A Degree Condition for the Existence of Connected Factors*

Yanjun Li and Cai Mao-cheng
Institute of Systems Science
Academia Sinica, Beijing 100080, China

Abstract

Let G be a connected graph of order n, let f and g be two positive integer functions defined on $V(G)$ satisfying $2 \leq f(v) \leq g(v)$ for each vertex $v \in V(G)$. In this paper we prove that if G has a $[f, g]$-factor F and, moreover, among any three independent vertices of G there are (at least) two vertices with degree sum at least $n-\mu$, then G has a matching M such that M and F are edge-disjoint and $M+F$ is a connected $[f, g+1]$-factor of G, where $\mu=\min \{f(v): v \in V(G)\}$.

As immediate consequences, the result gives a solution to a problem of Kano on the existence of connected $[a, b]$-factors, and it generalizes theorems of M. Cai.

All graphs under consideration are finite and simple. Let $x y$ denote the edge ϵ joining vertices x and y. We write $H \subseteq G$, if a graph H is a subgraph of G. Given disjoint subsets X and Y of $V(G)$, we denote by $G[X]$ the subgraph of G induced by X, and

$$
\begin{aligned}
& \bar{X}=V(G)-X \\
& E_{G}(X, Y)=\{x y \in E(G) \mid x \in X, y \in Y\} \\
& \epsilon_{G}(X, Y)=\left|E_{G}(X, Y)\right| \\
& \Delta_{G}(X)=E_{G}(X, \bar{X})
\end{aligned}
$$

Given $x \in V(G)$, the set of vertices adjacent to x is said to be the neighborhood of x, denoted by $N_{G}(x)$, and $d_{G}(x)=\left|N_{G}(x)\right|$ the degree of x. Let f and g be integer-valued functions defined on $V(G)$ such that $0 \leq f(v) \leq g(v) \leq d_{G}(v)$ for all $v \in V$. An $[f, g]$-factor of G is defined as a subgraph F of G such that

$$
f(v) \leq d_{F}(v) \leq g(v) \quad \forall v \in V(G)
$$

and an $[f, f]$-factor is abbreviated to an f-factor.

[^0]Let M and F be two edge-disjoint subgraphs of graph G, and let $E_{M \cup F}=E(M) \cup$ $E(F)$, where $E(M)$ and $E(F)$ are the edge sets of M and F respectively. We denote by $M+F$ the subgraph induced by $E_{M \cup F}$.

Other notation and terminology are the same as in [1].
The following results about k-factors or connected $[f, g]$-factors are already known.
Theorem 1 [9] Let $k \geq 3$ be a positive integer and let G be a connected graph of order n and minimum degree at least k where $k n$ is even and $n \geq 4 k-3$. If for each pair of nonadjacent vertices u and v of G

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq \frac{n}{2}
$$

then G has a k-factor.
Theorem 2 [6] Let k be a positive integer and let G be a graph of order order n and minimum degree at least k where $k n$ is even and $n \geq 4 k-5$. If for each pair of nonadjacent vertices u, v of G

$$
d_{G}(u)+d_{G}(v) \geq n
$$

then G has both a Hamiltoniar cycle C and a k-factor F. Hence G has a connected $[k, k+2]$-factor $C+F$.

Kano posed the following problems
Problem 3 [7] Find sufficient conditions for a graph G to have a connected $[k, k+1]$-factor.

Problem $4[7]$ Find sufficient conditions for a graph G to have a connected $[a, b]$ factor.
M. Cai has proved the following two results.

Theorem 5 [2] Let k be an integer ≥ 2 and G be a connected graph of order n. If G has a k-factor F and, moreover, among any three independent vertices of G there are (at least) two with degree sum at least $n-k$, then G has a matching M such that M and F are edge-disjoint and $M+F$ is a connected $[k, k+1]$-factor of G.

An almost k^{--}-factor in a graph is a factor such that every vertex has degree k except at most one with degree $k-1$.

