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Abstract

We show that Menon difference sets and also pairs of periodic com-
plementary binary sequences can be used to construct BHW-arrays. We
present a new method for constructing BHW -arrays over finite groups
of even order. In particular we show that such arrays exist over all cyclic
groups of even order n < 36.

T-matrices are constructed for infinitely many new orders, all of them
even. In particular we obtain T-matrices of size 134, which were not
known before. This means that BH-arrays and Hadamard matrices are
constructed for infinitely many new orders.

1 Introduction

Baumert-Hall-Welch arrays (BHW -arrays) were originally defined over finite cyclic
groups and the definition was extended to matrices over finite Abelian groups (also
known as type 1 matrices). For any finite group G, we define the set BHW(G)
consisting of ordered quadruples (A1, Az, As, A4) of 4 by 4 matrices over the group
ring ZG such that

4

S AAT = nly,

=1
where n is the order of G, A; A} + A;AT = 0 for i # j, and satislying some additional
combinatorial conditions (see section 3 for precise definition). In the case when G is
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Abelian, by applying the left regular representation ¢ of Z( to the matrix entries
we obtain the BHW -array

4
Z .’I:z'(p(/’h),
1=

as defined in [6]. BHW-arrays are used together with T-matrices to construct or-
thogonal designs O D(4n;n,n,n, n), also known as Baumert-Hall arrays (B H-arrays).
This construction is explained in section 4.

Apart from the case when (i is the trivial group, only two BHW -arrays appear
in the literature. The first such array was constructed by L.R. Welch in 1971 over
the cyclic group (s, and the second example was constructed by Ono, Sawade, and
Yamamoto in 1984 over the group C5 x (.

Seberry and Yamada [12] have conjectured that BHW-arrays exist for all orders
n =1 (mod 4). In this paper we present a method for constructing BHW (GY's over
groups of even order. In particular we show that BHW (C,.) exist for all even integers
n = 36. We show that Menon difference sets and pairs of periodic complementary
binary sequences provide new examples of BHW (G)’s. We also show that BHW((C3)
is empty.

We construct T-matrices for infinitely many new orders. More precisely, we show
that if T-matrices of order n exist, then they also exist in orders m* - n, where k is
an arbitrary nonnegative integer and m € {2,6, 10, 14, 18,22, 26}.

Notations : If Ais a matrix, then A(z, 5) denotes its (7, j)-th entry. By AT we denote
the transpose of A. By I, we denote the identity matrix of order n, and by J, the
matrix of order n all of whose entries are 1. A {#1}-matrix is a matrix all of whose
entries are +1.

If G is a group and z,y € G, we define &, to be 1 if = y and 0 otherwise. By
'y we denote the cyclic group of order n (written multiplicatively).

2 Orthogonal designs

A {£1}~ matrix M of order n is called a Hadamard matriz if MMT = nl,. The
existence of such M implies that n is 1,2, or a multiple of 4. The famous Hadamard
matrix conjecture asserts that Hadamard matrices exist for all orders n which are
multiples of 4. In this section we give a brief description of a particular method,
invented by L. Baumert and M. Hall Jr., for constructing Hadamard matrices. This
method is based on the notion of orthogonal designs which we now introduce.

Definition 1. Let @1, ,,..., 24 be independent commuting variables and A a matrix
of order n whose entries are of the form 0, +ay, +z,, . .. , e, If

k
AAT — (Z m,a:?) L,
i=1
where m; are non-negative integers, we say that A is an orthogonal design of type

OD(n;my, ..., my).
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In this paper we are interested exclusively in the orthogonal designs with parame-
ters O D(4n; n,n,n,n), which are also known as Baumert-Hall arraysand abbreviated
as BH-arrays. We shall denote the set of all such arrays by BH(4n).

The first exaraple of such array was constructed by L. Baumert and M. Hall Jr..
Their example was a BH(12) and they used it to construct some new Hadamard
matrices (see [3] and [7, p. 221]). In order to describe this construction we introduce
the following definition.

Definition 2. Williamson type matrices of order m are four {&1}-matrices Wy, Wy,
W, Wy of order m such that

(i) Wowl =w,WwT forall i,j;
(i) T, WWT = 4ml,.

Now let A € BH(4n) and let W;, 1 < i < 4, be Williamson type matrices of
order m. Then each entry of A is +z, for some ¢, and by making the substitutions
z; — W, we obtain from A a Hadamard matrix of order 4mmn.

