A Degree Condition for the Existence of Connected Factors^{*}

Yanjun Li and Cai Mao-cheng Institute of Systems Science Academia Sinica, Beijing 100080, China

Abstract

Let G be a connected graph of order n, let f and g be two positive integer functions defined on V(G) satisfying $2 \leq f(v) \leq g(v)$ for each vertex $v \in V(G)$. In this paper we prove that if G has a [f,g]-factor F and, moreover, among any three independent vertices of G there are (at least) two vertices with degree sum at least $n - \mu$, then G has a matching M such that M and F are edge-disjoint and M + F is a connected [f, g + 1]-factor of G, where $\mu = \min\{f(v) : v \in V(G)\}$.

As immediate consequences, the result gives a solution to a problem of Kano on the existence of connected [a, b]-factors, and it generalizes theorems of M. Cal.

All graphs under consideration are finite and simple. Let xy denote the edge e joining vertices x and y. We write $H \subseteq G$, if a graph H is a subgraph of G. Given disjoint subsets X and Y of V(G), we denote by G[X] the subgraph of G induced by X, and

$$\begin{aligned} \overline{X} &= V(G) - X, \\ E_G(X, Y) &= \{ xy \in E(G) \mid x \in X, y \in Y \}, \\ \epsilon_G(X, Y) &= |E_G(X, Y)|, \\ \Delta_G(X) &= E_G(X, \overline{X}). \end{aligned}$$

Given $x \in V(G)$, the set of vertices adjacent to x is said to be the neighborhood of x, denoted by $N_G(x)$, and $d_G(x) = |N_G(x)|$ the degree of x. Let f and g be integer-valued functions defined on V(G) such that $0 \leq f(v) \leq g(v) \leq d_G(v)$ for all $v \in V$. An [f, g]-factor of G is defined as a subgraph F of G such that

$$f(v) \le d_F(v) \le g(v) \qquad \forall v \in V(G),$$

and an [f, f]-factor is abbreviated to an f-factor.

Australasian Journal of Combinatorics 14 (1996), pp. 77-83

^{*}Research partially supported by the National Science Foundation of China

Let M and F be two edge-disjoint subgraphs of graph G, and let $E_{M \cup F} = E(M) \cup E(F)$, where E(M) and E(F) are the edge sets of M and F respectively. We denote by M + F the subgraph induced by $E_{M \cup F}$.

Other notation and terminology are the same as in [1].

The following results about k-factors or connected [f, g]-factors are already known.

Theorem 1 [9] Let $k \ge 3$ be a positive integer and let G be a connected graph of order n and minimum degree at least k where kn is even and $n \ge 4k-3$. If for each pair of nonadjacent vertices u and v of G

$$\max\{d_G(u),\,d_G(v)\}\geq rac{n}{2}.$$

then G has a k-factor.

Theorem 2 [6] Let k be a positive integer and let G be a graph of order order n and minimum degree at least k where kn is even and $n \ge 4k - 5$. If for each pair of nonadjacent vertices u, v of G

$$d_G(u) + d_G(v) \ge n$$

then G has both a Hamiltonian cycle C and a k-factor F. Hence G has a connected [k, k+2]-factor C + F.

Kano posed the following problems

Problem 3 [7] Find sufficient conditions for a graph G to have a connected [k, k+1]-factor.

Problem 4 [7] Find sufficient conditions for a graph G to have a connected [a, b]-factor.

M. Cai has proved the following two results.

Theorem 5 [2] Let k be an integer ≥ 2 and G be a connected graph of order n. If G has a k-factor F and, moreover, among any three independent vertices of G there are (at least) two with degree sum at least n - k, then G has a matching M such that M and F are edge-disjoint and M + F is a connected [k, k + 1]-factor of G.

An almost k^- -factor in a graph is a factor such that every vertex has degree k except at most one with degree k - 1.

Theorem 6 [3] Let k be an odd integer ≥ 3 and let G be a connected graph of odd order $n \geq 2k + 1$. If G has an almost k^- -factor F such that the vertex v^* with $d_F(v^*) = k - 1$ has degree at least n/2, and, moreover, among any three independent vertices of G there are (at least) two with degree sum at least n - k, then G has a matching M such that M and F are edge-disjoint and M + F is a connected [k, k + 1]-factor of G. The purpose of this paper is to prove the following main result, which extends Theorems 5, 6 and gives a solution to problem 3.

