On Cross Numbers of Minimal Zero Sequences

Scott T. Chapman*
Trinity University
Department of Mathematics
715 Stadium Drive
San Antonio, Texas 78212-7200

Alfred Geroldinger
Institut für Mathematik
Karl-Franzens-Universität Graz
Heinrichstrasse 36
A-8010 Graz, Austria

Abstract

Let G be a finite abelian p-group. We compute the complete set of cross numbers of minimal zero sequences associated with G. We also strengthen a result of Krause concerning minimal zero sequences with cross numbers less than or equal to 1 .

1 Introduction

Let G be an additively written finite abelian group and $S=\left(g_{1}, \cdots, g_{l}\right)$ a sequence of elements of G. For ease of notation, we will also denote S by $S=g_{1} \cdots g_{l}$ and use exponentiation to represent repetition in the sequence. We say that S is a zero sequence if

$$
\sum_{i=1}^{l} g_{i}=0
$$

Further, S is called a minimal zero sequence if $\sum_{i \in I} g_{i} \neq 0$ for each proper subset $\emptyset \neq I \subset\{1, \cdots, l\}$. The cross number $k(S)$ of S is defined by

$$
k(S)=\sum_{i=1}^{l} \frac{1}{\operatorname{ord}\left(g_{i}\right)} .
$$

Let $\mathcal{U}(G)$ represent the set of all minimal zero sequences of G and

$$
W(G)=\{k(S) \mid S \in \mathcal{U}(G)\}
$$

[^0]the set of cross numbers of minimal zero sequences. Then
$$
K(G)=\exp (G) \max W(G)
$$
is called the cross number of G.
Cross numbers of minimal zero sequences, and in particular the cross number of G, have found a great deal of attention in recent literature (see the references). In this note, we determine $W(G)$ for all finite abelian p-groups G. In section 3 we solve Problem 5 of [1], which deals with special minimal zero sequences S satisfying $k(S) \leq 1$.

Throughout our discussion, we will use notation consistent with that of the papers [4]- [7]: Z represents the set of integers, N_{+}the set of positive integers, and C_{n} the cyclic group consisting of n elements.

2 On W(G)

Lemma 1 Let $G=H \oplus C_{2^{r}}$ be a finite abelian group with $r \geq 1, \exp (H)=2^{s} m$ for some $0 \leq s<r, m$ odd, and $\exp (G)=2^{r} m=n$. For every $B \in \mathcal{U}(G)$ we have that $k(B)=\frac{\lambda}{n}$ for some even $\lambda \in \mathbf{N}_{+}$.

Proof: Let

$$
B=a_{1} \cdots a_{k} b_{1} \cdots b_{l} \in \mathcal{U}(G)
$$

be given with $2^{r} \chi \operatorname{ord}\left(a_{i}\right)$ for $1 \leq i \leq k$ and $2^{r} \mid \operatorname{ord}\left(b_{j}\right)$ for $1 \leq j \leq l$. Thus, there are even numbers $n_{i}, 1 \leq i \leq k$, such that

$$
n=\operatorname{ord}\left(a_{i}\right) n_{i}
$$

and hence,

$$
\sum_{i=1}^{k} \frac{1}{\operatorname{ord}\left(a_{i}\right)}=\sum_{i=1}^{k} \frac{n_{i}}{n}=\frac{\lambda_{1}}{n}
$$

for some even $\lambda_{1} \in \mathbf{N}_{+}$. For every $1 \leq j \leq l$ we set

$$
b_{j}=d_{j}+c_{j}
$$

with $d_{j} \in H$ and $c_{j} \in C_{2^{r}}$ with ord $\left(c_{j}\right)=2^{r}$. Then,

$$
2^{r-1}\left(c_{j}+c_{j^{\prime}}\right)=0
$$

for all $1 \leq j<j^{\prime} \leq l$ and thus

$$
2^{r} \nmid \operatorname{ord}\left(b_{j}+b_{j^{\prime}}\right) .
$$

Since $\sum_{i=1}^{k} a_{i}+\sum_{j=1}^{l} b_{j}=0$, we infer that l is even. There are odd numbers m_{j}, $1 \leq j \leq l$, such that

$$
n=\operatorname{ord}\left(b_{j}\right) m_{j}
$$

and hence

$$
\sum_{j=1}^{l} \frac{1}{\operatorname{ord}\left(b_{j}\right)}=\sum_{j=1}^{l} \frac{m_{j}}{n}=\frac{\lambda_{2}}{n}
$$

for some even $\lambda_{2} \in \mathbb{N}_{+} . \diamond$
Set $W^{*}(G)=\{k(S) \mid S \in \mathcal{U}(G)$ and $k(S) \leq 1\}$. In the next theorem we determine $W^{*}(G)$ for all finite abelian groups G.

