On Cross Numbers of Minimal Zero Sequences

Scott T. Chapman^{*} Trinity University Department of Mathematics 715 Stadium Drive San Antonio, Texas 78212-7200 Alfred Geroldinger Institut für Mathematik Karl-Franzens-Universität Graz Heinrichstrasse 36 A-8010 Graz, Austria

Abstract

Let G be a finite abelian p-group. We compute the complete set of cross numbers of minimal zero sequences associated with G. We also strengthen a result of Krause concerning minimal zero sequences with cross numbers less than or equal to 1.

1 Introduction

Let G be an additively written finite abelian group and $S = (g_1, \dots, g_l)$ a sequence of elements of G. For ease of notation, we will also denote S by $S = g_1 \cdots g_l$ and use exponentiation to represent repetition in the sequence. We say that S is a zero sequence if

$$\sum_{i=1}^{l} g_i = 0.$$

Further, S is called a minimal zero sequence if $\sum_{i \in I} g_i \neq 0$ for each proper subset $\emptyset \neq I \subset \{1, \dots, l\}$. The cross number k(S) of S is defined by

$$k(S) = \sum_{i=1}^{l} \frac{1}{\operatorname{ord}(g_i)}.$$

Let $\mathcal{U}(G)$ represent the set of all minimal zero sequences of G and

$$W(G) = \{k(S) | S \in \mathcal{U}(G)\}$$

^{*} Part of this work was completed while the first author was on leave at Karl-Franzens-Universität, in Graz, Austria on a Fulbright Fellowship.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11B75, 20D60, 20K01.

Key Words and Phrases: cross number, minimal zero sequence, finite abelian group.

the set of cross numbers of minimal zero sequences. Then

$$K(G) = \exp(G) \max W(G)$$

is called the cross number of G.

Cross numbers of minimal zero sequences, and in particular the cross number of G, have found a great deal of attention in recent literature (see the references). In this note, we determine W(G) for all finite abelian *p*-groups G. In section 3 we solve Problem 5 of [1], which deals with special minimal zero sequences S satisfying $k(S) \leq 1$.

Throughout our discussion, we will use notation consistent with that of the papers [4] - [7]: Z represents the set of integers, N_+ the set of positive integers, and C_n the cyclic group consisting of n elements.

2 On W(G)

Lemma 1 Let $G = H \oplus C_{2^r}$ be a finite abelian group with $r \ge 1$, $exp(H) = 2^sm$ for some $0 \le s < r$, m odd, and $exp(G) = 2^rm = n$. For every $B \in \mathcal{U}(G)$ we have that $k(B) = \frac{\lambda}{n}$ for some even $\lambda \in \mathbb{N}_+$.

Proof: Let

$$B = a_1 \cdots a_k b_1 \cdots b_l \in \mathcal{U}(G)$$

be given with $2^r / \operatorname{ord}(a_i)$ for $1 \leq i \leq k$ and $2^r | \operatorname{ord}(b_j)$ for $1 \leq j \leq l$. Thus, there are even numbers n_i , $1 \leq i \leq k$, such that

$$n = \operatorname{ord}(a_i)n_i$$

and hence,

$$\sum_{i=1}^k rac{1}{\mathrm{ord}(a_i)} = \sum_{i=1}^k rac{n_i}{n} = rac{\lambda_1}{n}$$

for some even $\lambda_1 \in \mathbb{N}_+$. For every $1 \leq j \leq l$ we set

$$b_j = d_j + c_j$$

with $d_j \in H$ and $c_j \in C_{2^r}$ with $\operatorname{ord}(c_j) = 2^r$. Then,

$$2^{r-1}(c_j + c_{j'}) = 0$$

for all $1 \leq j < j' \leq l$ and thus

 $2^r \not | \operatorname{ord}(b_j + b_{j'}).$

Since $\sum_{i=1}^{k} a_i + \sum_{j=1}^{l} b_j = 0$, we infer that *l* is even. There are odd numbers m_j , $1 \le j \le l$, such that

$$n = \operatorname{ord}(b_j)m_j$$

and hence

$$\sum_{j=1}^{l} \frac{1}{\operatorname{ord}(b_j)} = \sum_{j=1}^{l} \frac{m_j}{n} = \frac{\lambda_2}{n}$$

for some even $\lambda_2 \in \mathbb{N}_+$. \diamond

Set $W^*(G) = \{k(S) | S \in \mathcal{U}(G) \text{ and } k(S) \leq 1\}$. In the next theorem we determine $W^*(G)$ for all finite abelian groups G.

