Optimizing Slightly Triangulated Graphs

Frederic Maire, maire@fit.qut.edu.au School of Computing Science Queensland University of Technology GPO Box 2434 Brisbane Qld 4001, Australia

Abstract

A graph is called slightly triangulated if it contains no chordless cycle with five or more vertices and every induced subgraph has a vertex whose neighbourhood contains no induced path on four vertices. These graphs generalize triangulated graphs and appear naturally in the study of the intersection graphs of the maximal rectangles of orthogonal polygons. Slightly triangulated graphs are perfect (in the sense of Berge). In this paper we present algorithms for recognizing slightly triangulated graphs, for finding a maximum clique, and for finding an optimal colouring.

1 Introduction

Let P_{k} denote the chordless path with k vertices, C_{k} the chordless cycle with k vertices and \bar{G} the complement of the graph G. We write $H \subset G$ if H is an induced subgraph of G. The maximum size of a clique in G is denoted by $\omega(G)$, and the number of vertices in G is denoted by n. The neighbourhood of a vertex x in a subgraph H is denoted by $\Gamma_{H}(x)$.

In the early sixties Berge [1] defined a graph G to be perfect if for every induced subgraph H of G the chromatic number of H is equal to the largest size of a clique in H. Graphs which played an important role in the development of perfect graph theory are the triangulated graphs. A graph is triangulated if it contains no chordless cycle with four or more vertices. Another characterization is that every induced subgraph of a triangulated graph contains a vertex whose neighbourhood is a clique. Triangulated graphs constitute a large class of perfect graphs with numerous applications. They have been thoroughly studied and efficient algorithms are known for these graphs. The reader is referred to [5] for an introduction to this topic. We introduced in [9] (see also [10]) a generalization of triangulated graphs; we call a graph slightly triangulated if it satisfies the following two conditions.

$$
\text { 1. } \forall k \geq 5, C_{k} \not \subset G
$$

2. $\forall H \subset G, \exists x \in H, P_{4} \not \subset \Gamma_{H}(x)$

Each of these conditions is satisfied by triangulated graphs. Therefore the class of slightly triangulated graphs contains the class of triangulated graphs.

Slightly triangulated graphs are useful in characterizing the intersection graphs of the maximal rectangles of a polyomino (see [8]). Because they can contain \bar{C}_{6}, slightly triangulated graphs do not belong to any of the classical classes of perfect graphs, except maybe the quasi-parity graphs (this is an open problem, see [2] for a comprehensive presentation).

In section 2, we will present an algorithm to recognize slightly triangulated graphs in polynomial time. In section 3, we will present an algorithm (also polynomial) to find a maximum clique in a slightly triangulated graph. In section 4, we will present an algorithm to colour these graphs, and discuss the complexity of this algorithm (which is not polynomial).

2 Recognizing slightly triangulated graphs

To simplify the notation, a vertex with a P_{4}-free neighbourhood will be called a $P_{4}{ }^{-}$ free vertex. Deciding whether a graph G is slightly triangulated can be decomposed into two independent sub-problems:

- Problem 1 : Does G contain an induced cycle with 5 or more vertices?
- Problem 2: Does every induced subgraph contain a P_{4}-free vertex ?

2.1 A solution to problem 1

The first problem has already been solved by Ryan Hayward in his PhD Thesis. He designed an algorithm to test whether a graph contains an induced cycle whose length is at least five. The idea is to test for every induced $P_{3} a b c$ if the endpoints a and c of the P_{3} belong to the same connected component of the graph obtained by removing $\Gamma(b) \backslash\{a, c\}$ and $\Gamma(a) \cap \Gamma(c)$ (including b). If a and c belong to the same connected component, then the P_{3} we were considering belongs to a chordless cycle of length at least five. To test whether two vertices belong to the same component can be done in $\mathcal{O}\left(n^{2}\right)$ time (this problem is linear with the number of edges). To list all the P_{3} 's can be done in $\mathcal{O}\left(n^{3}\right)$ time. Therefore the overall complexity is in $\mathcal{O}\left(n^{5}\right)$. A slightly faster algorithm, designed by Jeremy Spinrad [12], runs in $\mathcal{O}\left(n^{4.376}\right)$.