Theorem 6 [3] Let k be an odd integer ≥ 3 and let G be a connected graph of odd order $n \geq 2 k+1$. If G has an almost k^{-}-factor F such that the vertex v^{*} with $d_{F}\left(v^{*}\right)=k-1$ has degree at least $n / 2$, and, moreover, among any three independent vertices of G there are (at least) two with degree sum at least $n-k$, then G has a matching M such that M and F are edge-disjoint and $M+F$ is a connected $[k, k+1]$-factor of G.

The purpose of this paper is to prove the following main result, which extends Theorems 5, 6 and gives a solution to problem 3 .

Theorem 7 Let G be a connected graph of order n, let f and g be two positive integer functions defined on $V(G)$ which satisfy $2 \leq f(v) \leq g(v)$ for each vertex $v \in V(G)$. Let G have an $[f, g]$-factor F and put $\mu=\min \{f(v): v \in V(G)\}$. Suppose that among any three independent vertices of G there are (at least) two vertices with degree sum at least $n-\mu$. Then G has a matching M such that M and F are edge-disjoint and $M+F$ is a connected $[f, g+1]$-factor of G.

Proof If F is comected, then F itself is a connected $[f, g]$-factor. This implies that it is also a connected $[f, g+1]$-factor, and theorem trivially holds. So we may assume that F is disconnected.

Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $F, t \geq 2$. It is obvious that $\left|V\left(C_{i}\right)\right| \geq$ $\mu+1$. First let

$$
M_{0}=\emptyset \quad \text { and } \quad W_{0}=\left\{C_{1}\right\} .
$$

Suppose we have found a matching M_{s} with s edges and $W_{s}=G\left[C_{1}, C_{2}, \ldots, C_{s+1}\right]$ such that $W_{s}+M_{s}$ is connected. It is clear that

- each edge of M_{s} connects two components of W_{s} and
- M_{s} would form a subtree with s edges if each component $C_{i} \in W_{s}$ were contracted into a single vertex $v\left(C_{i}\right)$.

Denote

$$
P=W_{s}+M_{s}, \quad U=V\left(M_{s}\right), \quad L=V(P) \backslash U
$$

Assume $s<t-1$, otherwise M_{s} is a matching as required. As G is connected, there exists an edge $\epsilon=a z \in \Delta_{G}(V(P))$ which connects P with another component C_{s+2} (renumbering if necessary). Let $a \in V(P)$ and $z \in V\left(C_{s+2}\right)$.

Now suppose that G has no matching M_{s+1} with $s+1$ edges such that a connected $\left(W_{s} \cup C_{s+2}\right)+M_{s+1}$ exists. We shall show that there exist three independent vertices such that the degree sum of each pair of them is less than $n-\mu$, which contradicts the assumption of the theorem.

It is easily seen that

$$
\begin{array}{ll}
s \geq 1, & \text { if } v \in U, \\
f(v)+1 \leq d_{P}(v) \leq g(v)+1 & \text { if } v \in L, \\
\left.f(v) \leq d_{P}(v) \leq g(v)\right) &
\end{array}
$$

The last one comes from $|U|=2 s$ and $|L|+|U|=|V(P)| \geq(s+1)(\mu+1)$. Moreover, we have

$$
\begin{equation*}
E_{G}(v, L)=\emptyset \quad \forall v \in V\left(C_{s+2}\right), \tag{1}
\end{equation*}
$$

otherwise, assuming $e^{*} \in E_{G}(v, L), M_{s+1}=M_{s} \cup\left\{e^{*}\right\}$ is a matching as required, a contradiction.

As $a z \in E(G)$ and $a \in U$, let $a b \in M_{s}$ be the edge adjacent to $a z$, let A and B be the components of $P-a b$ such that A contains a and B contains b. By the structure of P, we can choose two components C_{i}, C_{j} from W_{s} satisfying

- $C_{i} \subseteq A, \quad C_{j} \subseteq B, \quad$ and
- $\left|V\left(C_{i}\right) \cap U\right|=\left|V\left(C_{j}\right) \cap U\right|=1$.

