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Abstract 

For graphs G and G' with minimum degree is = 3 and satisfying one of 
two other conditions, we prove that any isomorphism from the P4 -graph 
P4 (G) to P4 ( G') can be induced by a vertex-isomorphism of G onto G'. 
We also prove that a connected graph G is isomorphic to its P4 -graph 
P4 (G) if and only if G is a cycle of length at least 4. 

1. Introduction. 

Broersma and Hoede [1] generalized the concept of line graphs and introduced 
the concept of path graphs. We follow their terminology and give the following 
definition. Denote by Ih (G) the set of all paths of G on k vertices (k ~ 1). The 
path graph Pk ( G) of a graph G has vertex set Ih( G) and edge set £k( G) with 
the property that for any H, J{ E Ih( G) with H = Xl X2 ... Xk and J{ = YIY2 ... Yk 

there is an edge H J{ E £k (G) if and only if Xi = Yi+l or Yi = Xi+l for 1 :::; i :::; k - 1. 
The way of describing a line graph stresses the adjacency concept, whereas the way 
of describing a path graph stresses the concept of path generation by consecutive 
paths. 

For a graph transformation, there are two general problems [2]. We state them 
here for the P4 -transformation. 

Characterization Problem: Characterize those graphs that are the P4-graph 
of some graph. 
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Determination Problem: Determine which graphs have a given graph as 
their P4 -graph. 

For P2-graphs, i.e., line graphs, there is a well-known result concerning the De­
termination Problem: If G and G' are connected and have isomorphic line graphs, 
then G and G' are isomorphic unless one is J{ 1,3 and the other is I{ 3. This result is 
due to Whitney [3]. For the Determination Problem of P3-graphs, Broersma and 
Hoede found two pairs and two classes of nonisomorphic connected graphs with 
isomorphic connected P 3 -graphs, see [1]. These examples suggest that to obtain a 
similar counterpart with respect to P 3-graphs for Whitney's result on line graphs 
seems to be very difficult. In [4] we proved that the P 3-transformation is one-to-one 
on all graphs with <5 ~ 4. Later in [7] we obtained the same result for all graphs 
with <5 2:: 3. Recently, we proved [8] that for k 2:: 4 the Pk-transformation is one-to­
one on all graphs with minimum degree <5 2:: k. Moreover, we proved that for such 
graphs any Pk-isomorphism can be induced by a vertex-isomorphism. 

In this paper, we shall focus our attention on P4 -isomorphisms. We shall ask 
the question whether for <5 = 3 every P4-isomorphism can be induced by a vertex­
isomorphism. We find that it turns out to be untrue. At the end of Section 3, 
we shall show that there is a P4 -isomorphism from P4(J{4) to itself that cannot 
be induced by any vertex-isomorphism of J{4 onto itself, where I{4 is the complete 
graph with 4 vertices. Unfortunately, the P4-graph of J{4 is 3C4 , where 3C4 is 
the graph obtained by taking three disjoint copies of C4 together, which is not 
connected. However, at the moment we do not know if there are any connected 
graphs with minimum degree <5 = 3 for which the P4-graphs are connected and we 
can find a P4 -isomorphism that cannot be induced by any vertex-isomorphism. It 
would be very interesting to find such graphs. In Section 3, we shall prove that for 
many graphs with minimum degree <5 = 3, every P4-isomorphism can be induced 
by a vertex-isomorphism. 

Finally, in Section 4, we shall consider the question of which graphs G have 
P4(G) ~ G. We prove that G must be a cycle of length at least 4, a result similar 
to that for P 3 -transformations (see Theorem 3.1 of [1]). But, our proof is a little 
bit more complicated. It seems not to be easy to extend the same proof-technique 
to show that Pk (G) ~ G implies that G is a cycle of length at least k for general 
k ~ 5. 

2. Preliminaries. 

In what follows, all graphs are connected and simple with at least 5 vertices. As 
usual, d( u) denotes the degree of a vertex u and N( u) denotes the neighborhood of 
u. For a nonnegative integer d, we denote by 9d the class of all connected graphs 
with minimum degree at least d. An edge is called an endedge if it is incident with 
an end vertex. 

We will follow the treatment of [4] for P 3-graphs, which in turn reflects Jung's 
ideas in [5] and Beineke-Hemminger's treatment in [6]. We introduce the following 
notation and obtain the corresponding results. 
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A vertex-isomorphism from G to G' is a bijection f : V (G) ~ V (G') such that 
two vertices are adjacent in G if and only if their images are adjacent in G'. We 
let f( G, G') denote the set of all vertex-isomorphisms of G to G'. 

