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Abstract 

For all integers m, nand t, we determine necessary and sufficient condi
tions for the existence of (1) a pair of 3-cube decompositions of Kn having 
precisely t common 3-cubes; and (2) a pair of 3-cube decompositions of 
Km,n having precisely t common 3-cubes. 

1 Introduction 

A great deal of work has been done in recent years on the intersection problem for 
combinatorial designs. The question addressed in intersection problems is: given two 
designs based on the same underlying set of elements, how many blocks may they 
have in common? The intersection problem has been considered for many classes of 
designs, including Steiner triple systems (see [5]), m-cycle systems ([2]) and Steiner 
quadruple systems ([4]). For a fine survey on the intersection problem, the reader is 
directed to Billington [1], and the references therein. 

In this paper we settle the intersection problem for 3-cube decompositions of the 
complete graph Kn and of the complete bipartite graph Km,n' A 3-cube, hen.ceforth 
simply a cube, is the graph C whose vertex set is {Xl, X2, X3, X4, X5, X6, X7, xs} and 
whose edge set consists of the edges of two 4-cycles (Xl, X2, X3, X4) and (X5' X6, X7, xs) 
and the edges {XI,X5}, {X2,X6}, {X3,X7} and {X4,XS}' We denote this graph by 
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(Xl, X2, X3, X4, X5, X6, X7, xs)c. Given a graph G and subgraph H, let G \ H be the 
graph with vertex set V(G \ H) = V(G) and edge set E(G \ H) = E(G) \ E(H). 
The graph Kv \ Ku is called the complete graph on v vertices with a hole of size u, 
with the vertices of Ku forming the hole. 

Given graphs G1 and G2 , with V( Gr) n V( G2 ) 0, let G1 V G2 be the graph with 
vertex set V(G1 VG2 ) = V(G1 )UV(G2 ) and edge set E(G1 VG2 ) = E(G1)UE(G2 ) U 
{{a, b} : a E V(G1 ) and b E V(G2 )}. Given graphs G1 and G2 , with E(GdnE(G2 ) = 
0, let G1 + G2 be the graph with vertex set V(G1 + G2 ) = V(G 1 ) U V(G2 ), and edge 
set E( G1 + G2 ) = E( Gd U E( G2 ). We will use the notation G1 V G2 and G1 + G2 

only when V(GI) n V(G2 ) = 0 and E(G1 ) n E(G2 ) = 0 respectively. 
A C-decomposition of a graph G is a set D of cubes whose edge sets form a 

partition of the edge set of G. Hence a set D of edge-disjoint cubes forms a C
decomposition of G if and only if I:cED C = G. If there exists a C-decomposition of 
G, then we say C divides G and denote that by CIG. 

For a graph G, let I( G) denote the set of integers t for which there exist two 
C-decompositions of G with exactly t cubes in common. We define J( G) to be 
the set of expected intersection numbers. That is, J( G) {O, 1,2, ... ,b} \ {b -
I}, where b = IE(G)I/12 if there exists a C-decomposition of G, and J(G) = 0 
otherwise. Let I(n),J(n),I(m,n) and J(m,n) denote I(Kn),J(Kn),I(Km,n) and 
J( Km,n), respectively. 

In [3], Bryant et al showed that there is a C-decomposition of Kn if and only if 
n == 1 or 16 (mod 24). Thus, J(n) = {O, 1,2, ... ,b} \ {b I}, where b = n(n -1)/24 
if n == 1 or 16 (mod 24), and J(n) = 0 otherwise. 

Also in [3], it was shown that for m :::; n, there is a C-decomposition of Km,n if 
and only if m n == ° (mod 3), mn == 0 (mod 4) and m ~4. Thus, J(m, n) = 
{O, 1,2, ... ,b} \ {b - I}, where b = mn/12 if m == n == 0 (mod 3), mn == 0 (mod 4) 
and m?: 4, and J(m,n) = 0 otherwise. 