Theorem 2 Let G be a finite abelian group of exponent $n=2^{r} m$ for some odd m and some $r \geq 0$. If $C_{2^{r}} \oplus C_{2^{r}}$ is a subgroup of G, then

$$
W^{*}(G)=\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq n\right\}
$$

Otherwise,

$$
W^{*}(G)=\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq n, \lambda \text { even }\right\}
$$

Proof: By definition

$$
W^{*}(G) \subseteq\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq n\right\}
$$

If $C_{2^{r}} \oplus C_{2^{r}}$ is not a subgroup of G, then Lemma 1 implies that

$$
W^{*}(G) \subseteq\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq n, \lambda \text { even }\right\}
$$

In order to prove the reverse inclusion, let $\lambda \in\{2, \ldots, n\}$ be given (if G has no subgroup isomorphic to $C_{2^{r}} \oplus C_{2^{r}}$, then suppose that λ is even).

Case 1: Suppose that, λ does not divide n. Suppose further that $\operatorname{gcd}(\lambda, m)=\alpha$, $\lambda=\alpha \lambda^{\prime}=$ and $m=\alpha m^{\prime}$. Then

$$
\frac{\lambda}{n}=\frac{\lambda^{\prime}}{n^{\prime}}
$$

with $n^{\prime}=2^{r} m^{\prime}, 2 \leq \lambda^{\prime} \leq n^{\prime}, \lambda \equiv \lambda^{\prime} \bmod 2$ and $\operatorname{gcd}\left(\lambda^{\prime}, m^{\prime}\right)=1$.
If λ^{\prime} is even, then

$$
B=\binom{1+m^{\prime} \mathbb{Z}}{1+2^{r} \mathbb{Z}}^{\left(\lambda^{\prime}-2\right)}\binom{2+m^{\prime} \mathbb{Z}}{1+2^{r} \mathbb{Z}}\binom{-\lambda^{\prime}+m^{\prime} \mathbb{Z}}{\left(1-\lambda^{\prime}\right)+2^{r} \mathbb{Z}} \in \mathcal{U}\left(C_{m^{\prime}} \oplus C_{2^{r}}\right)
$$

and

$$
k(B)=\frac{\lambda^{\prime}-2}{n^{\prime}}+\frac{1}{n^{\prime}}+\frac{1}{n^{\prime}}=\frac{\lambda}{n}
$$

If λ^{\prime} is odd, then $C_{2^{r}} \oplus C_{n^{\prime}}$ is a subgroup of G. Furthermore,

$$
B=\binom{1+n^{\prime} \mathbb{Z}}{1+2^{r} \mathbb{Z}}^{\left(\lambda^{\prime}-2\right)}\binom{2+n^{\prime} \mathbb{Z}}{1+2^{r} \mathbb{Z}}\binom{-\lambda^{\prime}+n^{\prime} \mathbb{Z}}{\left(1-\lambda^{\prime}\right)+2^{r} \mathbb{Z}} \in \mathcal{U}\left(C_{n^{\prime}} \oplus C_{2^{r}}\right)
$$

and

$$
k(B)=\frac{\lambda^{\prime}-2}{n^{\prime}}+\frac{1}{n^{\prime}}+\frac{1}{n^{\prime}}=\frac{\lambda}{n}
$$

Case 2: Suppose that $\lambda=n$. Take some $0 \neq g \in G$ and set $B=g^{\operatorname{ord}(g)}$. Then $k(B)=1$.