The basic reference for orthogonal designs is the book [6] of Geramita and Seberry.

3 Baumert-Hall-Welch arrays

In this section we describe a special subclass of OD(4n;n, n,n,n) which are known
as Baumert-Hall-Welch arrays or Welch-type orthogonal designs.

Let (i be a finite group of order n, written multiplicatively, with identity element
1. By Z( we denote its group ring over the integers Z. The inversion map = — 2!
on (7 extends to an involutorial authomorphism of ZG which we denote by *. Thus

we have y
(Z kg,w) = z kore™t
zeG zeG

where k, € Z. This involution extends to the ring My (Z{) of k by k matrices over
Z(. Namely, if A € M(ZG), then the matrix A* is obtained from A by transposing
A and then applying * to cach of the entries. The star operation on My(ZG) is an
involutorial anti-automorphism.

We say that an element x € ZG is hermitian if 2* = z and skew-hermitian if
2* = —z. A subset X C @ is called symmetric if X* = X.

If X ¢ GG we shall identify X with the element of ZG obtained by adding up all
the elements of X, i.e.,

X =3 z€1G.

z€X

Definition 3. An element z € ZG is called a combinatorial element if it can be
written as z = X — Y where X and Y are disjoint subsets of (. In that case we
say that X UY is the support of z. If X UY = G, we say that z has full support.
Two combinatorial elements are said to be disjoint if their supports are disjoint
sets. A matrix A € My(ZG) is called a combinatorial matriz if all its entries are
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combinatorial elements of ZG. Two combinatorial matrices A, B € M (Z{) are said
to be disjoint if the entries A(z, j) and B(1, j) are disjoint for all 7, j.

Definition 4. BHW(() is the set of ordered quadruples (A;, A,, A3, Ag) of 4 by 4
combinatorial matrices over Z(G satisfying the following conditions :

(i) A; and A; are disjoint for i # j:

(i) AiAr = nly | 1 <0< 4

(i) A;AT + AjA =0 for i # .

If BHW (() is nonempty, we shall express this fact also by saying that BHW (@)
exist. By ¢ (or @¢ if that is required by the context) we denote the embedding of
Z( into the ring M, (Z) of n by n integral matrices which arises from the left regular
representation of (7. Explicitly, for x € G, ¢(z) € M,(Z) is the matrix of the left
multiplication by 2 with respect to the basis ¢ of ZG, i.e.,

(@)Y, 2) = boay ; y,2 € G
where 6, , = 1 for z = y and 0 otherwise.

For z € (7, () is a permutation matrix and so ¢(z™) = (z)7. Consequently
we have

o(z") = ()", V2 e ZG.

The ring embedding ¢ : ZG' — M, (Z) extends naturally to an embedding of the
matrix ring My(Z() into M,..(Z). Explicitly, if A € My(ZG), then o(A) is obtained
from A by replacing each entry A(i, j) € Z(/ by the matrix w(A(2, 7)) € Mu(Z). We
also have

P(A) = oAV, A€ My(ZO).
It is easy to verify that, if (Ay, Ay, A3, Ay) € BHW (), then the matrix

4
A= Z x;0( A;)
i=1

isan OD(4n;n,n,n,n). The OD’s which arise in this manner will be called Baumert-
Hall-Welch arrays, and in abbreviated form BHW-arrays (see [6, 13]).

In the next section we shall need some properties of the matrix R = Rg which is
defined by

R(:)’,‘, y) = 61%1; z,y € G
Clearly R is a symmetric matrix. For z,2 € ( we have
Z R(.D, y)R(yv z) = Z 5:cy,1 yz,1 = 5ﬂ:,z;
yeG yeG
i.e., B? = I,. For a,z,w € G we have

Z R(ac,y)ap(a)(y,z)R(z,w) = Z éxy,lgaz,ygzw,l

y,2€G y,2€G

6[1/(1}"‘ ,x—l

= ¢(a)(=w™).

96



. In the case where (7 is Abelian, we have

e(a)(z™ W) = bpu—t o=t = Sumtue = pla ") (z,w),

and so
Ro(a)R = ¢(a™) = p(a)".
Hence, if (¢ is Abelian, then

Re(z)R = o(z)T |, Yo e ZG.

4 T-partitions

In this section we explain the known procedure, due to Turyn (see [6, 13, 14]),
for constructing new BH’s by using BHW’s. For that purpose we need another
definition.