An edge-isomorphism from G to G' is a bijection f : E( G) ~ E( G') such that 
two edges are adjacent in G if and only if their images are adjacent in G'. Obviously, 
an edge-isomorphism of two graphs is exactly a vertex-isomorphism of their line 
graphs. We let fe(G, G') denote the set of all edge-isomorphisms of G to G'. 

We shorten f(P4(G),P4(G')) to f 4(G,G') and call the members P4- isomor­
phisms from G to G'. 

For f E fe(G,G'), define a mapping f* by f*(tuvw) = f(tu)f(uv)f(vw) for a 
P4 -path tuvw in G, and call f* the mapping induced by f. We let f*( G, G') = 
{f*IG E fe(G,G')}. 

Note that f* is not defined for a connected graph in general unless it has at least 
one P4-path. Also note that the two edge-isomorphisms of the graph P4 induce the 
same *-function. 

Theorem 1. If G, G' E (13, then 
(1) f*(G, G') ~ f 4(G, G'). 
(2) the mappingT: fe(G,G') -t f*(G,G') given byT(J) = 1* is one to one. 

Proof. (1) Let tuvw be a P4-path in G and f E fe(G,G'). Then f(tu), f(uv), 
f(vw) E E(G'). Since f preserves adjacency and non-adjacency, we have that 
f(tu)f(uv)f(vw) is a P4-path in G', i.e., f* is a mapping from II4(G) to II4(G'). 
Obviously, f* is a bijection. Since f is an edge-isomorphism, we know that f* E 

f 4( G, G'), i.e., f*( G, G') ~ f 4( G, G'). 
To prove (2), let h, Jz E fe(G, G') and h =f=. Jz. Then there exists an edge uv 

such that h(uv) =f=. Jz(uv). Since G E (13, we can find a P4-path tuvw such that 
h *(tuvw) =f=. Jz*(tuvw). Thus, the mapping T is one to one .• 

If P4 = tuvw, then the edge uv is called the middle edge of the P4 and tuvw = 
wvut. We let S(uv) denote the set of all P4-paths with a common middle edge 
uv. Any subset of S(uv) is called a double star at the edge uv. A mapping 
f: II4(G) -t II4(G') is called double star-preserving if the set f(S(uv)) is a double 
star in G' for every edge uv of G. Let f be a double star-preserving P4-isomorphism 
from G to G'. Then, if two P4-paths form a P5-path, their images under f do the 
same. 

Theorem 2. Let G, G' E (h and let f : II4(G) -t II4(G') be a bijective mapping. 
Then f is induced by an edge-isomorphism from G to G' if and only if f and f- 1 

are double star-preserving P4 -isomorphisms. 

Proof. The condition is clearly necessary. For the sufficiency, suppose that f and 
f- 1 are double star-preserving P4 -isomorphisms. Thus, for each edge uv in G, 
there exists an edge u'v' in G' such that f(S(uv)) ~ S(u'v'). Moreover, u'v' is 
uniquely determined by uv. Otherwise, let f(S(uv)) ~ S(u'v') and f(S(uv)) ~ 
S(u"v''), If u'v' =f=. u"v", then f(Suv)) ~ S(u'v') n S(U"V") = 0. Since G E 
03, then f(S(uv)) =f=. 0. This is a contradiction. Since f(S(uv)) ~ S(u'v') and 
G' E 03, we must have f- 1 (S(u'v')) ~ S(uv). Therefore, f(S(uv)) = S(u'v') and 
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f- 1 (S(u'v')) S(uv). We conclude that the function f determines a well-defined 

funct~n 1: E(G) -t E(G') for which f(S(::v)) = S(l(uv)). It is not difficult to see 
that f is a bijection. Now we prove that f preserves adjacency and nonadjacency. 
In fact, if tuv is a P3-path in G, then there is a P4 -path in S(tu) adjacent to some 

P 4 -path in S(uv). Since f is a P 4-isomorphism and f(S(tu)) = S(l(tu)) as well 

as f(S(uv)) S(l(uv)), there exists a P4 -path in S(l(tu)) adjacent to some P4 -

path in S(l( uv)). This implies that l(tu) is adjacent to 1( uv) in G'. Since f- 1 

enjoys the same properties as f, 1 also preserves nonadjacency. Finally, we prove 
that f is induced by 1 Let tuvw be a P4-path and let xtuv E S(tu). Since f is 

double star-preserving, we have that f(xtuv) E f(S(tu)) S(l(tu)) and f(xtuv) 

is adjacent to f(tuvw) E S(l(uv)). Thus, l(tu)l(uv) is the common P3-path of 
f(xtuv) and f(tuvw). By symmetry, !(uv)l(vw) is the other P3-path of f(tuvw) 