Theorem 2 Let G be a finite abelian group of exponent $n = 2^r m$ for some odd m and some $r \ge 0$. If $C_{2^r} \oplus C_{2^r}$ is a subgroup of G, then

$$W^*(G) = \left\{rac{\lambda}{n}|2\leq\lambda\leq n
ight\}.$$

Otherwise,

$$W^*(G) = \left\{rac{\lambda}{n}| 2 \leq \lambda \leq n, \lambda \; \textit{ even}
ight\}.$$

Proof: By definition

$$W^*(G)\subseteq \left\{rac{\lambda}{n}|2\leq\lambda\leq n
ight\}.$$

If $C_{2^r} \oplus C_{2^r}$ is not a subgroup of G, then Lemma 1 implies that

$$W^*(G)\subseteq \left\{rac{\lambda}{n}|2\leq\lambda\leq n,\lambda ext{ even}
ight\}.$$

In order to prove the reverse inclusion, let $\lambda \in \{2, ..., n\}$ be given (if G has no subgroup isomorphic to $C_{2^r} \oplus C_{2^r}$, then suppose that λ is even).

Case 1: Suppose that λ does not divide *n*. Suppose further that $gcd(\lambda, m) = \alpha$, $\lambda = \alpha \lambda'$, = and $m = \alpha m'$. Then

$$\frac{\lambda}{n} = \frac{\lambda'}{n'}$$

with $n' = 2^r m', 2 \le \lambda' \le n', \lambda \equiv \lambda' \mod 2$ and $gcd(\lambda', m') = 1$.

If λ' is even, then

$$B = \begin{pmatrix} 1+m'\mathbf{Z} \\ 1+2^{r}\mathbf{Z} \end{pmatrix}^{(\lambda'-2)} \begin{pmatrix} 2+m'\mathbf{Z} \\ 1+2^{r}\mathbf{Z} \end{pmatrix} \begin{pmatrix} -\lambda'+m'\mathbf{Z} \\ (1-\lambda')+2^{r}\mathbf{Z} \end{pmatrix} \in \mathcal{U}(C_{m'}\oplus C_{2^{r}})$$

and

$$k(B) = rac{\lambda' - 2}{n'} + rac{1}{n'} + rac{1}{n'} = rac{\lambda}{n}.$$

Sec.

If λ' is odd, then $C_{2^r} \oplus C_{n'}$ is a subgroup of G. Furthermore,

$$B = \begin{pmatrix} 1+n'\mathbf{Z} \\ 1+2^{r}\mathbf{Z} \end{pmatrix}^{(\lambda'-2)} \begin{pmatrix} 2+n'\mathbf{Z} \\ 1+2^{r}\mathbf{Z} \end{pmatrix} \begin{pmatrix} -\lambda'+n'\mathbf{Z} \\ (1-\lambda')+2^{r}\mathbf{Z} \end{pmatrix} \in \mathcal{U}(C_{n'}\oplus C_{2^{r}})$$

 and

$$k(B) = \frac{\lambda' - 2}{n'} + \frac{1}{n'} + \frac{1}{n'} = \frac{\lambda}{n}$$

Case 2: Suppose that $\lambda = n$. Take some $0 \neq g \in G$ and set $B = g^{\operatorname{ord}(g)}$. Then k(B) = 1.

Case 3: Suppose that $\lambda < n$ and $\lambda | n$. Then there is a prime $p \in \mathbb{N}_+$ dividing λ such that

$$\frac{\lambda}{n} = \frac{p}{p^s l}$$

with $s \ge 1$, $p \not| l$, $p^s l | n$, and $l \in \mathbb{N}_+$. If λ is even, we choose p = 2.

Case 3.1: Suppose p = 2. Take some element $g \in G$ of order $p^{s}l$ and set B = (-g)g. Then

$$k(B)=\frac{2}{p^{s}l}=\frac{\lambda}{n}.$$

Case 3.2: Suppose $p \ge 3$ is odd.