Definition 5. Let H be a finite group of order m. A T-partition of H is an ordered
quadruple (by, by, by, bs) of combinatorial elements of H such that:

(i) the supports of the b;’s form a partition of H;
(i) S bb =

The set of all T-partitions of H will be denoted by T'P(H).
If (b1, by, 03.b4) € TP(H), with H Abelian, then the four matrices g (b;) are
known as T-matrices (see [6, 13]).

Theorem 1. Let G and H be finite Abelian groups of order n and m, respectively.
If BHW(G) and T P(H) exist, then also BH(4mn) ewist.

Proof. Let (A, Ay, As, Ay) € BHW () and (by, by, b3,b4) € TP(H). Define matri-
ces X, 1 <k <4, of order mn by
4
Xp = Z xiﬁonH(Ai(jak)bj))

i=1

where A;(j,k)b; is viewed as an element of the integral group ring of the direct
product G x H. We claim that

4 4
Z XkaT = mn (fo) Y A
k=1 =1

Indeed we have

4 4
XX = Y mawepaxn (A, k)b Ar(s, k)'B)
k=1 7,5,k,rs=1
4 4
= Y wmi@epaxu(bib; ) Aild, k)A (s, k)).
4,7,r,8=1 k=1
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Since A;Ar + A, A7 = 0 for i # r and A;A7 = nly, we obtain

4 4 4
YoXeX{ = 5T wloaun(bn Y Ay, k) Ads, B)")
k=1 1,7,s=1 k=1

4
= > §naleaxu (b))

3,7,5=1
4 4
n (z l‘f) T WExH (Z bjb;)
=1 7=1
4
mn (Z %3) B .

i=1

i

Il

This proves our claim.
Each entry of the matrices X}, is one of +1, +u, +14, 4. We now plug these
matrices into the Goethals-Seidel array

X XoR X3RO XuR
-X;R Xy —RXy RX
—-XsR  RX, X1  —RX,
—X4R —~RX, RX, Xy

and replace R by the matrix Rgyy defined in the previous section.
The resulting matrix, is a BH(4mn). This follows from the following facts:

R*=l,,, RT =R, RX.R=XT,

XiX; = X; X, XoXT = XTX,.

5 Two examples of BHW-arrays

In this section we describe the two known examples of BH W-arrays. Let us introduce
the following four auxiliary matrices:

1000 010 o
| 0100 . -1 00 0
loo0 10| 2= 000 —1 |
000 1 001 0
0 010 00 01
e 0 00 1 e 00 —1 0
3 -1 00 0| 4= 01 00}
0 -1 0 1 -10 00
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We have (01,02, 03,04) € BHW/(G) where G is the trivial group.

The first (non-trivial) example of a BHW -array was constructed by L.R. Welch
in 1971 (see [6]). In his example G = Cs is a cyclic group of order 5. Let z be a
generator of C's. Define matrices A; by

0 1 z—at -z -zt
A = 1 4] r+a2t -z
T t—z x4zt 0 1 ’
\ —z —z* z —z* 1 0
2%+ 2° 0 -1 2% — g?
A, = 0 z? 4+ 2% 22— 2® 1

2 —1 2% —g? —gz?—z” 0 ’

22— z* 1 0 —z? — z*

and
A3 == A}j)’g s A4 = Az(fg.
Since o5 commutes with A; and anti-commutes with Ay, it is easy to verify that
(141, AQ, A3, A4) S BHW(Cg)
The second example of a BHW-array was constructed by Ono, Sawade and
Yamamoto in 1984 (see [10, 12, 13]). In their example G = O3 x C; is the direct
product of two cyclic groups of order 3 with generators z and y. The matrix

14z +2? 22—z 2 —x z? —z
4 A B z — z? 14z + z? 2% — z — x?
1= A(e) = z — 22 z — @2 14z + 2? z% -z

\ z — z% z? -z z — z? 142+ z?

is hermitian (i.c., A} = A;), satisfies the equation Ay A] = 9I,, and anti-commutes
with oy, 03, and o4, Set

Ay = Ai(y)oy, As= As(zy)os, Aa= Al(fﬂzy)%-
Now it is easy to check that (Aq, As, Az, Ag) € BHW(C5 x C3).

6 A construction for BHW-arrays

In this section we describe a particular method for constructing BHW-arrays. It is
based on the following theorem.

Theorem 2. Let G be a finite group of order n (not necessarily Abelian). Assume
that there ewists o combinatorial matriz A; whose columns are T-partitions of G and
such that Ay A* = nls. Then (Ar, Ay = 0344, Az = 0341, Ay = 0441) is « BHW(G).
If such A; exists, then n = 1 or n 1s even.