and hence f(tuvw) = l(tu)l(uv)!(vw). The proof is complete .• 

Lemma 3. Let G, G' E Q3 and let f be a P4 -isomorpbism from G to G'. Assume 
G and G' satisfy one of tbe following conditions: 
(1) if u is a vertex of some triangle in G, tben d( u) ;:::: 4, 
(2) G and G' do not contain any C4 as asubgrapb. 
Then f is double star-preserving if and only if for every P3 -path tuv of G, 
f(XltUV),···, f(xrtuv) haveacommonmiddleedgeandf(tuvyd,'" ,f(tuvys) bave 
a common middle edge, where Xi E N(t) \ {u,v} for 1 :s; i :s; r, Yj E N(v) \ {u,v} 
for 1 :s; j :s; s. 

Proof. The condition is obviously necessary. Let uv be any edge of G and let tuvw, 
t'uvw' be two P 4-paths in S(uv). We will distinguish the following four possible 
cases. See Figure 1. 

u V 

t' 

w t 

> • • 
v w (w') 

w' t' 

Case 1 Case 2 

t (Wi) 

U 

t' 

t (Wi) 
X 

~ V 

V 

W 
t' (w) 

Case :3 Case 4 

Figure 1 
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Case 1. The four vertices t, t', wand w' are pairwise different. 
From the condition we know that f(tuvw) and f(tuvw') have a common middle 

edge, and f(tuvw') and f(t'uvw') have a common middle edge. Thus, f(tuvw) and 
f(t'uvw') have a common middle edge. 

Case 2. t = t' or w = w'. 
By the condition, we know that f(tuvw) and f(t'uvw') have a common middle 

edge. 
Case 3. t = w' but t' #- w, or t' = w but t #- w'. 
By a proof similar to that of Case 1, we can show that f(tuvw) and f(t'uvw') 

have a common middle edge. 
Case 4. t = w' and t' = w. 
If G and G' satisfy condition (1), then there exsits a vertex x E N( u) \ {t, v, t'}. 

By the condition, we know that f( tuvw) and f( xuvw) have a common middle edge, 
f(xuvw) and f(xuvw') have a common middle edge, and f(xuvw') and f(t'uvw') 
have a common middle edge. Thus, f(tuvw) and f(t'uvw') have a common middle 
edge. If G and G' satisfy condition (2), then this case cannot occur. 

To sum up the above cases, we know that f (S (u v )) is a double star of G', i.e., 
f is double star-preserving. The proof is complete. II 

Note that condition (1) can be weakened as follows: if uv is an edge of a triangle 
of G, then one of d( u) and d( v) is at least 4. 

3. Main Results. 

From [8], we have the following two results. 

Lemma 4. Let f E f 4( G, G') and let Xl tuv, X2tuv, tUVYI and tUVY2 be four P4-
paths ofG. Then f(xltuv) and f(X2tuV) have a common middle edge if and only 
if f(tuvyI) and f(tuVY2) have a common middle edge. 

Lemma 5. Let f E f 4 (G,G') and let xltuv, X2tUV, tUVYI and tUVY2 be four P4-
paths ofG. If f(xltuv) and f(X2tuV) have no common middle edge then f(xltuv), 
f(X2tuV), f(tuVYI) and f(tuVY2) form a C4 in G'. 

Theorem 6. Let G, G' E ~h. Assume G and G' satisfy one of the following two 
conditions: 
(1) if u is a vertex of some triangle in G, then d( u) 2:: 4, 
(2) G and'G' do not contain any C4 as a subgraph. 
Then f E f 4 (G, G') if and only if f is induced by an edge-isomorphism from G 
to G', i.e., P4(G) is isomorphic to P4(G') if and only if the line graph L(G) is 
isomorphic to L( G'). 

Proof. From Theorem 4, we only need prove that both f and f' are double star­
preserving. Since G has the same property as G', we only need to show that f is 
double star-preserving. 

The "if' part is obvious. In the following we will prove the "only if' part. We 
only need to show that f satisfies the condition of Lemma 3. Let tuv be a P 3 -path in 
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G, XltUV,' .. ,xmtuv and tUVYI " .. ,tuvYn be P4-paths of G, where Xi E N(t) \ {u, v} 
for 1 ~ i ~ m, Y j E N (v) \ {u, t} for 1 ::; j ::; n. 