2.2 A solution to problem 2

The second problem is equivalent to

- Problem 2'; Is there a numbering v_{1}, \ldots, v_{n} of the vertices of G such that if G_{i} denotes the subgraph generated by $v_{1}, v_{2}, \ldots, v_{i}$ then $P_{4} \not \subset \Gamma_{G_{i}}\left(v_{i}\right)$?

We say that the numbering is good, if it satisfies this condition. Problem 2 and problem ' 2 ' are indeed equivalent. Suppose G is such that every subgraph contains a P_{4}-free vertex. To find a good numbering, we choose for v_{n} a P_{4}-free vertex of G, then we choose for v_{n-1} a P_{4}-free vertex of $G \backslash\left\{v_{n}\right\}$, more generally we choose for v_{n-i} a P_{4}-free vertex of $G \backslash\left\{v_{n}, \ldots, v_{n-i+1}\right\}$.

Conversely, suppose that v_{1}, \ldots, v_{n} is a good numbering. Let H be a subgraph of G. We want to prove that H contains a P_{4}-free vertex. Let $i=\max \left\{j: v_{j} \in H\right\}$. Then $\Gamma_{H}\left(v_{i}\right) \subset \Gamma_{G_{i}}\left(v_{i}\right)$. Therefore v_{i} is a P_{4}-free vertex in H.

Algorithms that are linear in the number of edges have been designed to recognize P_{4}-free graphs (see [4]). Therefore Problem 2^{\prime} (and hence Problem 2) can be decided in $\mathcal{O}\left(n^{4}\right)$ time. Hence slightly triangulated graphs can be recognized in $\mathcal{O}\left(n^{4.376}\right)$ time.

3 Finding a maximum clique in a slightly triangulated graph

Let v_{1}, \ldots, v_{n} be a good numbering of a slightly triangulated graph G, and let G_{i} be the subgraph induced by $v_{1}, v_{2}, \ldots, v_{i}$. We will search for a maximum clique using the obvious fact that $\omega(G)=\max \left\{\omega\left(v_{i} \cup \Gamma_{G_{i}}\left(v_{i}\right)\right): i \in[1, n]\right\}$. Therefore, our search for a maximum clique will be restricted to subgraphs which are P_{4}-free.
P_{4} free graphs are also known as cographs. A cograph has a unique tree representation (called a cotree) which corresponds to the recursive decomposition of the cograph in connected components in the cograph and its complement. The existence (and uniqueness) of such a decomposition is a straightforward consequence of the following lemma due to Seinsche [11].

Lemma 1 (Seinsche) If H is a cograph then H or \bar{H} is disconnected.
The cotree T of a cograph H is defined recursively by:

- If H is just one vertex, then the cotree of H is isomorphic to this vertex.
- If H is disconnected, let A_{1}, \ldots, A_{k} be the connected components of H. Then the root of the cotree T of H is labelled ' 0 ' and the subtrees at the root are the cotrees of A_{1}, \ldots, A_{k}.
- If H is connected, let A_{1}, \ldots, A_{k} be the connected components of \bar{H}. Then the root of the cotree T of H is labelled ' 1 ' and the subtrees at the root are the cotrees of A_{1}, \ldots, A_{k}

The most efficient algorithms [4] for the recognition of cographs and the construction of the corresponding cotrees (complexity $\mathcal{O}(m+n))$ are incremental in the sense that the vertices are processed one at a time (given a cograph $H \cup v$ and T the cotree of H, the cotree of $H \cup v$ is obtained by modifying T).