Choose $x \in V\left(C_{i}\right) \backslash U$ and $y \in V\left(C_{j}\right) \backslash U$. Then

$$
\begin{equation*}
E_{G}(\{x, y\}, \overline{V(P)})=\emptyset \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{C}(x, V(B) \backslash U)=E_{G}(y, V(A) \backslash U)=\emptyset \tag{3}
\end{equation*}
$$

Otherwise let $\epsilon \in E_{G}(x, V(B) \backslash U)$, then $M_{s+1}=\left(M_{s} \backslash a b\right) \cup\{z a, e\}$ becomes a matching as required, since $\{a b, z a, e\} \cap F=\emptyset$, a contradiction. Similarly, $E_{G}(y, V(A) \backslash U)=\emptyset$. Then x, y and z are three independent vertices.

Now we shall show that the degree sum of each pair of $\{x, y, z\}$ is less $n-\mu$. Let $M_{z}=\left\{u v \in M_{s} \mid\{u, v\} \cap N_{G}(z) \neq \emptyset\right\}$. It is clear that $a b \in M_{z}$. Let X_{z} and Y_{z} respectively denote components of $P-M_{z}$ containing x and y. Obviously, $X_{z} \subseteq A$, $Y_{z} \subseteq B$.

Assertion $1 \quad e_{G}(\{z, x\},\{u, v\}) \leq 3 \quad \forall u v \in M_{s}$.
Suppose that for some $u v \in M_{s}$

$$
\{x u, x v, z u, z v\} \subset E(G)
$$

Let u and x be in different components of $P-u v$, then it is easily seen that $M_{s+1}=$ $\left(M_{s} \backslash u v\right) \cup\{x u, z v\}$ would be a matching as required, a contradiction.

Assertion $2 \quad N_{G}(x) \subset V\left(X_{z}\right) \cup U$.
By (2) and (3), we need only show $E_{G}\left(x, L \cap V(A) \backslash V\left(X_{z}\right)\right)=\emptyset$ since $x \in V\left(X_{z}\right)$ but $x \notin N_{G}(x)$. We assume $r x \in E_{G}\left(x, L \cap V(A) \backslash V\left(X_{z}\right)\right)$. Then by the definition of X_{z} there exists an edge $u v \in M_{z}$ on the paths joining r and x in A. By the definition of M_{z}, either $z u$ or $z v \in E(G)$, say $z u \in E(G)$. Thus $M_{s+1}=\left(M_{s} \backslash u v\right) \cup\{r x, z u\}$ is a matching as required, a contradiction.

Let $h=\left|M_{s} \cap E\left(X_{z}\right)\right|$. Then $\left|M_{s} \backslash E\left(X_{z}\right)\right|=s-h, X_{z}$ and $P \backslash V\left(X_{z}\right)$ respectively contain $h+1$ and $s-h$ components of W_{s}. Because each $\left|C_{\ell}\right| \geq \mu+1$,

$$
\left|M_{s}\right| E\left(X_{z}\right) \left\lvert\,=s-h \leq \frac{\left|V(P) \backslash V\left(X_{z}\right)\right|}{\mu+1}\right.
$$

By the definition of $X_{z}, \quad V\left(X_{z}\right) \cap V\left(M_{z}\right) \neq \emptyset$. Then

$$
\left|N_{G}(x) \cap V\left(X_{z}\right) \backslash V\left(M_{z}\right)\right| \leq\left|V\left(X_{z}\right)\right|-2
$$