If G and G' satisfy condition (1), then m ~ 2 and n ;:::: 2. Without loss of 
generality, we consider f(xltuv), f(X2tuV), f(tuvyr) and f(tuVY2)' Suppose that 
f( Xl tuv) and f( X2 tuv) do not have a common middle edge. By Lemma 5, f( Xl tuv), 
f(X2tuV), f(tuvyr) and f(tuVY2) form a G4 in G' ( denoted by C'=abcda ), say 
f(xltuv)=abcd, f(X2tuv)=cdab, f(tuvyr)=bcda and f(tuvY2)=dabc. Since G and 
G' satisfy condition (1), there are two vertices p,q E N(XI) and a vertex z E 
N(u) \ {v} such that pXltu, qXltu and xltuz are P 4-paths in G. If f(xltuv) 
and f(xltuz) have a common middle edge, and both f(x1tuv) and f(xltuz) are 
adjacent to f(pxltu), we have that f(xltuv) and f(xltuz) have a common P 3 -path, 
say abc, and f(xltuz)=abcd'. So f(xltuz) is adjacent to f(tuVY2), but xltuz is not 
adjacent to tUVY2 in G, a contradiction to the fact that f E r 4 (G, G'). If f(xltuv) 
and f(xltuz) have no common middle edge, by Lemma 5, f(xltuv), f(xltuz), 
f(pXI tu) and f( qXI tu) form a G4 in G' ( denoted by C" ). Obviously, G'=C", so 
we have f(XltuZ)=f(X2tUV), a contradiction. Then f(xltuv) and f(x 2tuv) have a 
common middle edge. From Lemma 4, we have that f(tuvyr) and f(tUVY2) have a 
common middle edge. 

If G and G' satisfy condition (2), we distinguish the following three cases. 
Case 1. m ;:::: 2 and n ~ 2. 
Without loss of generality, we consider f(xltuv), f(X2tuV), f(tuvyr) and 

f(tuVY2). Suppose that f(xltuv) and f(X2tuV) do not have a common middle 
edge. By Lemma 5, f(xltuv), f(X2tUV), f(tuvyr) and f(tUVY2) form a G4 in G', 
a contradiction. Then f(xltuv) and f(X2tuV) have a common middle edge, and 
f(tuVYI) and f(tuVY2) have a common middle edge. 

Case 2. m = 1 and n ;:::: 2 ( or n = 1 and m ~ 2 ). 
If m = 1, the edge tv must belong to E( G). Since G does not contain any G4 

as a subgraph, there are two vertices p, q E N (xI) and a vertex zEN ( u) \ {t, v} 
such that PXI tu, qXl tu and Xl tuz are P4 -paths in G. A proof similar to that 
of Case 1 shows that f(XltuV) and f(XltuZ) have a common middle edge, and 
that f(pXI tu) and f( qXI tu) have a common middle edge. Let f(Xl tuv )=abcd, 
then f(px1tu)=habc, f(qxltu)=kabc and f(x1tuz)=abce. Since both f(tuvyr) and 
f(tuVY2) are adjacent to f(xltuv) but not to f(x1tuz), then f(tuvyI)=bcdw and 
f(tuVY2)=bcdw', i.e., f(tuVYI) and f(tuVY2) have a common middle edge. 

Case 3. m = 1 and n = 1. 
This case is trival. 
To sum up the above cases, we have proved that f is double star-preserving, 

which completes the proof. • 

From Theorem 3.2 of [6] and our Theorems 1 and 6, the following results are 
immediate. 

Theorem 7. Let G, G' E (h. Assume G and G' satisfy one of the following two 
conditions: 
(1) if u is a vertex of some triangle in G, then d( u) ~ 4, 
(2) G and G' do not contain any G4 as a subgrapb. 
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Then fEr 4 (G, G') if and only if f is induced by an isomorphism of G to G', i.e., 
P4(G) is isomorphic to P4(G') if and only ifG is isomorphic to G'. 

Corollary 8. Let G, G' E 93. Assume G and G' satisfy one of the following two 
conditions: 
(1) if u is a vertex of some triangle in G, then d( u) ~ 4, 
(2) G and G' do not contain any C4 as a subgraph. 
Then the P4 -transformation is one to one. 

Now we show that there is a P4-isomorphism from P4 (K4 ) to itself that cannot 
be induced by any vertex-isomorphism of K4 onto itself. The graph I{4 and its 
P4 -graph 3C4 are shown in Figure 2. 

a d abed dabe abde eabd aebd daeb 

~ DDD 
b e beda edab bdea deab cbda bdac 

Figure 2 

We define a mapping f : II4(K4) -t II4(K4) by f(abed) edab, f(edab) = abcd 
and for the other P4-paths ofII4 (K4 ), the image of each under f is itself. Obviously, 
fEr 4 (K4, K4). There are only two automorphisms of K4, say hand fz, such that 
ft(abed) edab, ft(cdab) = abed, i = 1,2, i.e., h(a) = e, h(b) = d, JI(e) = a, 
h(d) = b, and fz(a) = b, fz(b) = a, fz(e) = d, fz(d) = e. It is easy to find 
a P4-path in II4(K4) such that its image under the induced P4-isomorphism ft 
(i = 1, 2) is not itself. Then the P4-isomorphism f from P4 (K4 ) to itself cannot 
be induced by any vertex-isomorphism of K4 onto itself. 