Case 3.2.1: Suppose that l is odd. Set

$$B = \begin{pmatrix} 1+p^s \mathbb{Z} \\ 1+l\mathbb{Z} \end{pmatrix}^{\frac{p-3}{2}} \begin{pmatrix} 1+p^s \mathbb{Z} \\ -1+l\mathbb{Z} \end{pmatrix}^{\frac{p-3}{2}} \begin{pmatrix} 1+p^s \mathbb{Z} \\ -1+l\mathbb{Z} \end{pmatrix}^2 \begin{pmatrix} (1-p)+p^s \mathbb{Z} \\ 2+l\mathbb{Z} \end{pmatrix}.$$

Then $B \in \mathcal{U}(C_{p^s} \oplus C_l)$ and

$$k(B) = rac{(p-3)/2}{p^{s}l} + rac{(p-3)/2}{p^{s}l} + rac{2}{p^{s}l} + rac{1}{p^{s}l} = rac{\lambda}{n}.$$

Case 3.2.2: Suppose that $2^t|l$ for some $t \ge 1$. Since p is odd, λ is odd and hence $C_{p^{sl}} \oplus C_{2^t} \cong C_{p^s} \oplus C_l \oplus C_{2^t}$ is a subgroup of G. Set

$$B = \begin{pmatrix} 1+p^{s}\mathbf{Z} \\ 1+l\mathbf{Z} \\ 0+2^{t}\mathbf{Z} \end{pmatrix}^{\frac{p-3}{2}} \begin{pmatrix} 1+p^{s}\mathbf{Z} \\ -1+l\mathbf{Z} \\ 0+2^{t}\mathbf{Z} \end{pmatrix}^{\frac{p-3}{2}} \begin{pmatrix} 1+p^{s}\mathbf{Z} \\ -1+l\mathbf{Z} \\ 0+2^{t}\mathbf{Z} \end{pmatrix} \begin{pmatrix} 1+p^{s}\mathbf{Z} \\ -1+l\mathbf{Z} \\ -1+2^{t}\mathbf{Z} \end{pmatrix} \begin{pmatrix} (1-p)+p^{s}\mathbf{Z} \\ 2+l\mathbf{Z} \\ 1+2^{t}\mathbf{Z} \end{pmatrix}.$$

Then $B \in \mathcal{U}(C_{p^s} \oplus C_l \oplus C_{2^t})$ and

$$k(B) = \frac{p}{p^{s}l} = \frac{\lambda}{n} .\diamond$$

Example 3 Let G be any finite abelian group of odd order with exponent n. Then Theorem 2 yields (with r = 0) that

$$W^*(G) = \left\{rac{2}{n}, rac{3}{n}, \dots, rac{n}{n}
ight\}.$$

In particular, if $G \cong C_{p^*}$ (with p an odd prime), then Krause's result [8] implies that

$$W(G) = \left\{\frac{2}{p^s}, \frac{3}{p^s}, \ldots, \frac{p^s}{p^s}\right\}.$$

In particular, if $G \cong C_{p^s}$ (with p an odd prime), then Krause's result [8] implies that

$$W(G) = \left\{rac{2}{p^s}, rac{3}{p^s}, \dots, rac{p^s}{p^s}
ight\}.$$

For p = 2 the same group as above yields

$$W(G) = \left\{\frac{2}{2^s}, \frac{4}{2^s}, \dots, \frac{2^s}{2^s}\right\}.$$

Theorem 4 Let G be a finite abelian p-group for some prime p. Suppose that $G \cong \bigoplus_{i=1}^{r} C_{n_i}$ with $1 = n_0 < n_1 \leq \cdots \leq n_r = n$. If p is odd, or if p = 2 and $n_{r-1} = n$, then

$$W(G) = \left\{rac{\lambda}{n}|2\leq\lambda\leq nr-\sum_{i=1}^{r-1}rac{n}{n_i}
ight\}.$$

Otherwise,

$$W(G) = \left\{ rac{\lambda}{n} | 2 \leq \lambda \leq nr - \sum_{i=1}^{r-1} rac{n}{n_i}, \lambda \hspace{0.1 in} even \hspace{0.1 in}
ight\}.$$

Proof: In either of the two cases above, W(G) is contained in the set on the right side of the equality by [5] and Lemma 1. In order to show the reverse inclusion, we proceed by induction on r. For r = 1 the assertion follows from Theorem 2. Let e_1, \ldots, e_r be a generating system for G with $\operatorname{ord}(e_i) = n_i$ for $1 \leq i \leq r$.