Proof. Since the columns of A; are T-partitions of (G, the matrices Ay, Az, As, Ay
are pairwise disjoint. All the other required properties of the 4;’s follow immediately
from A, A% = nl, and the properties of the matrices o;.
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Now assume that A, exists having the properties mentioned in the theorem.
Assume that n > 1 is odd. By Feit-Thompson theorem, (7 is solvable and so G' # G.
Hence (¢ has a nontrivial 1-dimensional complex representation say, x.

Let (51, 82, 83, $4) be the column sums of A;. We have

=G 2X,, X.cdG.

Since A; A} = nly, we have
4
ZS]'Al(l,j)* = n.
=1

By applying x to this equation, and by using the fact that x(G) = 0, we obtain

Sox(Xx(Al(L, j)7) = ~-§

J=1

As the left hand side of this equality is an algebraic integer, n must be even. B

Recall that a subset X of cardinality k of a finite group (¢ of order n is called a
difference set if
XX =M+ (k-X) 1,

for some integer A. Note that this equation implies that k2 = An + k — A
A difference set is called a Menon difference set (or Hadamard difference set) if
n = 4(k — A). It is well known that the parameters of a Menon difference set have
the form
n=4u?, k=2%-u A=u'-u
for some integer w. It is also known that, for each u of the form « = 23" where
a,b > 0 are arbitrary integers, there exists at least one Abelian group of order

n = 4u"‘ having a Menon difference set. For more information about the existence of
Menon difference sets see [1, &].

Corollary 1. If G is a finite group of order n possessing a Menon difference set X,
then BHW(G) exist.

Proof. Let (n,k,)) be the paramecters of X and recall that n = 4(k — ). The
element a = (G — 2X is a combinatorial element of ZG with full support. We have

aa® = (G -2X)(G -2X%)
= (n—-4k)G +4X X~
n—4k + 440G + 4(k - A) - 1
= n.
Hence we can apply the theorem to the diagonal matrix A; = alj. B
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Corollary 2. If G is a finite group having a T-partition (a,b,0,0) such that ab* =
b*a, then BHW(() exist.

Proof. It suffices to observe that the matrix

a —b* 0 0
b a* 0 0
A=l 0 .
0 0 b a
satisfies the conditions of the theorem. B

Hu=a+bv=a—bie,a=(ut0)/2,b=(u—0v)/2, then (¢,b,0,0) € TP({)
if and only if u and v are combinatorial elements in Z(' having full support and
satisfying the equation

w4 v = 2n. (1)
Now let (f = (,, =< z > and write
n—1 ) n--1 .
xl 7 Pl . v
U = E wr', v= Z VT
=0 PE=N]

where all coefficients u; and v; are £1. If u and v satisfy (1), we say that the binary
sequences
U =g, uy,. . tpq and V = vp,v1,...,0py

are two periodic complementary sequences (PCSY). This means that

n—1
N .
Z(?Lzum +owig)=0; 7=1,2,...,n—1;
1=0
where u, = u; and Vi, = v,
If the stronger conditions

n—7—1

2 (vwithipj +vivigy) =0 7=12,...,n—1;

hold, then we say that I/ and V are two aperiodic complementary sequences (ACSY)
or Golay sequences.
It is known (see [13]) that AC S} exist for all n of the form

n = 2"10°26° (2)

where a,b, ¢ are arbitrary nonnegative integers. In addition it is known that PC.S5*
exist and that PC Sy is empty for all other values of n < 50 not of the form (2) (see
[2, 4, 5)).

Hence BHW () exist for n = 34 and all integers n of the form (2). For n < 40
these are the following integers:

n=1,2,4,8,10,16,20,26, 32,34, 40.
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Corollary 3. If (i is a finite Abelian group having a T-partition (a,b,c,0) such that
a,b, and ¢ have symmetric supports, then BHW (G) exist.

Proof. The matrix

a 0 b c
0 a —c* b
Ar = —b* ¢ a* 0
—c* ~-b 0 a
satisfies the conditions of the theorem. B

7 Some new BHW-arrays

In this section we show that BHW(C,) exist for n = 6, 12, 14, 18, 22, 24, and also
that BHW (D3) exist where Dj is the dihedral group of order 6.