Case 3: Suppose that $\lambda<n$ and $\lambda \mid n$. Then there is a prime $p \in \mathbb{N}_{+}$dividing λ such that

$$
\frac{\lambda}{n}=\frac{p}{p^{s} l}
$$

with $s \geq 1, p \nmid l, p^{s} l \mid n$, and $l \in \mathbf{N}_{+}$. If λ is even, we choose $p=2$.
Case 3.1: Suppose $p=2$. Take some element $g \in G$ of order $p^{s} l$ and set $B=(-g) g$. Then

$$
k(B)=\frac{2}{p^{s} l}=\frac{\lambda}{n}
$$

Case 3.2: Suppose $p \geq 3$ is odd.
Case 3.2.1: Suppose that l is odd. Set

$$
B=\binom{1+p^{s} \mathbb{Z}}{1+l \mathbb{Z}}^{\frac{p-3}{2}}\binom{1+p^{s} \mathbb{Z}}{-1+l \mathbb{Z}}^{\frac{p-3}{2}}\binom{1+p^{s} \mathbb{Z}}{-1+l \mathbb{Z}}^{2}\binom{(1-p)+p^{s} \mathbb{Z}}{2+l \mathbb{Z}}
$$

Then $B \in \mathcal{U}\left(C_{p^{s}} \oplus C_{l}\right)$ and

$$
k(B)=\frac{(p-3) / 2}{p^{s} l}+\frac{(p-3) / 2}{p^{s} l}+\frac{2}{p^{s} l}+\frac{1}{p^{s} l}=\frac{\lambda}{n} .
$$

Case 3.2.2: Suppose that $2^{t} \mid l$ for some $t \geq 1$. Since p is odd, λ is odd and hence $C_{p^{s} l} \oplus C_{2^{t}} \cong C_{p^{s}} \oplus C_{l} \oplus C_{2^{t}}$ is a subgroup of G. Set

$$
B=\left(\begin{array}{c}
1+p^{s} \mathbb{Z} \\
1+l \mathbb{Z} \\
0+2^{t} \mathbb{Z}
\end{array}\right)^{\frac{p-3}{2}}\left(\begin{array}{c}
1+p^{s} \mathbb{Z} \\
-1+l \mathbb{Z} \\
0+2^{t} \mathbb{Z}
\end{array}\right)^{\frac{p-3}{2}}\left(\begin{array}{c}
1+p^{s} \mathbb{Z} \\
-1+l \mathbb{Z} \\
0+2^{t} \mathbb{Z}
\end{array}\right)\left(\begin{array}{c}
1+p^{s} \mathbb{Z} \\
-1+l \mathbb{Z} \\
-1+2^{t} \mathbb{Z}
\end{array}\right)\left(\begin{array}{c}
(1-p)+p^{s} \mathbb{Z} \\
2+l \mathbb{Z} \\
1+2^{t} \mathbb{Z}
\end{array}\right)
$$

Then $B \in \mathcal{U}\left(C_{p^{s}} \oplus C_{l} \oplus C_{2^{t}}\right)$ and

$$
k(B)=\frac{p}{p^{s l}}=\frac{\lambda}{n} . \diamond
$$

Example 3 Let G be any finite abelian group of odd order with exponent n. Then Theorem 2 yields (with $r=0$) that

$$
W^{*}(G)=\left\{\frac{2}{n}, \frac{3}{n}, \ldots, \frac{n}{n}\right\}
$$

In particular, if $G \cong C_{p^{\prime}}$ (with p an odd prime), then Krause's result [8] implies that

$$
W(G)=\left\{\frac{2}{p^{s}}, \frac{3}{p^{s}}, \ldots, \frac{p^{s}}{p^{s}}\right\}
$$

In particular, if $G \cong C_{p^{*}}$ (with p an odd prime), then Krause's result [8] implies that

$$
W(G)=\left\{\frac{2}{p^{s}}, \frac{3}{p^{s}}, \ldots, \frac{p^{s}}{p^{s}}\right\} .
$$

For $p=2$ the same group as above yields

$$
W(G)=\left\{\frac{2}{2^{s}}, \frac{4}{2^{s}}, \ldots, \frac{2^{s}}{2^{s}}\right\} .
$$

Theorem 4 Let G be a finite abelian p-group for some prime p. Suppose that $G \cong$ $\oplus_{i=1}^{r} C_{n_{i}}$ with $1=n_{0}<n_{1} \leq \cdots \leq n_{r}=n$. If p is odd, or if $p=2$ and $n_{r-1}=n$, then

$$
W(G)=\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n r-\sum_{i=1}^{r-1} \frac{n}{n_{i}}\right.\right\} .
$$

Otherwise,

$$
W(G)=\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n r-\sum_{i=1}^{r-1} \frac{n}{n_{i}}\right., \lambda \text { even }\right\} .
$$

Proof: In either of the two cases above, $W(G)$ is contained in the set on the right side of the equality by [5] and Lemma 1. In order to show the reverse inclusion, we proceed by induction on r. For $r=1$ the assertion follows from Theorem 2. Let e_{1}, \ldots, e_{r} be a generating system for G with ord $\left(e_{i}\right)=n_{i}$ for $1 \leq i \leq r$.