Theorem 7 Let G be a connected graph of order n, let f and g be two positive integer functions defined on V(G) which satisfy $2 \le f(v) \le g(v)$ for each vertex $v \in V(G)$. Let G have an [f,g]-factor F and put $\mu = \min\{f(v) : v \in V(G)\}$. Suppose that among any three independent vertices of G there are (at least) two vertices with degree sum at least $n - \mu$. Then G has a matching M such that M and F are edge-disjoint and M + F is a connected [f, g + 1]-factor of G.

Proof If F is connected, then F itself is a connected [f, g]-factor. This implies that it is also a connected [f, g+1]-factor, and theorem trivially holds. So we may assume that F is disconnected.

Let C_1, C_2, \ldots, C_t be the components of $F, t \ge 2$. It is obvious that $|V(C_i)| \ge \mu + 1$. First let

$$M_0 = \emptyset \quad \text{and} \quad W_0 = \{C_1\}.$$

Suppose we have found a matching M_s with s edges and $W_s = G[C_1, C_2, \ldots, C_{s+1}]$ such that $W_s + M_s$ is connected. It is clear that

- each edge of M_s connects two components of W_s and
- M_s would form a subtree with s edges if each component $C_i \in W_s$ were contracted into a single vertex $v(C_i)$.

Denote

$$P = W_s + M_s, \quad U = V(M_s), \quad L = V(P) \setminus U.$$

Assume s < t - 1, otherwise M_s is a matching as required. As G is connected, there exists an edge $e = az \in \Delta_G(V(P))$ which connects P with another component C_{s+2} (renumbering if necessary). Let $a \in V(P)$ and $z \in V(C_{s+2})$.

Now suppose that G has no matching M_{s+1} with s+1 edges such that a connected $(W_s \cup C_{s+2}) + M_{s+1}$ exists. We shall show that there exist three independent vertices such that the degree sum of each pair of them is less than $n - \mu$, which contradicts the assumption of the theorem.

It is easily seen that

$$s \ge 1, \\ f(v) + 1 \le d_P(v) \le g(v) + 1 \quad \text{if } v \in U, \\ f(v) \le d_P(v) \le g(v)) \quad \text{if } v \in L, \\ |L| \ge \frac{\mu - 1}{2} |U| + \mu + 1.$$

The last one comes from |U| = 2s and $|L| + |U| = |V(P)| \ge (s+1)(\mu+1)$. Moreover, we have

$$E_G(v, L) = \emptyset \quad \forall v \in V(C_{s+2}), \tag{1}$$

otherwise, assuming $e^* \in E_G(v, L)$, $M_{s+1} = M_s \cup \{e^*\}$ is a matching as required, a contradiction.

79

As $az \in E(G)$ and $a \in U$, let $ab \in M_s$ be the edge adjacent to az, let A and B be the components of P - ab such that A contains a and B contains b. By the structure of P, we can choose two components C_i , C_j from W_s satisfying

- $C_i \subseteq A$, $C_j \subseteq B$, and
- $|V(C_i) \cap U| = |V(C_j) \cap U| = 1.$

Choose $x \in V(C_i) \setminus U$ and $y \in V(C_j) \setminus U$. Then

$$E_G(\{x, y\}, \overline{V(P)}) = \emptyset, \tag{2}$$

and

ő.,

$$E_G(x, V(B) \setminus U) = E_G(y, V(A) \setminus U) = \emptyset.$$
(3)

Otherwise let $e \in E_G(x, V(B) \setminus U)$, then $M_{s+1} = (M_s \setminus ab) \cup \{za, e\}$ becomes a matching as required, since $\{ab, za, e\} \cap F = \emptyset$, a contradiction. Similarly, $E_G(y, V(A) \setminus U) = \emptyset$. Then x, y and z are three independent vertices.

Now we shall show that the degree sum of each pair of $\{x, y, z\}$ is less $n - \mu$. Let $M_z = \{uv \in M_s \mid \{u, v\} \cap N_G(z) \neq \emptyset\}$. It is clear that $ab \in M_z$. Let X_z and Y_z respectively denote components of $P - M_z$ containing x and y. Obviously, $X_z \subseteq A$, $Y_z \subseteq B$.