Lemmas 1.1 and 1.2 follow immediately from the definitions of J ( n) and J ( m, n). 

Lemma 1.1 For all m, n, I(m, n) ~ J(m, n). 

Lemma 1.2 For all n, J( n) ~ J( n). 

In Sections 2 and 3 we show that J(m, n) ~ I(m, n) and J(n) ~ I(n) respectively, 
thus obtaining the following two theorems: 

Theorem 1.1 For all m and n, I(m,n) = J(m,n). 

Theorem 1.2 For all n, I(n) = J(n). 

We will make frequent use of the following straightforward lemmas. The proof of 
the first one is obvious. 

Lemma 1.3 If G = G1 + G2 + ... + Gn and there is a pair of C-decompositions 
of G i with exactly ti common cubes (for i = 1, 2, ... , n) then there is a pair of 
C-decompositions of G with t1 + t2 + ... + tn common cubes. 
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Lemma 1.4 Let G1 and G2 be edge-disjoint graphs such that IE(GI)I 2:: 36 and 
IE(G2 )1 2:: 24. Suppose CIGI and CIG2 with I(GI ) = J(G I ) and I(G2 ) = J(G2 ). 

Then I( GI + G2 ) = J( GI + G2 ). 

Proof: Let nl = IE(Gdl/12 and let n2 = IE(G2)1/12. Without loss of generality, 
assume that nl 2:: n2. Let t E J( GI + G2). 

If t ~ nl 2, then there exist two C-decompositions of GI with exactly t cubes 
in common and there exist two C-decompositions of G2 with exactly zero cubes in 
common. Thus by Lemma 1.3, there exist two C-decompositions of GI + G2 with 
exactly t cubes in common. 

If t = nl - 1, then there exist two C-decompositions of GI with exactly nl - 2 
(nl - 3 if n2 = 2) cubes in common and there exist two C-decompositions of G2 with 
exactly 1 (2 if n2 = 2) cube in common. Thus, there exist two C-decompositions of 
GI + G2 with exactly t cubes in common. 

Else, if t 2:: nl, then there exist two C-decompositions of GI with exactly nl cubes 
in common and there exist two C-decompositions of G2 with exactly t - nl cube in 
common. Thus, there exist two C-decompositions of G1 + G2 with exactly t cubes 
In common. 

o 

2 The complete bipartite graph 

In this section, we prove that I(m, n) = J(m, n) for all positive integers m and n. 
We first show that 1(6,6) = J(6, 6) and that 1(9,12) = J(9, 12). 

We will present decompositions of [{m,n where the vertex set of [{m,nis (Zm x 
{o} ) U (Zn X {I}) (with the obvious bi parti tion) and the ordered pair (x, y) of this 
vertex set is represented by X y • 

Lemma 2.1 1(6,6) = J(6, 6). 

Proof: Let the vertex set of [{6,6 be {0o, ... , 50} U {Ol,' .. ,5d, with the obvious 
vertex partition. Let D, Do and Dl denote the following designs, respectively. 

D = {(Oo,01,20,31,2I,3o,h,lo)c, (20,21,40,51,41,5o,31,3o)c, 
(OO,11,5o,51,41,40,01,lo)c}, 

Do = {(Oo,01,20,21,11,10,3I,3o)c, (OO,31,5o,51,41,40,21,lo)c, 
(20,11,40,51,41,50,01,3o)c}, 

and 

DI = {(Oo,OI,20,31,21,3o,1I,lo)c, (OO,11,40,51,41,5o,21,2o)c, 
(10,01,5o,51,41,40,31,3o)c}' 

Clearly, each of D, Do and DI forms a C-decomposition of [{6,6. Note that 
IDo n DI = 0, IDI n DI = 1 and ID n DI = 3. 0 

Lemma 2.2 1(9,12) = J(9, 12). 
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Proof: Let the vertex set of [{9,12 be {0o, ... , 8o} U {01,"" lld, with the obvious 
vertex partition. Let D, Do, D1 , D2 and D3 denote the following designs, respectively. 

