDS we have: 

J {0,2,3,4,5,6,12,13,14,15,16,18,20,21}, 
[{ {2,5,9,11,12,13,16,18,22,23}; 

for the second: 

J {2,4,7,8,9,10,12,14,15,16,18,19,20,21}, 
[{ {0,2,5,8,9,13,15,19,22,23}; 

and for the third: 

J {0,1,2,3,6,9,12,14,16,17,18,20,22,23}, 
[{ {4,7,10,13,14,15,16,17,22,23}. 

4. Some New Non-Cyclic D-optimal SDS's 

D-optimal SDS's having parameters (27; 11, 9; 7) are known in an Abelian group 
G of order v = 27 when G is either cyclic (see [22]) or of type 3 x 9 (see [4]). We now 
give an example of an SDS (X, Y), having the same parameters, in the elementary 
Abelian group G (written additively, with generators 1, a, b). They are given by: 

X 

Y 

{ -1, a, -a, -b, 1 + a, 1 - a, a b, b - a, -a 

{l,-a,l-b,-l b,a+b,-a-b,l+a 

b, 1 - a + b, b - 1 - a}, 

b, a-I - b, b - 1 - a}. 

Next we consider D-optimal SDS with parameters (49; 22, 18; 16). Such SDS of 
circular type was found first by Cohn [5]. We present now the first example of such 
SDS in the elementary Abelian group G (written additively, with generators 1 and 
a). They are: 

and 

X {a, 1, 2, 3,4,5,6, a, 2a, 3a, 4a, 5a, 6a, 1 + 5a, 2 + 3a, 

3 + a,3 + 3a,4 + 6a,5 + 4a,5 + 5a,6 + 2a,6 + 6a}, 

Y {3, 5,6, a, 2a, 4a, 1 + a, 1 + 4a, 1 + 5a, 2 + a, 2 + 2a, 

2 + 3a,3 + 3a,4 + 2a,4 + 4a,4 + 6a,5 + 5a,6 + 6a}. 

The first paper investigating D-optimal SDS in non-cyclic Abelian groups is [4]. 
Several such SDS's are constructed in that paper. More precisely the authors have 
constructed D-optimal designs of the form (2.4) where the blocks A and Bare block­
circulant matrices with circulant blocks of size 3 or 5. 

The claim made there that there are no D-optimal designs (2.4) of order 30 with A 
and B multi-circulants is certainly in error. Indeed there is only one type of Abelian 
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group of order 15. Consequently the well known D-optimal design (2.4) of order 30 
(see [9]), in which A and Bare circulants, can be rewritten so that A and B become 
multi-circulants. Explicitly we can take: 

where 

A circ(Ao, AI, A2, A3 , A 4 ), 

B circ(Bo, B l , B2, B 3 , B4 ), 

Ao = circ( -, -, +), Al = Ao, A2 = -Ao, 
A3 = circ( +, -, +), A4 = circ( +, +, +), 
Bo = Ao, Bl = A3 , B2 = A4 , 

B3 = circ( -, +, +), B4 = A4. 

By circ(xI,' .. ,xm ) we denote the circulant matrix whose first row is (Xl," " x m ), 

and + and - stand for + 1 and -1, respectively. 
The error appears to be in their claim [4, p. 129] that it suffices to consider the 

case where all the blocks Di or Gj are ±A or ±B. 
Similarly, their claim that there are no D-optimal designs (2.4) of order 90 where 

A and B are block-circulant matrices with circulant blocks of size 5 is in error. Indeed 
Cohn [5] has constructed aD-optimal SDS with v = 45. Since the direct product of 
cyclic groups of order 5 and 9 is again cyclic, Cohn's D-optimal design of circular 
type can be rewritten as (2.4) with A and B block-circulants having circulant blocks 
of size 5. 

The analogous claim made in [4] regarding the non-existence of D-optimal designs 
(2.4) of order 90 in which A and B are block-circulant matrices, with circulant blocks 
of size 3, remains in doubt. 

5. D-optimal SDS's with V < 100 

On the next page we present the table of feasible parameters (v; T', s; A) with 
v < 100. For each Abelian group of order v we indicate whether or not D-optimal 
SDS with these parameters are known. 

6. SDS Substitutes for Whiteman Designs 

In connection with Theorem (2.4), the authors of [12] have raised the following 
question: Is there an infinite series of cyclic D-optimal SDS's with parameters 

(6.1 ) 

where q is an odd prime power? They point out that they may exist also when q is 
a power of 2. They show that such SDS (X, Y) indeed exist for q = 2,3,4,5, 7, and 
9. Moreover in all their examples Y = (2q + l)X and G = Zv. 