4. Fixed Point of a P4-transformation. 

From the definition of P4-graphs, we have 

Lemma 9. P4 -graphs do not contain triangles. 

Theorem 10. A connected graph G is isomorpbic to its path grapb P4 (G) if and 
only if G is a cycle of lengtb at least four. 

Proof. It is easy to see that the "i fff part holds. 
Let G have n vertices. Then P4 ( G) must have n vertices too. So G must have 

exactly n subgraphs P4 . 

Since G is connected, it has a spanning tree T. Let a longest path in T 
be XIX2'" Xr-1X r (r ~ 4). If d(xr-d = m ~ 3, let N(Xr-d \ {X r-2, x r } 
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{Xr+l' X r+2, ... xr+m-z}. If T is transformed into a tree T* by removing the 
end-edges Xr-l Xi from Xr-l, and adding it to the end-vertex Xi-I, i = r + 
1" .. ,r + m - 2, then the number of P4 's in T* is lower than that in T by 
(d(xr-d - 2)(d(xr-2) - 2), which is non-negative. If d(xr-d = 2, let Ts be a 
subtree pendant of x j, 3 S j S r - 2, and let x be a neighbor of x j in Ts. If T is 
transformed into a tree T* by removing the subtree pendant Ts from x j and adding 
it to the end-vertex Xr of the resulting tree, then the number of P4 's in T* is lower 
than that in T by (d(x) -l)(d(xj) - 2) +d(Xj-d +d(xj+d - 3, which is positive. 

By repetition of the above two transformations, every tree T can be transformed 
into Pn , which has n - 3 subgraphs P4 . If T is to have no more than n subgraphs 
P4 , it cannot therefore have a vertex Xi of degree 6 or more in a longest path 
Xl X2 ... X r-l X r (r ~ 4), for 3 SiS r - 2, as the above transformations can make 
T into a Pn with a change of at least 4 in the number of P~s and T, and thus G 
would have at least (n - 1) + 4 = n + 1 subgraphs P4. Similarly, T cannot have 
two or more vertices Xi of degree 4 or 5, or four or more vertices of degree 3 in its 
longest path Xl X2 ... Xr-l Xr (r ~ 4), for 3 SiS r 2. And let u be a neighbor 
of Xi, 3 S i ~ r - 2, then d(u) S 3. If d(u) = 3, then there is only one vertex of 
degree 3 in {Xi 13 ~ i S r - 2}. The remaining possible structures of the spanning 

tree ~f G are ,i,P " 
tL ... ~ ... __ J: t~ ... ~ ... -L ... -h 

T 
~ ... .:r ... .-b ~ ... --L ... -L ... 2 
~ ... -L ... -L ... -L ... -L 

(a) 

T 
&-. ... .JL ... .-b tL-. ... ~ ... .---l\ 
~ ... -L ... -L ... --h 

(b) 

~ ... --L ... --b a .~ \. ,~. jJ 
CL-.t ... ~ 

(c) (d) 
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In case (a), the number of sub graphs P4 is equal to the number of vertices. P4(G) 
contains isolated vertices if two adjacent vertices of an edge are incident with two 
end edges, respectively. By the constitution of P4 -graphs, it can be checked that 
G cannot be any of these trees. 

In cases (b) and (c), an edge has to be added to obtain a graph with at least 
n paths of length 3. However, by Lemma 9, then at least three subgraphs P4 are 
added to the n - 1 or n - 2 present in the spanning tree T and P4 (G) would have 
at least n + 1 vertices. 

In case (d), addition of an edge leads to a unicyclic graph G, since otherwise it 
belongs to case (b) or (c). When a ~ 2 or f3 ~ 2, then at least four subgraphs P4 

are added to the n - 3 present in the spanning tree T and P4 (G) would have at 
least n + 1 vertices. When a = 1 and f3 = 1, if the number of vertices of degree 3 
is two, G contains n + 3 subgraphs P4 , and if this number is one, then G contains 
n + 1 subgraphs P4 . The only possibility left is that the added edge is adjacent to 
two endvertices of T, and G is a cycle of length at least 4. The proof is complete . 

• 
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