Once the cotree T of a cograph H is constructed, the computation of $\omega(H)$ is done recursively using the relation:

$$
\omega\left(H\left[r ; T_{1}, \ldots, T_{k}\right]\right)= \begin{cases}\sum_{i=1}^{k} \omega\left(H\left[T_{i}\right]\right) & \text { if } r=1 \\ \max _{i=1, \ldots, k} \omega\left(H\left[T_{i}\right]\right) & \text { if } r=0 .\end{cases}
$$

Here $H\left[r ; T_{1}, \ldots, T_{k}\right]$ represents the cograph whose cotree $\left[r ; T_{1}, \ldots, T_{k}\right]$ has r as root, and T_{1}, \ldots, T_{k} as subtrees at the root. The computation of $\omega\left(H\left[r ; T_{1}, \ldots, T_{k}\right]\right)$ can be adapted to find a maximum clique. Let Q_{1}, \ldots, Q_{k} denote the maximum cliques of the subgraphs of H whose cotrees are respectively T_{1}, \ldots, T_{k}. If $r=1$ then $Q_{1} \cup Q_{2} \ldots \cup Q_{k}$ is a maximum clique of $H\left[r ; T_{1}, \ldots, T_{k}\right]$. Otherwise $r=0$ and a largest clique among Q_{1}, \ldots, Q_{k} is a a maximum clique of $H\left[r ; T_{1}, \ldots, T_{k}\right]$.

To sum up, to find $\omega(G)$, compute $\omega\left(v_{i} \cup \Gamma_{G_{i}}\left(v_{i}\right)\right)$ for all i, using the algorithm above, and take the maximum. The overall complexity is $\mathcal{O}\left(n^{3}\right)$.

4 A colouring algorithm

Let G be a slightly triangulated graph with a good numbering v_{1}, \ldots, v_{n} of its vertices. As before, we denote by G_{i} the subgraph induced by $v_{1}, v_{2}, \ldots, v_{i}$. We denote by H_{i} the neighbourhood $\Gamma_{G_{i}}\left(v_{i}\right)$.

We will colour the vertices of G in the good numbering order. Let $S_{1}, \ldots, S_{\omega\left(G_{i-1}\right)}$ be the colour classes of a perfect colouring of G_{i-1}. That is, the number of colours used in this colouring is equal to the clique number. From this perfect colouring of G_{i-1}, we will obtain a perfect colouring of G_{i}. But first, we need some preparatory lemmas.

4.1 Some lemmas for the colouring algorithm

The star-cutset lemma plays a key role in colouring perfect graphs. A star-cutset is a cutset C such that some vertex in C is adjacent to all the remaining vertices in C. Chvátal has shown in [3] that a minimal imperfect graph cannot have a star-cutset. The algorithmic proof of this lemma will be used in our colouring algorithm.
Lemma 2 (Chvátal) If every proper subgraph of a graph G has a perfect colouring and if G has a star-cutset, then G admits a perfect colouring.

Proof: Let G be such a graph, and let v be the center of the star-cutset (the vertex which dominates C). Let $A_{1}, A_{2}, \ldots, A_{k}$ be the components of $G \backslash C$. As every proper subgraph of G is ω-colourable, the subgraphs $G \backslash A_{1}$ and $C \cup A_{1}$ are ω-colourable. Let B_{1} be the colour class of v in $G \backslash A_{1}$, and B_{2} the colour class of v in $C \cup A_{1}$. Then $B_{1} \cup B_{2}$ is a stable set, which meets (has a non-empty intersection with) every maximum clique of G. The graph $G \backslash\left(B_{1} \cup B_{2}\right)$ is $\omega(G)-1$ colourable. This colouring of $G \backslash\left(B_{1} \cup B_{2}\right)$ can be completed with $B_{1} \cup B_{2}$ into a perfect colouring of G.

Our colouring algorithm will examine the neighbourhood H_{i} to find an available colour for v_{i}, or a star-cutset, or a colour class that intersects all the maximum cliques of G_{i}.

In the remainder of this subsection we treat the case of the colouring algorithm when the $(\omega-1)$-cliques of H_{i} are not all in the same component. The following lemmas will show that in this case, either we can colour v_{i} without changing the colouring of G_{i-1} or we can find a star-cutset in G_{i}.