Case 1: p odd (or $p=2$ and $n_{r-1}=n$). First suppose that $G=C_{2}{ }^{\circ} \oplus C_{2^{s}}$ for some $s \in \mathbb{N}_{+}$(i.e., $p=r=2, n_{1}=n=2^{s}$). By Theorem 2 we have that

$$
\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq n\right\} \subseteq W(G) \subseteq\left\{\left.\frac{\lambda}{n} \right\rvert\, 2 \leq \lambda \leq 2 n-1\right\}
$$

For each $0 \leq l \leq n-1$, set

$$
B_{l}=e_{1}^{n-1-l} e_{2}^{n-1-l}\left(e_{1}+e_{2}\right)^{l+1} \in \mathcal{U}(G)
$$

We have $k\left(B_{l}\right)=\frac{2 n-1-l}{n}$ and hence

$$
\left\{\left.\frac{\lambda}{n} \right\rvert\, n \leq \lambda \leq 2 n-1\right\} \subseteq W(G)
$$

which completes the proof for $G=C_{2^{s}} \oplus C_{2^{s}}$.
Now suppose that $r \geq 2$ if p is odd (resp. $r \geq 3$ if $p=2$) and that the result holds for $r-1$. By the induction hypothesis we have that

$$
\begin{gathered}
\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n(r-1)-\sum_{i=2}^{r-1} \frac{n}{n_{i}}\right.\right\}=W\left(\oplus_{i=2}^{r} C_{n_{i}}\right) \subseteq \\
W\left(\oplus_{i=1}^{r} C_{n_{i}}\right) \subseteq\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n r-\sum_{i=1}^{r-1} \frac{n}{n_{i}}\right.\right\} .
\end{gathered}
$$

Hence, it remains to verify that for every $1 \leq l \leq n-1$ there exists some $B_{l} \in \mathcal{U}(G)$ with

$$
k\left(B_{l}\right)=\sum_{i=1}^{r-1} \frac{n_{i}-1}{n_{i}}+\frac{l+1}{n} .
$$

Let $l \in\{1, \ldots, n-1\}$ be given. If $p X l$ or $p=2$, then

$$
B_{l}=\prod_{i=1}^{r-1} e_{i}^{n_{i}-1} e_{r}^{l}\left(e_{1}+\cdots+e_{r-1}-l e_{r}\right)
$$

satisfies the desired condition. If $p \mid l$ and p odd, then

$$
B_{l}=\prod_{i=1}^{r-1} e_{i}^{n_{i}-1} e_{r}^{l-1} 2 e_{r}\left(e_{1}+\cdots+e_{r-1}-(l+1) e_{r}\right)
$$

yields the required value for $k\left(B_{l}\right)$.
Case 2: $p=2$ and $n_{r-1}<n$. Suppose $r \geq 2$. By the induction hypothesis we infer that

$$
\begin{gathered}
\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n(r-1)-\sum_{i=2}^{r-1} \frac{n}{n_{i}}\right., \lambda \text { even }\right\}=W\left(\oplus_{i=2}^{r} C_{n_{i}}\right) \subseteq \\
W\left(\oplus_{i=1}^{r} C_{n_{i}}\right) \subseteq\left\{\frac{\lambda}{n} \left\lvert\, 2 \leq \lambda \leq n r-\sum_{i=1}^{r-1} \frac{n}{n_{i}}\right., \lambda \text { even }\right\} .
\end{gathered}
$$

For $0 \leq l \leq \frac{\pi}{2}-1$, set

$$
B_{l}=\prod_{i=1}^{r-1} e_{i}^{n_{i}-1} e_{r}^{n-1-2 l}\left(e_{1}+\cdots+e_{r-1}+(2 l+1) e_{r}\right) \in \mathcal{U}(G)
$$

Then

$$
k\left(B_{l}\right)=\sum_{i=1}^{r-1} \frac{n_{i}-1}{n_{i}}+\frac{n-2 l}{n}
$$

and the proof is complete. \diamond
Remark 5 Let G be a p-group of odd order. Then, by Theorem 4, every possible value between $\min W(G)$ and $\max W(G)$ may be realized as a cross number of some $S \in \mathcal{U}(G)$. We have been unable to find a non-p-group of odd order that satisfies this property.