Hence from (1), Assertions 1, 2 and the last two inequalities we get that

$$
\begin{align*}
d_{G}(x)+d_{G}(z) \leq & \left|N_{G}(x) \cap V\left(X_{z}\right) \backslash V\left(M_{z}\right)\right| \\
& +\mid N_{G}(z) \cap \overline{V(P) \mid+e\left(\{x, z\}, V\left(M_{s} \backslash E\left(X_{z}\right)\right)\right)} \\
\leq & \left|V\left(X_{z}\right)\right|-2+|\overline{V(P)}|-1+3\left|M_{s} \backslash E\left(X_{z}\right)\right| \\
\leq & \left|V\left(X_{z}\right)\right|+|\overline{V(P)}|-3+\frac{3|V(P)| V\left(X_{z}\right) \mid}{\mu+1} \tag{4}\\
\leq & |V(G)|-3-\frac{\mu-2}{\mu+1}|V(B)| \\
\leq & n-\mu-1 .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
d_{G}(y)+d_{G}(z) \leq n-\mu-1 \tag{5}
\end{equation*}
$$

Now let us show

$$
\begin{equation*}
d_{G}(x)+d_{G}(y) \leq n-\mu-1 \tag{6}
\end{equation*}
$$

An argument similar to that used in the proof of Assertion 1 shows that
Assertion $3 \quad \epsilon_{O}(\{x, y\},\{u, v\}) \leq 3 \quad \forall u v \in M_{s}$.
Let $M_{x y}=\left\{u v \in M_{s} \mid \epsilon_{G}(\{x, y\},\{u, v\})=3\right\}$ and let X_{c} (resp. Y_{c}) denote the component of $P-M_{x y}$ containing x (resp. y), and

$$
M_{c}=\Delta_{P}\left(V\left(X_{c}\right)\right) \cup \Delta_{p}\left(V\left(Y_{c}\right)\right)
$$

Then X_{c} and Y_{c} are either identical or disjoint. Clearly $M_{c} \subseteq M_{x y}$ and
Assertion $4 \quad \epsilon_{G}(\{x, y\},\{u, v\}) \leq 2 \quad \forall u v \in M_{s} \cap\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)$.
Now we are going to show
Assertion 5 $\quad E_{G}(r,\{x, y\})=\emptyset \quad \forall r \in L \backslash\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)$.
Assuming $r x \in E(G)$, then by (3) $r \in V(A), r y \notin E(G)$. Because $r \in L \backslash$ $\left(V\left(X_{c}\right) \cup\left(V\left(Y_{c}\right)\right)\right.$ and P is connected, there exists (at least) one edge $u v \in M_{c}$ on the paths which connects r and y in P. By the definition of M_{c}, either $u y$ or $v y \in E(G)$, say $u y \in E(G)$. Then $M_{s+1}=\left(M_{s} \backslash\{a b, u v\}\right) \cup\{a z, r x, u y\}$ would be a matching as required, a contradiction. Similarly, we get $r y \notin E(G)$. Thus the assertion holds.

Let $p=\left|M_{s} \cap E\left(X_{c}\right)\right|, q=\left|M_{s} \cap E\left(Y_{c}\right)\right|$. Thus X_{c} and Y_{c} contain respectively $p+1$ and $q+1$ components of W_{s}. Now we shall complete the proof by examining two different cases according to whether X_{c} and Y_{c} are identical or disjoint.
Case 1. X_{c} and Y_{c} are disjoint.
Then $\left|M_{s} \backslash\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right|=s-(p+q)$, and $P-\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)$ contains $s-(p+q)-1$ components of W_{s}.

An argument similar to the proof of (4) shows that

$$
\begin{aligned}
\left|M_{s} \backslash\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right| & =s-(p+q) \\
& \leq 1+\frac{\left|V(P) \backslash\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)\right|}{\mu+1} . \\
\epsilon_{G}(\{x, y\}, L) & \leq\left|L \cap\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)\right|-2, \\
\epsilon_{C}(\{x, y\}, U) & \leq 2\left|M_{s} \cap\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right|+3\left|M_{s} \backslash\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right| .
\end{aligned}
$$

Because $\emptyset \neq \Delta_{P}\left(V\left(X_{c}\right)\right) \subseteq M_{c}$,

$$
\left|L \cap V\left(X_{c}\right)\right|+2\left|M_{s} \cap E\left(X_{c}\right)\right| \leq\left|V\left(X_{c}\right)\right|-1 .
$$