D = {(0o, 01, 20, 21,11,10,31, 30 )e, 
(00,81,20,101,91,10,111,30)e, 
(10,21,50,101,61,40,11,60)e, 
(30,01,80,81,41,70,31,60)e, 
(40,51,80,111,91,50,71,70)e}, 

Do = {(00,11,10,41,21,30,31,20)e, 
(00,01,20,101,91,10,111,30)e, 
(10,21,50,101,61,40,01,60)e, 
(30,01,80,81,41,70,21,60)e, 
(40,41,80,111,91,50,71,70)e}, 

D1 = {(00,h,10,41,21,30,31,20)e, 
(00,81,20,101,91,10, 1h, 30 )e, 
(10,21,50,101,61,40,01,60)e, 
(30,01,80,81,41,70,21, 60)e, 
(40,41,80,111,91,50,71,70)e}, 

D2 = {(0o, 11, 10,41,21,30,31, 20 )e, 
(00,01,20,101,91,20,111,30)e, 
(10,21,50,101,61,30,11,60)e, 
(30,01,80,81,41,70,21,60)e, 
(40,41,80,111,91,50,71,70)e}, 

and 

D3 = {(0o, 01, 20, 21,11,10,31, 30 )e, 
(00,81,20,101,91,10,111,30)e, 
(10,21,50,101,61,40,01,60)e, 
(30,01,80,81,41,70,21,60)e, 
(40,41,80,111,91,50,71,70)e}, 

(00,41,20,61,51, 10, 71, 30 )e, 
(0o, 31 , 50, 1 h, 71 , 4o, ° 1, 6o) e, 
(20,11, 80, 91, 51, 70, 21, 60 )e, 
(40,41,80,101,81,50,61,70)e, 

(00,51,10,81,61,30,71,20)e, 
(00,31,50,111,71,40,11,60)e, 
(20,11,80,91,51,70,31,60)e, 
( 4o, 51, 8o, 101,81,50, 61, 7o )e, 

(00,01,20,61,51,10,71,30)e, 
(00 ,31 ,50 , 111,71,40,11,60)e, 
(20,11,80,91,51,70,31,60)e, 
(40,51,80,101,81,50,61, 70 )e, 

(00,51,10,81,61,30,71,20)e, 
(00 ,31 ,50 , 1h, 71,40,01,60)e, 
(20,11,80,91,51,70,31,60)e, 
(40,51,80,101,81,50,61,70)e, 

(00,41,20,61, 51,10, 71, 30 )e, 
(00,31,50, 111,71,40, 11,60)e, 
(20,11,80,91,51,70,31, 60)e, 
(40,51,80,101,81,50,61,70)e, 

Clearly, each of D, Do, D1, D2 and D1 forms a C-decomposition of [{9,12. Note 
that IDo n DI = 0, ID1 n DI = 1, ID1 n Dol = 7, ID2 n DI = 2, ID2 n D11 = 5, 
ID3 n DI = 3, ID3 n Dol = 6, ID3 n D21 = 4 and ID n DI = 9 . 0 

Theorem 2.3 I(m, n) = J(m, n) for all positive integers m, n. 

Proof: Let m and n be positive integers such that m ::; n. In [3], it was shown 
that there is a C-decomposition of [{m,n if and only if m n == ° (mod 3), mn == ° 
(mod 4) and m ~ 4. Under these conditions, either 

(e1) m ° (mod 6) and n == ° (mod 6), 
(C2) m 3 (mod 6) and n == ° (mod 12), or 
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(C3) m == ° (mod 12) and n == 3 (mod 6). 
If (Cl) is satisfied, then Km,n can clearly be decomposed into isomorphic copies of 
K6 ,6' Since Km,n and Kn,m are isomorphic, (C2) and (C3) are equivalent. In either 
case, I<m,n can be decomposed into a collection of graphs, each of which is isomorphic 
to either K6 ,6 or K9 ,12. Thus by Lemma 1.4, it suffices to show that [(6,6) = J(6,6) 
and [(9,12) = J(9, 12). 0 

3 The complete graph 

3.1 S mall cases 

In this section we show that [(n) = J(n) for n = 16 and 25. 