3 On Zero Sequences S with $k(S) \leq 1$

The following result strengthens Lemma 2 in [8] and solves Problem 5 in [1].
Theorem 6 Let G be a finite abelian group and g some nonzero element of G. The following conditions are equivalent:

1. G is cyclic of prime power order.
2. $k(S) \leq 1$ for all $S \in \mathcal{U}(G)$ containing g.

Proof: $(1 \Rightarrow 2)$ follows from Theorem 4.
$(2 \Rightarrow 1)$ Assume to the contrary that G is not cyclic of prime power order. Then G is the direct sum of two non-trivial subgroups, say $G=G_{1} \oplus G_{2}$. Hence $g=g_{1}+g_{2}$ with $g_{1} \in G_{1}, g_{2} \in G_{2}$ and not both g_{1} and g_{2} are equal to zero. Without loss of generality, suppose that $g_{1} \neq 0$ and $\operatorname{ord}\left(g_{1}\right)=m>1$. We consider two cases:
Case 1: Suppose that $g_{2} \neq 0$. Set ord $\left(g_{2}\right)=n>1$ and

$$
S=g_{1}^{(m-1)} g_{2}^{(n-1)} g .
$$

Then $S \in \mathcal{U}(G)$ and

$$
k(S)=\frac{m-1}{m}+\frac{n-1}{n}+\frac{1}{\operatorname{lcm}(m, n)}>1
$$

a contradiction.
Case 2: Suppose that $g_{2}=0$. We choose an element $h \in G_{2}$ with $\operatorname{ord}(h)=n>1$ and set

$$
S=g^{(m-1)} h^{(n-1)}(g+h)
$$

As above, we have $S \in \mathcal{U}(G)$ and $k(S)>1$, a contradiction. $。$
The following corollary offers an alternate proof of the main result of [3].
Corollary 7 Let G be a finite abelian group and g some nonzero element of G. The following conditions are equivalent:

1. either $G=C_{2}$ and $g=1+2 \mathbb{Z}$ or $G=C_{4}$ and $g=2+4 \mathbb{Z}$,
2. $k(S)=1$ for all $S \in \mathcal{U}(G)$ containing g.

Proof: Since the proof of $(1 \Rightarrow 2)$ is obvious, we prove only $(2 \Rightarrow 1)$. The previous Theorem implies that $G \cong C_{p^{n}}$ for some prime p and some $n \in \mathbb{N}_{+}$. Since

$$
k((-g) g)=\frac{2}{\operatorname{ord}(g)}=1
$$

it follows that $\operatorname{ord}(g)=2$ and hence $p=2$. If $n=1$, then we are done. If $n \geq 2$, we choose an element $h \in G$ with $\operatorname{ord}(h)=2^{n}$. Then

$$
k(g h(-g-h))=\frac{1}{2}+\frac{2}{2^{n}}=1,
$$

implies that $n=2 . \diamond$

References

[1] S.T.Chapman, The Davenport Constant, the Cross Number, and their Application in Factorization Theory, Zero-Dimensional Commutative Rings, Marcel Dekker, New York, 1995.
[2] S.T. Chapman and W.W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159(1993), 176-190.
[3] S.T. Chapman and W. Thill, A generalization of a theorem of Zaks and Skula, submitted for publication.
[4] A. Geroldinger, On a conjecture of Kleitman and Lemke, J. Number Theory 44 (1993), 60-65.
[5] A. Geroldinger, The cross number of finite abelian groups, J. Number Theory 48(1994), 219-223.
[6] A. Geroldinger and R. Schneider, The cross number of finite abelian groups II, Europ. J. Combinatorics 15(1994), 399-405.
[7] A. Geroldinger and R. Schneider, The cross number of finite abelian groups III, to appear in Discrete Math.
[8] U. Krause, A characterization of algebraic number fields with cyclic class group of prime power order, Math. Z. 186(1984), 143-148.
[9] U. Krause and C. Zahlten, Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. Math. Ges. Hamburg 12(1991), 681-696.

[^0]: *Part of this work was completed while the first author was on leave at Karl-Franzens-Universität, in Graz, Austria on a Fulbright Fellowship.

 1991 Mathematics Subject Classification. Primary: 11B75, 20D60, 20 K 01.
 Key Words and Phrases: cross number, minimal zero sequence, finite abelian group.