Similarly,

$$
\left|L \cap V\left(Y_{c}\right)\right|+2\left|M_{s} \cap E\left(Y_{c}\right)\right| \leq\left|V\left(Y_{c}\right)\right|-1 .
$$

We have

$$
\begin{aligned}
d_{G}(x)+d_{G}(y) \leq & \left|L \cap\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)\right|-2+2\left|M_{s} \cap\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right| \\
& +3\left|M_{s} \backslash\left(E\left(X_{c}\right) \cup E\left(Y_{c}\right)\right)\right| \\
\leq & \left|V\left(X_{c}\right)\right|+\left|V\left(Y_{c}\right)\right|-4 \\
& +3\left(1+\frac{\left|V(P) \backslash\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)\right|}{\mu+1}\right) \\
\leq & |V(P)|-1-\frac{\mu-2}{\mu+1}\left|V(P) \backslash\left(V\left(X_{c}\right) \cup V\left(Y_{c}\right)\right)\right| \\
\leq & |V(P)|-1 \\
\leq & n-\mu-2 .
\end{aligned}
$$

Therefore in this case the required inequality holds.
Case 2. X_{c} and Y_{c} are identical.
So $\left|M_{s} \backslash E\left(X_{c}\right)\right|=s-p$, and $P-V\left(X_{c}\right)$ contains $s-p$ components of W_{s}. Similarly, we have

$$
\begin{aligned}
d_{G}(x)+d_{G}(y) & \leq\left|L \cap V\left(X_{c}\right)\right|-1+2\left|M_{s} \cap E\left(X_{c}\right)\right|+3\left|M_{s} \backslash E\left(X_{c}\right)\right| \\
& \leq\left|V\left(X_{c}\right)\right|-2+\frac{3\left|V(P) \backslash V\left(X_{c}\right)\right|}{\mu+1} \\
& \leq|V(P)|-2-\frac{\mu-2}{\mu+1}\left|V(P) \backslash V\left(X_{c}\right)\right| \\
& \leq|V(P)|-2 \\
& \leq n-\mu-3 .
\end{aligned}
$$

The proof of Theorem 7 is completed.
Remark 1. Theorems 5, 6 and some similar results about the existence of connected $[a, b+1]$-factors and connected $[f, f+1]$-factors are natural consequences of Theorem 7. So the result of Theorem 7 is the most general result in this sense.

Remark 2. It was pointed out in [2] and [3] that the condition that the degree sum is at least $n-k$ could not be weakened any further. To see this, let $n \geq 3 k+3$ and $\left(:=K_{1} \vee\left(K_{k} \cup K_{k+1} \cup K_{n-2 k-2}\right)\right.$, where \vee and \cup denote join and disjoint union. So the result of Theorem 7 is sharp in this sense.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York(1976).
[2] Cai Mao-cheng, An degree condition for the existence of connected $[k, k+1]-$ factors, to appear in J. Sys. Sci. \& Math. Scis.
[3] Cai Mao-cheng, Connected [$k, k+1$]-factors of graphs, submitted.
[4] Y. Egawa and H. Enomoto, Sufficient conditions for the existence of k-factors. Recent Studies in Graph Theory, V.R. Kulli, Ed., Vishwa International Publication, India (1989) 96-105.
[5] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs. Graphs and Combinat. 7 (1991) 353-361.
[6] M. Kano, Some current results and problems on factors of graphs.
[7] M. Kano, private communication.
[8] P. Katerinis, Minimum degree of a graph and the existence of k-factors. Proc. Indian Acad. Sci (Math. Sci.) 94 (1985) 123-127.
[9] T. Nishimura, A degree condition for the existence of k-factors. J. Graph Theory 16 (1992) 141-151.
[10] W.T. Tutte, Graph factors. Combinatorica 1 (1981) 79-97.

[^0]: *Research partially supported by the National Science Foundation of China