Let $N_{1} \cup N_{2}$ be a partition of H_{2} such that

$$
\forall n_{1}, n_{2} \in N_{1} \times N_{2}, n_{1} n_{2} \notin E\left(G_{i}\right)
$$

and such that there are $(\omega-1)$-cliques in both N_{1} and N_{2}. Let I denote the set of vertices of $G_{i} \backslash\left(v_{i} \cup H_{i}\right)$ adjacent to both N_{1} and N_{2}. i.e.

$$
I=\left(\Gamma_{G_{i}}\left(N_{1}\right) \cap \Gamma_{G_{i}}\left(N_{2}\right)\right) \backslash v_{i}
$$

Lemma 3 If $I=\emptyset$ then $\left\{v_{i}\right\}$ is a cutset.
Proof: Suppose that $I=\emptyset$. If v_{i} is not a cutset there exists a chordless path from N_{1} to N_{2}. But this would imply that G_{i} contains a chordless cycle with 5 or more vertices, which is impossible.

Lemma 4 If $\exists x \in I, N_{1} \subset \Gamma_{G_{i}}(x)$ or $N_{2} \subset \Gamma_{G_{i}}(x)$, then v_{i} is the center of a starcatset, or can receive the colour of x.

Proof: Suppose that $\exists x \in I, N_{1} \subset \Gamma_{G_{i}}(x)$ or $N_{2} \subset \Gamma_{G_{i}}(x)$. Without loss of generality we assume that $N_{2} \subset \Gamma_{G_{i}}(x)$. Let x be such that $\left|\Gamma_{G_{i}}(x) \cap H_{i}\right|$ is a maximum among the vertices of I that satisfy $N_{2} \subset \Gamma_{G_{i}}(x)$. If $N_{1} \subset \Gamma_{G_{i}}(x)$ then v_{i} can receive the colour of x. So assume that $N_{1} \not \subset \Gamma_{G_{i}}(x)$. If $v_{i} \cup\left(\Gamma_{G_{i}}(x) \cap H_{i}\right)$ is not a star-cutset, then there is a chordless chain included in $\left.G_{i} \backslash\left(\Gamma_{G_{i}}(x) \cap H_{i}\right)\right)$ whose length is at least 2, and joining x to $N_{1} \backslash \Gamma_{G_{i}}(x)$. Let $y_{1}, y_{2}, \ldots, y_{k}=x$ be this chain. We have $k \geq 3, y_{1} \in N_{1}$, and $\forall j \geq 2, y_{j} \notin \Gamma_{G_{i}}\left(v_{i}\right)$. We will consider two cases. We abbreviate $\Gamma_{G_{i}}(z) \cap N_{j}$ by $N_{j}(z)$.
case 1 Suppose that $N_{2} \backslash N_{2}\left(y_{2}\right) \neq \emptyset$. Let z be a vertex of $N_{2} \backslash N_{2}\left(y_{2}\right)$. Let l be the smallest index such that $y_{l} z \in E$. Then $\left\{v_{i}, y_{1}, y_{2}, \ldots, y_{l}, z\right\}$ induces a chordless cycle with length at least 5 , a contradiction.
case 2 Suppose that $N_{2}\left(y_{2}\right)=N_{2}$. Then k is at least 4. Otherwise there would be a $(\omega+1)$-clique in $x \cup y_{2} \cup N_{2}$. As we chose x such that $\left|\Gamma_{G_{i}}(x) \cap H_{i}\right|$ is a maximum and as $N_{1}\left(y_{2}\right) \backslash N_{1}(x) \neq \emptyset, \exists t \in N_{1}(x) \backslash N_{1}\left(y_{2}\right)$. If $t y_{1} \in E$ then $\left\{y_{1}, t, x, n_{2}, y_{2}\right\}=C_{5}$, where n_{2} is any vertex of N_{2}. If $t y_{1} \notin E$ then let l be the smallest index such that $y_{l} t \in E$. Then l is at least 3 and $\left\{v_{i}, y_{1}, y_{2}, \ldots, y_{l}, t\right\}$ induces a chordless cycle with length at least 5 .

Lemma 5 If $\forall x \in I, N_{1} \not \subset \Gamma_{G_{i}}(x)$ and $N_{2} \not \subset \Gamma_{G_{i}}(x)$ then v_{i} is the center of a star-cutset.