Assertion 1 $e_G(\{z, x\}, \{u, v\}) \leq 3 \quad \forall uv \in M_s.$

Suppose that for some $uv \in M_s$

$$\{xu, xv, zu, zv\} \subset E(G).$$

Let u and x be in different components of P - uv, then it is easily seen that $M_{s+1} = (M_s \setminus uv) \cup \{xu, zv\}$ would be a matching as required, a contradiction.

Assertion 2 $N_G(x) \subset V(X_z) \cup U$.

By (2) and (3), we need only show $E_G(x, L \cap V(A) \setminus V(X_z)) = \emptyset$ since $x \in V(X_z)$ but $x \notin N_G(x)$. We assume $rx \in E_G(x, L \cap V(A) \setminus V(X_z))$. Then by the definition of X_z there exists an edge $uv \in M_z$ on the paths joining r and x in A. By the definition of M_z , either zu or $zv \in E(G)$, say $zu \in E(G)$. Thus $M_{s+1} = (M_s \setminus uv) \cup \{rx, zu\}$ is a matching as required, a contradiction.

Let $h = |M_s \cap E(X_z)|$. Then $|M_s \setminus E(X_z)| = s - h$, X_z and $P \setminus V(X_z)$ respectively contain h + 1 and s - h components of W_s . Because each $|C_\ell| \ge \mu + 1$,

$$|M_s \setminus E(X_z)| = s - h \le \frac{|V(P) \setminus V(X_z)|}{\mu + 1}$$

By the definition of X_z , $V(X_z) \cap V(M_z) \neq \emptyset$. Then

$$|N_G(x) \cap V(X_z) \setminus V(M_z)| \le |V(X_z)| - 2.$$

Hence from (1), Assertions 1, 2 and the last two inequalities we get that

$$d_{G}(x) + d_{G}(z) = |N_{G}(x) \cap V(X_{z}) \setminus V(M_{z})| + |N_{G}(z) \cap \overline{V(P)}| + e(\{x, z\}, V(M_{s} \setminus E(X_{z}))) \leq |V(X_{z})| - 2 + |\overline{V(P)}| - 1 + 3 |M_{s} \setminus E(X_{z})| \leq |V(X_{z})| + |\overline{V(P)}| - 3 + \frac{3|V(P) \setminus V(X_{z})|}{\mu + 1} \leq |V(G)| - 3 - \frac{\mu - 2}{\mu + 1} |V(B)| \leq n - \mu - 1.$$
(4)

Similarly,

$$d_G(y) + d_G(z) \le n - \mu - 1.$$
(5)

Now let us show

$$d_G(x) + d_G(y) \le n - \mu - 1.$$
 (6)

An argument similar to that used in the proof of Assertion 1 shows that

Assertion 3 $e_G(\{x,y\}, \{u,v\}) \leq 3 \quad \forall \, uv \in M_s.$

Let $M_{xy} = \{uv \in M_s | e_G(\{x, y\}, \{u, v\}) = 3\}$ and let X_c (resp. Y_c) denote the component of $P - M_{xy}$ containing x (resp. y), and

$$M_c = \Delta_P(V(X_c)) \cup \Delta_P(V(Y_c)).$$

Then X_c and Y_c are either identical or disjoint. Clearly $M_c \subseteq M_{xy}$ and

Assertion 4 $e_G(\{x, y\}, \{u, v\}) \leq 2 \quad \forall uv \in M_s \cap (E(X_c) \cup E(Y_c)).$

Now we are going to show

Assertion 5 $E_G(r, \{x, y\}) = \emptyset \quad \forall r \in L \setminus (V(X_c) \cup V(Y_c)).$

Assuming $rx \in E(G)$, then by (3) $r \in V(A)$, $ry \notin E(G)$. Because $r \in L \setminus (V(X_c) \cup (V(Y_c)))$ and P is connected, there exists (at least) one edge $uv \in M_c$ on the paths which connects r and y in P. By the definition of M_c , either uy or $vy \in E(G)$, say $uy \in E(G)$. Then $M_{s+1} = (M_s \setminus \{ab, uv\}) \cup \{az, rx, uy\}$ would be a matching as required, a contradiction. Similarly, we get $ry \notin E(G)$. Thus the assertion holds.

Let $p = |M_s \cap E(X_c)|$, $q = |M_s \cap E(Y_c)|$. Thus X_c and Y_c contain respectively p + 1 and q + 1 components of W_s . Now we shall complete the proof by examining two different cases according to whether X_c and Y_c are identical or disjoint.

Case 1. X_c and Y_c are disjoint.