Case 1: p odd (or p = 2 and $n_{r-1} = n$). First suppose that $G = C_{2^s} \oplus C_{2^s}$ for some $s \in \mathbb{N}_+$ (i.e., $p = r = 2, n_1 = n = 2^s$). By Theorem 2 we have that

$$\{rac{\lambda}{n}|2\leq\lambda\leq n\}\subseteq W(G)\subseteq \{rac{\lambda}{n}|2\leq\lambda\leq 2n-1\}.$$

For each $0 \leq l \leq n-1$, set

$$B_l = e_1^{n-1-l} e_2^{n-1-l} (e_1 + e_2)^{l+1} \in \mathcal{U}(G).$$

We have $k(B_l) = \frac{2n-1-l}{n}$ and hence

$$\{\frac{\lambda}{n}|n\leq\lambda\leq 2n-1\}\subseteq W(G),$$

which completes the proof for $G = C_{2^s} \oplus C_{2^s}$.

Now suppose that $r \ge 2$ if p is odd (resp. $r \ge 3$ if p = 2) and that the result holds for r-1. By the induction hypothesis we have that

$$\left\{\frac{\lambda}{n}|2\leq\lambda\leq n(r-1)-\sum_{i=2}^{r-1}\frac{n}{n_i}\right\}=W(\oplus_{i=2}^rC_{n_i})\subseteq$$

$$W(\oplus_{i=1}^r C_{n_i}) \subseteq \left\{ rac{\lambda}{n} | 2 \leq \lambda \leq nr - \sum_{i=1}^{r-1} rac{n}{n_i}
ight\}.$$

Hence, it remains to verify that for every $1 \le l \le n-1$ there exists some $B_l \in \mathcal{U}(G)$ with

$$k(B_l) = \sum_{i=1}^{r-1} \frac{n_i - 1}{n_i} + \frac{l+1}{n}.$$

Let $l \in \{1, \ldots, n-1\}$ be given. If $p \not| l$ or p = 2, then

$$B_{l} = \prod_{i=1}^{r-1} e_{i}^{n_{i}-1} e_{r}^{l} (e_{1} + \dots + e_{r-1} - le_{r})$$

satisfies the desired condition. If p|l and p odd, then

$$B_{l} = \prod_{i=1}^{r-1} e_{i}^{n-1} e_{r}^{l-1} 2e_{r} (e_{1} + \dots + e_{r-1} - (l+1)e_{r})$$

yields the required value for $k(B_l)$.

Case 2: p = 2 and $n_{r-1} < n$. Suppose $r \ge 2$. By the induction hypothesis we infer that

$$\left\{rac{\lambda}{n}|2\leq\lambda\leq n(r-1)-\sum_{i=2}^{r-1}rac{n}{n_i}, \lambda ext{ even }
ight\}=W(\oplus_{i=2}^rC_{n_i})\subseteq$$

$$W(\oplus_{i=1}^r C_{n_i}) \subseteq \left\{rac{\lambda}{n}| 2 \leq \lambda \leq nr - \sum_{i=1}^{r-1}rac{n}{n_i}, \lambda ext{ even }
ight\}.$$

For $0 \leq l \leq \frac{n}{2} - 1$, set

$$B_{l} = \prod_{i=1}^{r-1} e_{i}^{n-1} e_{r}^{n-1-2l} (e_{1} + \dots + e_{r-1} + (2l+1)e_{r}) \in \mathcal{U}(G).$$

Then

$$k(B_l) = \sum_{i=1}^{r-1} \frac{n_i - 1}{n_i} + \frac{n - 2l}{n}$$

and the proof is complete. \diamond

Remark 5 Let G be a p-group of odd order. Then, by Theorem 4, every possible value between min W(G) and max W(G) may be realized as a cross number of some $S \in \mathcal{U}(G)$. We have been unable to find a non-p-group of odd order that satisfies this property.