Proof : We assume that the intersection I is nonempty and that $\forall x \in I, N_{1} \not \subset$ $\Gamma_{G_{i}}(x)$ and $N_{2} \not \subset \Gamma_{G_{i}}(x)$. Consider $x \in I$ such that $\left|\Gamma_{G_{i}}(x) \cap H_{i}\right|$ is a maximum. We have $N_{1} \not \subset \Gamma_{G_{i}}(x)$ and $N_{2} \not \subset \Gamma_{G_{i}}(x)$. If $v_{i} \cup N_{1}(x) \cup N_{2}$ is not a star-cutset then let $x_{1}, x_{2}, \ldots, x_{k}=x$ be a chordless chain joining $N_{1} \backslash \Gamma_{G_{i}}(x)$ to x in $G_{i} \backslash\left(v_{i} \cup N_{1}(x) \cup N_{2}\right)$. We have $k \geq 3, x_{1} \in N_{1}$, and $\forall j \geq 2, x_{j} \notin H_{i}$. We have $N_{2}(x) \subset N_{2}\left(x_{2}\right)$. Otherwise let $z \in N_{2}(x) \backslash N_{2}\left(x_{2}\right)$ and let l be the smallest index such that $x_{1} z \in E$. Then $\left\{v_{2}, x_{1}, x_{2}, \ldots, x_{1}, z\right\}$ induces a chordless cycle with length at least 5 , a contradiction. Therefore we indeed have $N_{2}(x) \subset N_{2}\left(x_{2}\right)$. Since $\left|\Gamma_{G_{i}}(x) \cap H_{i}\right|$ is maximum there exists $u \in N_{1}(x) \backslash N_{1}\left(x_{2}\right)$. We have $x_{1} u \in E$. Otherwise there exists l such that $\left\{v_{i}, x_{1}, x_{2}, \ldots, x_{l}, u\right\}$ induces a chordless cycle with length at least 5 , a contradiction. If $k \geq 4$ then $x x_{2} \notin E$ and $\left\{x_{1}, u, x, n_{2}, x_{2}\right\}=C_{5}$, where $n_{2} \in N_{2}(x)$. To sum up, there is a chordless chain joining x to $N_{1} \backslash N_{1}(x)$ whose length equals 2 and with the properties found above on the inclusions of the neighbourhoods. The same holds for $N_{2} \backslash N_{2}(x)$. Let $\left\{x, b_{1}, a_{1}\right\}$ be a chordless chain from x to $N_{1} \backslash N_{1}(x)$, and let $\left\{x, b_{2}, a_{2}\right\}$ be a chordless chain from x to $N_{2} \backslash N_{2}(x)$. As $N_{2}(x) \subset N_{2}\left(b_{1}\right)$ and $N_{2}(x) \backslash N_{2}\left(b_{2}\right) \neq \emptyset$, we must have $b_{1} \neq b_{2}$. Otherwise $\left|\Gamma_{G_{i}}(x) \cap H_{i}\right|$ would not be maximum. Let $u_{1} \in N_{1}(x) \backslash N_{1}\left(b_{1}\right)$, and let $u_{2} \in N_{2}(x) \backslash N_{2}\left(b_{2}\right)$. The vertices u_{j} and a_{j} are not adjacent $(j \in\{1,2\})$. Otherwise $\left\{v_{i}, a_{j}, b_{j}, x, u_{j}\right\}$ would be a C_{5}. To finish the proof of lemma 5 we have two cases to consider.
case $1 a_{1} b_{2} \notin E$ and $a_{2} b_{1} \notin E$.
case 1.1 If $b_{1} b_{2} \in E$ then $\left\{v_{i}, a_{1}, b_{1}, b_{2}, a_{2}\right\}=C_{5}$.
case 1.2 If $b_{1} b_{2} \notin E$ then $\left\{v_{i}, a_{1}, b_{1}, x, b_{2}, a_{2}\right\}=C_{6}$.
case 2 If $a_{1} b_{2} \in E$ then $\left\{v_{i}, a_{1}, b_{2}, x, u_{2}\right\}=C_{5}$. Similarly, if $a_{2} b_{1} \in E$ then $\left\{v_{i}, a_{2}, b_{1}, x, u_{1}\right\}=C_{5}$.