In view of Theorem 2, Corollary 3, it suffices to construct 7-partitions (a, b, ¢, d)
of (), =<2 > such that d = 0 and each of a,b, ¢ has symmetric support. We have
found many such T-partitions, but we give in Table 1 only one for each of the values
listed above and also for n = 10 and 26.

We give now an example of a BHW (D3) where Dy =< z,y : 2° = ¢? = (2y)? =
1 > the dihedral group of order 6. Let a,b,c € Z D5 be defined by

a=(z+zy, b=y, c=1+z— 2%

Then the matrix

a b c 0
b —a 0 c
A= ¢ 0 —a -b
0 c —-b 0

satisfies the conditions of Theorem 2. Hence

(Al., UQA], Cf'gAl, 0'414.1) & BHW(Dg)

8 Multiplication theorems
It is well known that if X C G and Y C H are Menon difference sets, then
(X x(H\Y)HU{(G\X)xY)

is & Menon difference set in G' x H. In this section we prove that several analogous
results are valid for T-partitions and BHW’s.

Theorem 3. Let G and H be finite Abelian groups, (a,b,c,d) € TP(G), and
(a,8,7v,6) € TP(H). If o, 8,7, have symmetric supports, then

u = a"a+bf+ ey +dd,
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Table 1

T-partitions (a,b, ¢, 0) of (', with symmetric supports

n=~06 a=1b=2a c=ct+art+22-a"?;
n=10 a=14+z*+a"% b=2"
c:£+z'l+rz—w" stzn"},
n=12 a=1-a+z7! 425
b=z +272% — 2" + 277,
c=—zgttatfa 42t
: 5 -6 7
n = 14 (L:I+x‘-+;r°,b:‘:v,“ )
c=xtat—alta bt b e bt — Tt - 28—

n=18 a=1-+4+a2"—a % +27+a27 742" —a7¥,
b=u" -2+ 25+ 278+ 2"

c=u+a 4t -t ! 4

—gt -
n=22 a=1—z+a -2+ 424274
b= 2" 427 42® — 25 +2° 4270 + 11,
= 2P b at f a5 bz —gf o8 10 10

n=2 a=l-—-z4+r "+ttt -2 4+20 4212
b=atdat o abfa—ab— 26— f o 4 g0 4 gm0
c=a 478 — ¥ 2% 4ot -l

n=2 a=1—-2"F+2 %+ 204271042 g7 g g 12

b=a? -z +at— 274~ 284270 4 2% — 278 L 213
c=c4az 42— —2b—z P 427 — 27"
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v

il

b"a — af + dy* — b7,
ca—df” — ay + b,
d*a+ " — by" — aéd,

w

il

z

il

form a T'-partition of ¢ x H.

Proof. Since o, 3., § have symmetric supports, the elements u, v, w, z of Z(G x H)
are combinatorial elements with disjoint supports. A straightforward computation
shows that

uu” 4+ 0"+ ww” + 22" = (aa” 4+ 00" + " 4+ dd*) - (aa” + BT 4y + 567).

As (a,b,c,d) € TP(G)and (o, B,7.6) € TP(H), it follows that (u,v,w,z) € TP(Gx
H). B

According to [12], among integers n < 210, T-partitions (or equivalently T-
matrices) are not known for any group of order n only for the following values of
n:

71,73.79,83,89,97,103,107,109, 113, 127,
131,133,134, 135,137, 139, 149, 151, 157, 163,
167,173,179, 181,183,191, 193, 197, 199.

Subsequently, T-sequences of length 71 were constructed in [9]. Recall that 7-
matrices of order 67 are known (see [11]), while T-sequences of length 67 are still
not known. We can use Theorem 3 to construct T-matrices of size 134. Hence the
numbers 71 and 134 should be removed from the above list. More generally, we
obtain infinitely many new orders for T-matrices, e.g. all orders 6% - 67 with k& > 1.

By reducing coefficients modulo 2, it is easy to see that if there exists (b, by, b3, by)
in T'P(G) with each b; having symmetric support, then the order of G must be even.

Theorem 4. Let ¢ and H be finite groups of order n and m, respectively. Let A; €
My(Z() satisfy the conditions of Theorem 2 and let (By, By, B3, B4) € BHW (H). Let
Cr = A}By, considered as a matriz over the group ring Z(G x H). Then
(Ch, Oy, Ca,Cy) € BHW(G < H).