Lemma 3.1 {O, 1,2,3,4, 5} ~ [(16). 

Proof: Let the vertex set of K16 be Z16. Then a C-decomposition of K16 is given 
by 

D = {(1,2,5,6,8,3,4,7)c, (9,10,13,14,0,11,12,15)c, 
(1,3,5,7,4,6,8,2)c, (9,11,13,15,12,14,0,10)c, 
(1,9,2,10,5,13,6,14)c, (3,11,4,12,7,15,8, O)c, 
(1,11,2,12,15,6,0,5)c, (1,13,2,14,0,3,15, 4)c, 
(5,9,6,10,11,8,12,7)c, (7,14,8,13,9,3,10, 4)c}. 

Let Do, D1 , D2 , D3 , D4 and D5 be the designs obtained by applying respectively 
each of the permutations (0 1 2 7), (0 1 2 3), (0 1), (0 13), (0 11) and (0 15) to D. 
Then it is straightforward to check that for i E {O, 1,2,3,4, 5}, ID n Di I = i. 0 

Lemma 3.2 {6, 8} ~ [(16); 

Proof: Let 
51 = {(1,2,5,6,8,3,4, 7)c,(1,3,5, 7,4,6,8,2)c}, 

and 
52 = {(1,4,5,8,2,3,6, 7)c,(1,3,5, 7,6,8,2,4)c}, 

so that 51 and 52 are a pair of C-decompositions of Ks \ F (where F is aI-factor) 
with zero common cubes. Also, let 

R = {(O, 1,8,9,10,11,2, 3)c, 
(0,13,1,14,15,3,12,2)c, 
(4,5,12,13,15,14,7,6)c, 

(0,8,3,11,12,4,14,6)c, 
(1,9,2,10,15,5,13,7)c, 
(4,9,6,10,11,7,8,5)c}, 

so that R is a C-decomposition of F V F, where F is a I-factor on eight vertices. 
Hence, by Lemma 1.3 (since K 16 = (I{s \ F) + (F V F) + (Ks \ F)) there is a pair of 
C-decompositions of K 16 with six common cubes and a pair of C-decompositions of 
K16 with eight common cubes. 0 

Lemma 3.3 {7} ~ [(16). 
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Proof: Let the vertex set of K 16 be Z16. Then two C-decompositions of K 16 are 
given by 

and 

{(2,4,8,10,1,5,7,11)c, 
(4,6,10,0,3,7,9,1)c, 
(0,5,2,7,13,10,12,1)Cl 
(1,10,4,14,15,7,13,3)c, 
(2,9,12,11,15,14,7,4)c, 

(3,5,9,11,2,6,8,0)c, 
(0,3,6,9,12,8,1,4)c, 
(0,6,11,14,15,12,5,13)c, 
(2,8,11,13,14,5,15,6)c, 
(3,9,15,10,12,13,8,14)c}, 

D2 = {(0,4,6,8,1,5,7,9)c, (2,4,8,10,1,3,7,1l)c, 
(11,3,5,9,0,2,6,10)c, (0,3,6,9,12,8,1,4)c, 
(0,5,2,7,13,10,12,1)c, (0,6,11,14,15,12,5,13)c, 
(1,10,4,14,15,7,13,3)c, (2,8,11,13,14,5,15,6)c, 
(2,9,12,11,15,14,7,4)c, (3,9,15,10,12,13,8,14)c}. 

Clearly, ID1 n D21 = 7. 0 
The following lemma follows immediately from Lemmas 3.1, 3.2 and 3.3: 

Lemma 3.4 /(16) = J(16). 

Before proving that /(25) = J(25), we need one more result. 