4.2 The colouring algorithm

The algorithm proceeds by recursion on the number of vertices of G_{i}. If we find a star-cutset in G_{i} or a colour class of G_{i-1} that intersects all the maximum cliques of G_{i}, then we will be able to colour G_{i} recursively. Let $S_{1}, \ldots, S_{\omega\left(G_{i-1}\right)}$ denote the colour classes of a perfect colouring of G_{i-1}. We are going to find a perfect colouring for G_{i} by examining the colouring of H_{i} in G_{i-1}.

Begin (Colouring Algorithm)

case $1 \omega\left(G_{i}\right)=2$.
Then G_{i} is bipartite, therefore easily colourable.
case $2 \omega\left(H_{i}\right)=\omega\left(G_{i-1}\right)$.
We introduce a new colour for v_{i}.
case $3 \omega\left(H_{i}\right)<\omega\left(G_{i}\right)-1$.
Then $\chi\left(G_{i}^{Y} \backslash S_{1}\right)=\omega\left(G_{i}\right)-1$. Recursively we colour $G_{i} \backslash S_{1}$ with $\omega\left(G_{i}\right)-1$ colours.
The union of the colour classes of $G_{i} \backslash S_{1}$ together with S_{1} yields a perfect colouring of G_{i}.
case $4 \omega\left(H_{i}\right)=\omega\left(G_{i}\right)-1$.
We can suppose that all the $\omega\left(G_{i}\right)$ colours appear in H_{i}, otherwise we use the missing
colour for v_{i}.
case $4.1 H_{i}$ is connected.
By Seinsche's lemma, the subgraph H_{i} admits a partition into two parts A and B, such that $\forall a, b \in A \times B, a b \in E\left(G_{i}\right)$. Note that a colour camot be simultaneously present in A and B, and that we have $\omega(A)+\omega(B)=\omega\left(G_{i}\right)-1$. Without loss of generality, suppose that the colours $[1, \ldots, p]$ appear in A, and that the colours $[p+1, \ldots, p+q]$ appear in B. We have $\omega(A) \leq p-1$ or $\omega(B) \leq q-1$, otherwise we would have $\omega\left(G_{i}\right)=p+q=\omega(A)+\omega(B)=\omega\left(C_{i}\right)-1$, a contradiction. Without loss of generality suppose that $\omega(A) \leq p-1$. Recursively, we obtain a perfect colouring of $G_{i-1}\left[S_{1}, \ldots, S_{p}\right] \cup v_{i}$ with p colours. This new colouring together with S_{p+1}, \ldots, S_{p+q} yield a perfect colouring of G_{i}.
case $4.2 H_{i}$ is discomected.
Let A_{1}, \ldots, A_{k} be the connected components of H_{i}.
case 4.2 .1 The $(\omega-1)$-cliques of H_{3} are not all in the same component.
case $4.2 .1 .1 /=0$.
Then according to lemma $3,\left\{v_{i}\right\}$ is a cutset.
case 4.2.1.2 $\exists x \in 1, N_{1} \subset \Gamma_{G_{i}}(x)$ or $N_{2} \subset \Gamma_{G_{i}}(x)$.
Then lemma 4 shows that v_{i} is the center of a star-cutset (this star-cutset is characterized in lemma 4) or can receive the colour of x.
case 4.2.1.3 $\forall x \in I, N_{1} \not \subset \Gamma_{G_{i}}(x)$ and $N_{2} \not \subset \Gamma_{G_{i}}(x)$.
Then according to lemma $5, v_{i}$ is the center of a star-cutset (this star-cutset is characterized in the same lemma).
case 4.2 .2 All the $(\omega-1)$-cliques of H_{i} are in the same component.
Without loss of generality, suppose that this component is A_{1}. As A_{1} is a connected P_{4}-free subgraph, A_{1} admits a partition into two parts B and B^{\prime} such that $\forall b, b^{\prime} \in B \times B^{\prime}, b b^{\prime} \in E\left(G_{i}\right)$. We have

$$
\omega\left(A_{1}\right)=\omega(B)+\omega\left(B^{\prime}\right)=\omega\left(G_{i}\right)-1
$$

