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Abstract

Let (¢ be a connected graph of order n, let f and g be two positive
integer functions defined on V(G) satisfying 2 < f(v) < g(v) for each
vertex v € V(). In this paper we prove that it ( has a [f, g]-factor F
and, moreover, among any three independent vertices of G there are (at
least) two vertices with degree sum at least n — u, then (¢ has a match-
ing M such that M and F are edge-disjoint and M 4 F is a connected
[f, g + 1]-factor of ¢, where = min{f(v): v e V(()}.

As immediate consequences, the result gives a solution to a problem
of Kano on the existence of connected [a,bl-factors, and it generalizes
theorems of M. Cail.

All graphs under consideration are finite and simple. Let zy denote the edge e
joining vertices x and y. We write H C (/, if a graph H is a subgraph of . Given
disjoint subsets X and ¥ of V((), we denote by G{X] the subgraph of G induced
by X, and

X =V(@)- X,

Ec(X,Y)=Haeye D(() |z e X,y Y},
6("(‘)(’ }) = tEU()S_v Y)l )

Ac(X) = FEa(X, X).

Given & € V((), the set of vertices adjacent to z is said to be the neighborhood
of i, denoted by Ng(x), and dg(z) = |Nu(z)| the degree of z. Let f and ¢ be
integer-valued functions defined on V() such that 0 < f(v) < g(v) < dg(v) for all
v € V. An [f, glfactor of G is defined as a subgraph I of (¢ such that

flv) <dp(v) < g(v) Yo e V(G),

and an [f, fl-factor is abbreviated to an f-factor.
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Let M and F be two edge-disjoint subgraphs of graph ¢, and let Eyop = E(M)U
E(F), where E(M) and E(F) are the edge sets of M and F respectively. We denote
by M + F' the subgraph induced by Faup.

Other notation and terminology are the same as in [1].

The following results about k-factors or connected [f, g]-factors are already known.

Theorem 1 [9]  Let k >3 be a positive integer and let G be a connected graph of

order n and minimum degree af least k where kn is even and n > 4k — 3. If for each
pair of nonadjacent vertices uw and v of (4

max{dc:(v), de(v)} > T—;
then G has a k-factor.

Theorem 2 [6]  Let k be a positive integer and let G be a graph of order order n
and minimumn degree al least k: where kn is even and n > 4k — 5. If for each pair of
nonadjacent vertices u, v of ¢

de(u) 4+ de(v) > n

then G has both a Hamiltonian cycle C' and a k-factor F. Hence & has a connected

[k, k4 2]-factor C + F.
Kano posed the following problems

Problem 3 [7]  Find sufficient conditions for a graph G to have a connected
[k, k4 1]-factor.

Problem 4 [7]  Find sufficient conditions for o graph G to have a connected [a, b]-
Jactor.

M. Cal has proved the following two results.

Theorem 5 [2] Let k be an integer > 2 and G be a connected graph of order n. If
( has a k-factor I and, moreover, among any three independent vertices of (G there
are (at least) two with degrec sum at least n —k, then G has a matching M such that
M and F' are edge-disjoint and M + I is a connected [k, k + 1]-factor of G.

An almost k™-factor in a graph is a factor such that every vertex has degree k
except at most one with degree k — 1.

Theorem 6 [3] Let k be an odd integer > 3 and let G be a connected graph of odd
order n > 2k + 1. If G has an almost k™ -factor F' such that the vertex v* with
dp(v*) =k —1 has degree at least nf2, and, moreover, among any three independent
vertices of G there are (at least) two with degree sum at least n — k, then G has
a matching M such that M and F' are edge-disjoini and M + F is a connected
tk, k + 1]-factor of .
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The purpose of this paper is to prove the following main result, which extends
Theorems 5, 6 and gives a solution to problem 3.

Theorem 7 Let G be a connected graph of order n, let f and g be two posilive inleger
functions defined on V(() which satisfy 2 < f(v) < g(v) for ecach vertex v € V().
Let G have an [f,g]-factor F'and put p = min{f(v) : v € V(G)}. Suppose that
among any three independent vertices of (¢ there are (al least) two verlices with degree
sum at least n—p. Then G has o matching M such that M and F are edge-disjoint
and M + F is o connected [f, g + ]-factor of 5.