Then $|M_s \setminus (E(X_c) \cup E(Y_c))| = s - (p+q)$, and $P - (V(X_c) \cup V(Y_c))$ contains s - (p+q) - 1 components of W_s .

An argument similar to the proof of (4) shows that

$$\begin{aligned} |M_s \setminus (E(X_c) \cup E(Y_c))| &= s - (p+q) \\ &\leq 1 + \frac{|V(P) \setminus (V(X_c) \cup V(Y_c))|}{\mu+1}. \\ e_G(\{x,y\}, L) &\leq |L \cap (V(X_c) \cup V(Y_c))| - 2, \\ e_G(\{x,y\}, U) &\leq 2|M_s \cap (E(X_c) \cup E(Y_c))| + 3|M_s \setminus (E(X_c) \cup E(Y_c))|. \end{aligned}$$

Because $\emptyset \neq \Delta_P(V(X_c)) \subseteq M_c$,

$$L \cap V(X_c)| + 2 |M_s \cap E(X_c)| \le |V(X_c)| - 1.$$

Similarly,

$$|L \cap V(Y_c)| + 2|M_s \cap E(Y_c)| \le |V(Y_c)| - 1.$$

We have

$$\begin{aligned} d_G(x) + d_G(y) &\leq |L \cap (V(X_c) \cup V(Y_c))| - 2 + 2 |M_s \cap (E(X_c) \cup E(Y_c))| \\ &+ 3 |M_s \setminus (E(X_c) \cup E(Y_c))| \\ &\leq |V(X_c)| + |V(Y_c)| - 4 \\ &+ 3 (1 + \frac{|V(P) \setminus (V(X_c) \cup V(Y_c))|}{\mu + 1}) \\ &\leq |V(P)| - 1 - \frac{\mu - 2}{\mu + 1} |V(P) \setminus (V(X_c) \cup V(Y_c))| \\ &\leq |V(P)| - 1 \\ &\leq n - \mu - 2. \end{aligned}$$

Therefore in this case the required inequality holds.

Case 2. X_c and Y_c are identical.

So $|M_s \setminus E(X_c)| = s - p$, and $P - V(X_c)$ contains s - p components of W_s . Similarly, we have

$$d_G(x) + d_G(y) \leq |L \cap V(X_c)| - 1 + 2|M_s \cap E(X_c)| + 3|M_s \setminus E(X_c)|$$

$$\leq |V(X_c)| - 2 + \frac{3|V(P) \setminus V(X_c)|}{\mu + 1}$$

$$\leq |V(P)| - 2 - \frac{\mu - 2}{\mu + 1}|V(P) \setminus V(X_c)|$$

$$\leq |V(P)| - 2$$

$$\leq n - \mu - 3.$$

The proof of Theorem 7 is completed.

Remark 1. Theorems 5, 6 and some similar results about the existence of connected [a, b+1]-factors and connected [f, f+1]-factors are natural consequences of Theorem 7. So the result of Theorem 7 is the most general result in this sense.

Remark 2. It was pointed out in [2] and [3] that the condition that the degree sum is at least n - k could not be weakened any further. To see this, let $n \ge 3k + 3$ and $G := K_1 \lor (K_k \cup K_{k+1} \cup K_{n-2k-2})$, where \lor and \cup denote join and disjoint union. So the result of Theorem 7 is sharp in this sense.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York(1976).
- [2] Cai Mao-cheng, An degree condition for the existence of connected [k, k + 1]-factors, to appear in J. Sys. Sci. & Math. Scis.
- [3] Cai Mao-cheng, Connected [k, k+1]-factors of graphs, submitted.
- [4] Y. Egawa and H. Enomoto, Sufficient conditions for the existence of k-factors. Recent Studies in Graph Theory, V.R. Kulli, Ed., Vishwa International Publication, India (1989) 96-105.
- [5] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs. Graphs and Combinat. 7 (1991) 353-361.
- [6] M. Kano, Some current results and problems on factors of graphs.
- [7] M. Kano, private communication.
- [8] P. Katerinis, Minimum degree of a graph and the existence of k-factors. Proc. Indian Acad. Sci (Math. Sci.) 94 (1985) 123-127.
- [9] T. Nishimura, A degree condition for the existence of k-factors. J. Graph Theory 16 (1992) 141-151.
- [10] W.T. Tutte, Graph factors. Combinatorica 1 (1981) 79-97.

(Received 18/8/95)