Lemma 3.5 There is a pair of C-decompositions of K13 \ K4 having precisely zero 
common cubes, and a pair with precisely six common cubes. 

Proof: Let the vertex set of K13 \K4 be {O, 1,2, 3}U{4, 5, ... , 12}, with the vertices 
0,1,2,3 in the hole. Then two C-decompositions of K 13 \ K4 are given by 

and 

{(O, 4,1,5,6,2,7, 3)c, 
(0,10,2,11,12,5,8,6)c, 
(1,8,11,9,10,12,4,3)c, 

(0,7,4,8,9,5,6,10)c, 
(1,6, 7,11,12,9,8, 3)c, 
(2,5,4,9,12,11,10,7)c}, 

D2 = {(I, 4, 2, 5, 6, 0, 7, 3)c, (1,7,4,8,9,5,6, 10)c, 
(1, la, 0,11,12,5,8, 6)Cl (2,6, 7,11,12,9,8, 3)c, 
(2,8, ll, 9, 10, 12,4, 3)c, (0,5,4,9,12,11,10, 7)c}, 

Clearly, ID1 n D21 = 0, and ID1 n Dli = 6. 

Lemma 3.6 /(25) = J(25) 

o 

Proof: Let V1, V2 and 113 be three mutually disjoint vertex sets of sizes 12, 9 and 
4 respectively. Let G1 ~ K 16 have vertex set Vi U V3 , let G2 ~ K 9 ,12 have vertex set 
Vi U V2 (and the obvious bipartition), and let G3 ~ K 13 \ K4 have vertex set Y2 U 113 
(with the vertices of 113 in the hole). Then K 25 = G1 + G2 + G3 . 

Now using Lemma 1.3 with t1 E /(16) (see Lemma 3.4), t2 E {0,9} (see Lemma 
2.2) and t3 E {0,6} (see Lemma 3.5) it is straightforward to check that we have 
/(25) = J(25). 0 
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3.2 Constructions 

In this section we give two similar constructions for the cases n == 1 or 16 (mod 24). 

Lemma 3.7 If n == 1 (mod 24) then I(n) = J(n). 

Proof: Let n = 24r + 1 and let VI, V2, ... , Vr be r mutually disjoint vertex sets of 
size 24 and let 00 rf. Ui=l Vi, For each i,j with 1 ::; i < j ::; r, let Gi,j ~ K 24 ,24 have 
vertex set Vi U Vi (and the obvious vertex partition), and for each i = 1,2, ... , r let 
Gi ~ K 25 have vertex set Vi U {oo}. 

Then 

Since 1(24,24) 
I(n) J(n). 

Kn = I: Gi,j + I: Gi. 
lSi<jSr ISiSr 

J(24,24) and 1(25) = J(25), we conclude by Lemma 1.4 that 
o 

In the following lemma we use a similar construction to that described in [3]. 

Lemma 3.8 If n == 16 (mod 24) then I(n) = J(n). 

Proof: Let n = 24r + 16, A = {Xl, X2, .•. , X16} and VI, Y2, ... , Vr be r mutually 
disjoint vertex sets of size 24 such that Vi n A = 0 for all i. For each i, j with 
1 :::; i < j ::; r, let Gi,j ~ K 24 ,24 have vertex set Vi U Vi (and the obvious vertex 
partition), for each i = 1,2, ... ,r let Gi ~ K 25 have vertex set Vi U {xd, and let 
G~ ~ K 15,24 have vertex set Vi U {X2, X3, • .. ,X16} (and the obvious vertex partition). 
Finally, let G ~ Kl6 have vertex set A. Then 

Kn = G + I: Gi,j + I: (Gi + GD· 
ISi<jSr ISiSr 

Since 1(16) J(16), 1(24,24) = J(24, 24), 1(25) = J(25) and 1(15,24) = J(15, 24), 
we conclude by Lemma 1.4 that I(n) = J(n). 0 
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