Proof If F is connected, then F' itself is a connected [f, g]-factor. This implies
that it is also a connected [f, g+ 1]-factor, and theorem frivially holds. So we may
assume that F' is disconnected.
Let Ch, (..., C be the components of F, t > 2. [t is obvious that [V(C})| =
n+ 1. First let
M() = V} and VV{) = {Ol}

Suppose we have found a matching M, with s edges and W, = G[C, 0y, ..., Ciyy]
such that W, + M, is connected. It is clear that

e cach edge of M, connects two components of W, and

e M, would form a subtree with s edges if each component C; € W, were con-
tracted into a single vertex v(C%).
Denote
P=W,+ M, U=V(M,), L=V(P)\U.

Assume s < t — 1, otherwise M, is a matching as required. As G is connected,
there exists an edge ¢ = az € Ag(V(P)) which connects P with another component
(4 (renumbering if necessary). Let a € V(P) and » € V().

Now suppose that (¢ has no matching M.4 with s+1 edges such that a connected
(W, UCyg2) -+ Mgy exists. We shall show that there exist three independent vertices
such that the degree sum of each pair of them is less than n — y, which contradicts
the assumption of the theorein.

It is easily seen that

s> 1,
Jw)y+1<dpv)<glv)+1  ifvel,
fv) < dp(v) < g(v)) ifoel,

|L] > £HU 4+ 1

The last one comes from U] = 2s and |L|+ |{U| = |V(P)| > (s+1)(p+1). Moreover,
we have :

E(;('U, L) = @ \V’U € V(Cs+2), (1)

otherwise, assuming ¢* € Eg(v, L), Myy1 = M, U {e*} is a matching as required, a
contradiction.
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As az € E(G) and a € U, let ab € M, be the edge adjacent to az, let A and B be
the components of P —ab such that A contains ¢ and B contains b. By the structure
of P, we can choose two compouents (7, C; from W, satisfying

e (;CA C(C,CHB, and
e [V(C)nU = |V(C)ynU| =1
Choose z € V((5)\ U and y € V(C;)\ U. Then

Bo({z, y}, V(P)) = (2)

and
Eole, V(B)\U) = Ee(y, V(A\U) = (3)
Otherwise let ¢ € Eq(x, V(B)\ U), then M,y = (M, \ ab) U {za, ¢} becomes
a matching as require d since {ab, za, ¢} N F' = (), a contradiction. Similarly,

Be(y, V(A)\U) = 0. Then z, y and =z are three independent vertices.

Now we shall show that the degree sum of each pair of {z,y, 2} is less n— p. Let
M. = {uv € M| {u,v} N Na(z) # 0}. It is clear that ab € M,. Let X, and Y,
respectively denote components of P — M, containing x and y. Obviously, X, C A,
Y, CHB.

Assertion 1 eq({z.z}, {u,v}) <3 Yuve M,
Suppose that for some vv € M,
{zu, zv, z2u, v} C B(G).

d z be in different components of P — uv, then it is easily seen that M, ; =
U {zu, zv} would be a matching as required, a contradiction.

Assertion 2 Ng(z) CV(X.)UU.

By (2) and (3), we need only show Eg (r LﬂV(A)\V(XZ)) ={sincez € V(X))
but @ ¢ Ne(). We assume rz € Eg(z, LOV(A)\V(X.)). Then by the definition of
. X, there exists an edge uv € M. on the paths joining r and z in A. By the definition
of M., either zu or zv € E(C;). say zu € B(G). Thus Myyy = (M, \ wo) U {re, zu}
is a matching as required, a contradiction.

Let h = [M,NE(X.)|. Then |[M,\ E(X.)| = s—h, X, and P\V(X,) respectively

contain b+ 1 and s — h components of W;. Because each |Cy| > p + 1,

= V(P)\V(X.
M/IS\E()‘%)‘ —S—hg —ﬁm-———‘—-—

By the definition of X,, V(X,)NV(M,) # . Then
INo(z) N V(X)\ V(M) < [V(X2)] - 2.
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Hence from (1), Assertions 1, 2 and the last two inequalities we get that

f
it

dei(x) + dee(2) [Na(z) N V(X)) V(M)

+ [Na(2) N V(P) + e({z, 2}, VM, \ B(X.)))