Proof. Since A1A} = nls and ByB; = mly, we have C,C} = mnl,. For i # § we
have BZ-B;-‘ + B;Bf =0, and so CiC']”-‘ + C;C; = 0. The (4, 7)-th entry of C} is given
by

4

Cilig) = > As(r,i)* Bi(r, 7).
r=1
These entries are obviously combinatorial elements of Z(G x H). Since the elements
By(r,7), k = 1,2,3,4, have disjoint supports and the elements A,(r,7)*, r = 1,2,3,4,
have disjoint supports, it follows that the elements Cy (1, 7), k = 1, 2, 3,4, have disjoint
supports. B
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Theovrem 5. Let (3 be a finite group, H a subgroup of G of index 2 and y € G'\ H.
If (Ay, Ay, As, As) € BHW(H) and

1 Y 0 0
-1
-y 1 0 0
b= 0 0 1 y
0 0 —y 't
then (A4 B, AyB, ALB, AB) € BHW ().
Proof. The verification of this assertion is straightforward. B

Corollary 1. BHW((,,) exist for all even inlegers n < 36.

Proof, For the cases n = 2, 4,8 10, 16,20, 26,32, and 34 see section 6, and for the
cases n = 6,12, 14, 18,22, and 24 see section 7. The assertion in the cases n = 28
and 36 follows from the above theorem. For n = 30 we can use Theorem 4. ]

9 BHW((s) is empty

In this section we prove the assertion made in the title. Assume that there exists
(Aq, Ay, Az, Ay) € BHW(Cy)

where (U5 =< x >. All the entries of the matrices A; must be either 0 or of the form

+2F. Furthermore exactly one zero occurs in each row and column. Without any
loss of generality we may assume that

o 1 1 1
~1 0 1 =1

Av=1 ) o
1 1 -1

This can be achieved by a transformation
Ay — PAPY, 1<1<4, (3)

where P is a suitable monomial matrix with nonzero entries of the form +a*.

The disjointness of the A;’s implies that one of the matrices Ay, A3, A4 has &1 as
its first entry. We may assume that this matrix is A,. By replacing A, by —A4,, if
necessary, we may assume that A,(1,1) = 1.

Let us denote by ry, 73,73, 74 the rows of Ay and by s1, 89, 83, 54 those of A;. We
have A1 A7 + A3 A} = 0 and hence 787 + 5,77 = 0 foralliand j. Fori=1and j =2
we obtain the equation

AQ(Z, 2)* + 442(2,3)* + A2(2,4)* - Ag(l., l) -+ A‘z(l, 3) - A2(1,4) = 0. (4)
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By disjointness of Ay and Ay, we know that A(2,7) # +1 for j # 2. Since
Ay(1,1) = 1, the above equation implies that A5(2,2) = 1. Similarily, we can
show that A4,(3,3) = A3(4,4) = 1.

One of the entries Ay(1,7), 7 # 1, is 0. 1f we perform the transformation (3)
where

1 000
0010
DR
P= 0601}
0100

then A, remains invariant, the diagonal entries of Ay remain equal 1, and the entries
Ay(1,4), 7 # 1, are permuted cyclically. Hence we may assume that As(1,2) = 0.
Since the left hand side of (4) cannot have exactly three nonzero terms, it follows
that Ay(2,1) = 0. Since each row and column of Ay has exactly one zero, it follows
that Az(:},4) = A2<4,3) = (.

Since Ay A5 = 313, we have 8:87 = 3dg;. For i = 1,2 and j = 3 we obtain the
equations :

Ax(3,1) ~A(1,3)". Ay(3,2) = —Ax(2,3),
A4 1) = —Ay(L,4)7, Ag(4,2) = —A4(2,4)",

il

and for 7 = 1, j = 2 the equation
/12(1,3)/42(2,3)* + 142(1,4)442(2?4)* = (. (5)

The equation rys3 + 5173 = 0 implies that A5(2,3) = Ay(1,4), and rys% + 8,7 = 0
implies that A,(2,4) = —A,(1,3).

The equation (5) implies that the element A5(1,3)A45(1,4)* is hermitian and so
is £1. Thus Ay(1,4) = £A4,(1,3). From rys} + s:7] = 0, we deduce that Ay(1,3) +
Ay(1,4) is skew-hermitian, and so we must have Ay(1,4) = —Ay(1,3).

Since Ay(2,3) = Ay(1,4) = —A2(1.3) and Ay(2,4) = —Ay(1,3), the equation (4)
reduces to

2(A5(1,3) — Ax(1,3)") = 0.

This is impossible since A3(1,3) is kx or +22. Hence we have a contradiction and
the proof is completed.
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