Suppose without loss of generality that the colours $1, \ldots, p$ appear in B and that the colours $p+1, \ldots, p+q$ appear in B^{\prime}. If $\omega(B)<p$ and $\omega\left(B^{\prime}\right)<q$ then

$$
\omega\left(G_{i}\right)-1=\omega\left(A_{1}\right)=\omega(B)+\omega\left(B^{\prime}\right) \leq p+q-2=\omega\left(G_{i}\right)-2
$$

This is a contradiction. Therefore $\omega(B)=p$ or $\omega\left(B^{\prime}\right)=q$. Suppose without loss of generality that $\omega(B)=p$. Let S_{1} be a colour class of G_{i-1} which appears in B. The colour class S_{1} meets every maximum clique of G_{i}. Therefore, $\omega\left(G_{i} \backslash S_{1}\right)=\omega\left(G_{i}\right)-1$. We colour recursively $G_{i} \backslash S_{1}$ with $\omega\left(G_{i}\right)-1$ colours. The union of the colour classes of $G_{i} \backslash S_{1}$ together with S_{1} yields a perfect colouring of G_{i}.

End (Colouring Algorithm)

This colouring algorithm should be regarded as a constructive proof of the perfection of slightly triangulated graphs, which gives as a by-product a perfect colouring. From a practical point of view, it should be noted that the use of the star-cutset lemma leads to a complexity which is not polynomial in the worst cases.

Let us show that, in general, a colouring algorithm which uses the star-cutset lemma cannot be polynomial. Assume that a graph G has a star-cutset C. Let $A_{1}, A_{2}, \ldots, A_{k}$ be the connected components of $G \backslash C$. Let $\phi(G)$ denote the time spent to colour the graph G, and $\phi(n)$ the maximum time spent to colour a graph of order n. Then

$$
\phi\left(C \cup A_{1} \cup A_{2} \ldots \cup A_{k}\right)=\phi\left(C \cup A_{1}\right)+\phi\left(C \cup A_{2}\right)+\cdots+\phi\left(C \cup A_{k}\right)
$$

In the extreme case where $k=2$ and $\left|A_{1}\right|=\left|A_{2}\right|=1$, we have $\phi\left(C \cup A_{1} \cup A_{2}\right)=$ $\phi\left(C \cup A_{1}\right)+\phi\left(C \cup A_{2}\right)$. This implies that $\phi(n)=2 \times \phi(n-1)$. In this worst case the complexity is exponential.

A more efficient colouring algorithm for slighly triangulated graphs would certainly use a new combinatorial characterization of these graphs. This has been the case for another class of perfect graphs also generalizing triangulated graphs (see [7] for the details of the story).

References

[1] Berge C. : Sur une conjecture relative au probleme des codes optimaux, Commun. 13 eme Assemblee Gen. URSI, Tokyo, 1962.
[2] Berge C., Chvátal V. : Topics on perfect graphs, Ann. Discrete Math. 21, (1984).
[3] Chvátal V. : Star-cutsets and perfect graphs, J. Comb. Theory(B) 39, 189-199 (1985).
[4] Corneil D., Perl V., and Stewart L. : A linear recognition algorithm for cographs, SIAM Journal of Computing 14,926-934, (1985).
[5] Golumbic M.C.: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[6] Hayward, R. : Weakly triangulated graphs, J. Comb. Theory(B) 39, 200-208 (1985).
[7] Hayward R., Hoàng C., Maffray, F. : Optimizing weakly triangulated graphs, Graphs and Combinatorics 5, 339-349 (1989).
[8] Maire F. : A characterization of intersection graphs of the maximal rectangles of a polyomino, Discrete Math 120,211-214, (1993).
[9] Maire F. : Des polyominos aux graphes parfaits, PhD Thesis University Paris 6, june 1993.
[10] Maire F. : Slightly triangulated Graphs, Graphs and Combinatorics, 10, 263269 (1994).
[11] Seinsche D. : On a property of the class of n-colorable graphs, J. Comb. The$\operatorname{ory}(\mathrm{B}) 16,191-193,(1974)$.
[12] Spinrad J.P. : Finding large holes, Information Processing Letters 39, 227-229, (1991).
(Received 10/1/94; revised 25/1/96)