< V) =24 VIP) = L4 3 IM\ B(X.)] )
< W(XJ)|+ }v Py -3+ iL_%g-_iﬂ
< V(G) =3 - B2 V(B
< n—p-—1L
Similarly,
da(y) +da(z) <n—p— L (5)
Now let us show
dg(x) +daly) <n-—p—L (6)

An argument similar to that used in the proof of Assertion 1 shows that
Assertion 3 cq({z.y}, {v.v}) <3 Yuv € M,

Let My, = {uv € M, |ec({z,y}, {u.v}) = 3} and let X, (resp. Y;) denote the
component of P — M,, containing x (resp. y), and

M, = Ap(V(X:)) U Ap(V(Y.)).
Then X, and Y, are either identical or disjoint. Clearly M. C M., and
Assertion 4 eq({r,y}. {u,v}) <2 Vuwv e M, N (E(X.)U E(Y.)).
Now we are going to show
Assertion 5 Eq(r, {z,y}) =0 Vre L\ (V(X)uUV(Y).

Assuming r¢ € E((), then by (3) r € V(A)., ry € E(G). Because r € L\
(V(X.)U (V(Y.)) and P is connected, there exists (at least) one edge uv € M. on
the paths which connects r and y in P. By the definition of M., either uy or
vy € B(G), say uy € B(G). Then Moy = (M, \ {ab, wv}) U {az, ra, uy} would
be a matching as required, a contradiction. Similarly, we get ry ¢ E(G). Thus the
assertion holds.

Let p = [M, N E(X.)|, ¢ = |M,N E(Y.)|. Thus X. and Y, contain respectively
p+1 and ¢+ 1 components of W,. Now we shall complete the proof by examining
two different cases according to whether X, and Y. are identical or disjoint.

Case 1. X, and Y. are disjoint.

Then |[M,\ (E(X)U E(Y.))| = s —(p+q), and P~ (V(X,) U V(Y.)) contains
s—(p+q) — 1 components of W,.
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An argument similar to the proof of (4) shows that

{MS ‘\ (E(X) U E(Yz))‘ = & = (p+ q)
|4 VN VXY uviyo)l

< w41
colfry), L) < LN (VX)UVY)) -2,
cal{e.y}, U) < 2|M, 0 (E(X) U E(Y.)| +3 M, \ (B(X.) U E(Y))]

Because () # Ap(V(X.)) € M.,
LOVX +2M, 0 BX)] < [V(X)] - 1.

Similarly,
[LOVY+2IM, 0 B(Y)] < V(Y] - 1.

We have

doz) +da(y) < 1LO(VIX) UV~ 24+ 2]M, 0 (E(X.) U E(Y.)
+3[M N\ (B(X.)U B(Y.))]
VX + V(Y] — 4
VPN (V(X)u V(v

AN
1/

+3(1+ il )
< V(P =1~ Zﬁ [VIPY\ (V(X.) U V(Y.
< V(P -1
< n—p—2

Therefore in this case the required inequality holds.

Case 2. X. and Y, are identical.

So [M;\ E(X.)| = s —p, and P — V(X.) contains s — p components of W,.
Similarly, we have

da(e) +do(y) < [LOV(X)| = 142[M, NE(X)]+ 3|M, \ B(X.)|
< Loy SIVIPN VX
< V(X)) -2+ o
. . 2
< \V(P)!“2~;ﬁ~IV(P)\V(XC){
< [V(P)] -2
< n-—pu-3.

The proof of Theorem 7 is completed.
Remark 1. Theorems 5, 6 and some similar results about the existence of con-

nected [a,b + 1]-factors and connected [f, f + 1]-factors are natural consequences of
Theorem 7. So the result of Theorem 7 is the most general result in this sense.
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Remark 2. [t was pointed out in [2] and [3] that the condition that the degree
sum is at least n — &k could not be weakened any further. To see this, let n > 3k + 3
and (= KV (KU Ky UK, _gk-2), where V and U denote join and disjoint union.
So the result of Theorem 7 is sharp in this sense.
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