We have constructed (independently) such SDS's for q = 7,8. It turns out that 
our SDS for q = 7 is not equivalent to the one given in (12]. Our SDS for q = 8 
provides the first example of a D-optimal design of order 290. We conclude with the 
description of our SDS's having parameters (6.1) for q = 7,8. 
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v G r s 

1 1 0 0 
3 3 1 0 
5 5 1 1 
7 7 3 1 
9 9 3 2 

3 x 3 3 2 
13 13 6 3 

4 4 
15 3x5 6 4 
19 19 7 6 
21 3x7 10 6 
23 23 10 7 
25 25 9 9 

5 X 5 9 9 
27 27 11 9 

3 X 9 11 9 
3 X 3 X 3 11 9 

31 31 15 10 
33 3 x 11 15 11 

13 12 
37 37 16 13 
41 41 16 16 
43 43 21 15 

18 16 
45 5 X 9 21 16 

3 X 3 X 5 21 16 

Table 1 
D-optimal SDS's for v < 100 

,,\ Existence v G 
0 Yes [9] 49 49 
0 Yes [9] 7x7 
0 Yes [9] 51 3 x 17 
1 Yes [9] 55 5 x 11 
1 Yes [9] 57 3 x 19 
1 Yes [4] 59 59 
3 Yes [9] 61 61 
2 Yes [9] 63 7x9 
3 Yes [9] 
4 Yes [9] 3x3x7 
6 Yes [21] 
6 Yes [21] 69 3 X 23 
6 Yes [24] 73 73 
6 Yes [4] 
7 Yes [22] 75 3 X 25 
7 Yes [4] 3x5x5 
7 Yes * 77 7 X 11 

10 Yes [24] 79 79 
10 Yes [4] 85 5 X 17 
9 Yes [25] 

11 Yes [5] 87 3 X 29 
12 Yes [5] 91 7 X 13 
15 Yes [3] 93 3 x 31 
13 Yes [3] 
15 Yes [5] 97 97 
15 ? 99 9 x 11 

3x3xll 

r s ,,\ Existence 
22 18 16 Yes [5] 
22 18 16 Yes * 
21 20 16 Yes [6] 
24 21 18 ? 
28 21 21 Yes [11] 
28 22 21 ? 
25 25 20 Yes [8] 
29 24 22 ? 
27 25 21 Yes [8] 
29 24 22 ? 
27 25 21 ? 
31 27 24 ? 
36 28 28 Yes [ll] 
31 30 25 Yes * 
36 29 28 ? 
36 29 28 ? 
34 31 27 ? 
37 31 29 Yes * 
39 34 31 ? 
36 36 30 ? 
38 36 31 ? 
45 36 36 Yes [ll] 
45 37 36 ? 
42 38 34 Yes [8} 
46 39 37 Yes * 
43 42 37 ? 
43 42 37 ? 

The question mark in the last column means that the existence question has not 
been resolved so far. The asterisk in the last column means that such SDS is given 
in the previous two sections of this paper. 
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Case q = 7. Let F be the finite field Z 113, and let H be the subgroup of F* of order 
7. Explicitly we have 

H= {1,16,28,30,49,106,109}. 

We enumerate the cosets CYi, 0 ::; i ::; 15, of H in F* as follows: 

CYo = H, CY2 = 2H, CY4 = 3H, CY6 = 5H, 
CY8 = 6H, CYlO = 9H, CY12 = 10H, CY14 = 13H, 

and CY2i+l = -CY2i for 0 :::; i ::; 7. Then 

X- UCY' - ~, y- U CY' - n (6.2) 
iEJ iEK 

where 
J = {0,2,3,5,7,9,13}, [{ = {0,1,3,5,7,8,12}. 

Furthermore we have Y = 15X, and note that 15 = 2q + 1. 

Case q = 8. Let R = Z 145 be the ring of integers modulo 145. Its group of units 
(i.e., invertible elements) has order 112. Let H be the subgroup of order 7 of this 
group of units. Explicitly we have 

H = {1,16,36,81,111,136,141}. 

The group H acts on the additive group (R, +) by multiplication. We enumerate the 
orbits of H for this action as follows: 

CYo = H, CY2 = 2H, CY4 = 3H, CY6 = 5H, 
CY8 = 6H, CYlO = 7 H, CY12 = 10H, CY14 11H, 
CY16 = 14H, CY18 = 22H, CY20 = {29}, CY22 = {58}, 

and CY2i+1 -CY2i for 0 :::; i ::; 11. The SDS (X, Y) again has the form (6.2) with 

J = {0,1,3,4,5,10,12,13,17,20}, [{ = {0,2,6, 7,10,11,14,15,19,20}. 

In this case we have Y = 11X in (R, +). Note that 11 i- 2q + 1. 
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