3 On Zero Sequences S with $k(S) \leq 1$

The following result strengthens Lemma 2 in [8] and solves Problem 5 in [1].

Theorem 6 Let G be a finite abelian group and g some nonzero element of G. The following conditions are equivalent:

- 1. G is cyclic of prime power order.
- 2. $k(S) \leq 1$ for all $S \in \mathcal{U}(G)$ containing g.

Proof: $(1 \Rightarrow 2)$ follows from Theorem 4.

 $(2 \Rightarrow 1)$ Assume to the contrary that G is not cyclic of prime power order. Then G is the direct sum of two non-trivial subgroups, say $G = G_1 \oplus G_2$. Hence $g = g_1 + g_2$ with $g_1 \in G_1$, $g_2 \in G_2$ and not both g_1 and g_2 are equal to zero. Without loss of generality, suppose that $g_1 \neq 0$ and $\operatorname{ord}(g_1) = m > 1$. We consider two cases: Case 1: Suppose that $g_2 \neq 0$. Set $\operatorname{ord}(g_2) = n > 1$ and

$$S = g_1^{(m-1)} g_2^{(n-1)} g_2.$$

Then $S \in \mathcal{U}(G)$ and

$$k(S) = \frac{m-1}{m} + \frac{n-1}{n} + \frac{1}{\operatorname{lcm}(m,n)} > 1,$$

a contradiction.

Case 2: Suppose that $g_2 = 0$. We choose an element $h \in G_2$ with $\operatorname{ord}(h) = n > 1$ and set

$$S = g^{(m-1)}h^{(n-1)}(g+h).$$

As above, we have $S \in \mathcal{U}(G)$ and k(S) > 1, a contradiction. \diamond

The following corollary offers an alternate proof of the main result of [3].

Corollary 7 Let G be a finite abelian group and g some nonzero element of G. The following conditions are equivalent:

- 1. either $G = C_2$ and $g = 1 + 2\mathbb{Z}$ or $G = C_4$ and $g = 2 + 4\mathbb{Z}$,
- 2. k(S) = 1 for all $S \in U(G)$ containing g.

Proof: Since the proof of $(1 \Rightarrow 2)$ is obvious, we prove only $(2 \Rightarrow 1)$. The previous Theorem implies that $G \cong C_{p^n}$ for some prime p and some $n \in \mathbb{N}_+$. Since

$$k((-g)g) = \frac{2}{\operatorname{ord}(g)} = 1,$$

it follows that $\operatorname{ord}(g) = 2$ and hence p = 2. If n = 1, then we are done. If $n \ge 2$, we choose an element $h \in G$ with $\operatorname{ord}(h) = 2^n$. Then

$$k(gh(-g-h)) = \frac{1}{2} + \frac{2}{2^n} = 1,$$

implies that $n = 2.\diamond$

References

- S.T.Chapman, The Davenport Constant, the Cross Number, and their Application in Factorization Theory, Zero-Dimensional Commutative Rings, Marcel Dekker, New York, 1995.
- [2] S.T. Chapman and W.W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159(1993), 176-190.
- [3] S.T. Chapman and W. Thill, A generalization of a theorem of Zaks and Skula, submitted for publication.
- [4] A. Geroldinger, On a conjecture of Kleitman and Lemke, J. Number Theory 44 (1993), 60-65.
- [5] A. Geroldinger, The cross number of finite abelian groups, J. Number Theory 48(1994), 219-223.
- [6] A. Geroldinger and R. Schneider, The cross number of finite abelian groups II, Europ. J. Combinatorics 15(1994), 399-405.
- [7] A. Geroldinger and R. Schneider, *The cross number of finite abelian groups III*, to appear in Discrete Math.
- [8] U. Krause, A characterization of algebraic number fields with cyclic class group of prime power order, Math. Z. 186(1984), 143-148.
- U. Krause and C. Zahlten, Arithmetic in Krull monoids and the cross number of divisor class groups, Mitt. Math. Ges. Hamburg 12(1991), 681-696.

(Received 1/9/95)