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Abstract

A graph is called slightly triangulated if it contains no chordless cycle
with five or more vertices and every induced subgraph has a vertex whose
neighbourhood contains no induced path on four vertices. These graphs
generalize triangulated graphs and appear naturally in the study of the
intersection graphs of the maximal rectangles of orthogonal polygons.
Slightly triangulated graphs are perfect (in the sense of Berge). In this
paper we present algorithms for recognizing slightly triangulated graphs,
for finding a maximum clique, and for finding an optimal colouring.

1 Introduction

Let P, denote the chordless path with k vertices, Cy the chordless cycle with &
vertices and G the complement of the graph (. We write H C G'if H is an induced
subgraph of . The maximum size of a clique in (& is denoted by w((), and the
number of vertices in G is denoted by n. The neighbourhood of a vertex x in a
subgraph H is denoted by Iy (x).

In the early sixties Berge [1] defined a graph G to be perfect if for every induced
subgraph H of (7 the chromatic number of H is equal to the largest size of a clique
in H. Graphs which played an important role in the development of perfect graph
theory are the triangulated graphs. A graph is triangulated if it contains no chord-
less cycle with four or more vertices. Another characterization is that every induced
subgraph of a triangulated graph contains a vertex whose neighbourhood is a clique.
Triangulated graphs constitute a large class of perfect graphs with numerous appli-
cations. They have been thoroughly studied and efficient algorithms are known for
these graphs. The reader is referred to [5] for an introduction to this topic. We
introduced in [9] (see also [10]) a generalization of triangulated graphs; we call a
graph slightly triangulated if it satisfies the following two conditions.

1L Vk> 50k ¢ G
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9. VH C G,3z € H Py ¢ Ty(r)

Each of these conditions is satisfied by triangulated graphs. Therefore the class
of slightly triangulated graphs contains the class of triangulated graphs.

Slightly triangulated graphs are useful in characterizing the intersection graphs
of the maximal rectangles of a polyomino (see [8]). Because they can contain (g,
slightly triangulated graphs do not belong to any of the classical classes of perfect
graphs, except maybe the quasi-parity graphs (this is an open problem, see [2] for
a comprehensive presentation).

In section 2, we will present an algorithm to recognize slightly triangilated graphs
in polynomial time. In section 3, we will present an algorithm (also polynomial) to
find a maximum clique in a slightly triangulated graph. In section 4, we will present
an algorithm to colour these graphs, and discuss the complexity of this algorithm
(which is not polynomial).

2 Recognizing slightly triangulated graphs

To simplify the notation, a vertex with a Ps-free neighbourhood will be called a P4-
free vertex. Deciding whether a graph G is slightly triangulated can be decomposed
into two independent sub-problems:

e Problem 1 : Does (& contain an induced cycle with 5 or more vertices 7

e Problem 2 : Does every induced subgraph contain a Ps-free vertex ?

2.1 A solution to problem 1

The first problem has already been solved by Ryan Hayward in his PhD Thesis.
He designed an algorithm to test whether a graph contains an induced cycle whose
length is at least five. The idea is to test for every induced P; abe if the endpoints a
and ¢ of the P; belong to the same connected component of the graph obtained by
removing I'(b) \ {a, ¢} and I'(a) N T'(¢) (including b). If @ and ¢ belong to the same
connected component, then the Py we were considering belongs to a chordless cycle
of length at least five. To test whether two vertices belong to the same component
can be done in O(n?) time (this problem is linear with the number of edges). To list
all the Ps’s can be done in O(n?) time. Therefore the overall complexity is in O(n?).
A slightly faster algorithm, designed by Jeremy Spinrad [12], runs in O(n*37%).

2.2 A solution to problem 2

The second problem is equivalent to

¢ Problem 2": Is there a numbering vy, ..., v, of the vertices of G such that if
(i denotes the subgraph generated by vy, v2,..., v then Py & ey (vi) 7



We say that the numbering is good, if it satisfies this condition. Problem 2 and
problem 2 are indeed equivalent. Suppose G is such that every subgraph contains
a P,-free vertex. To find a good numbering, we choose for v, a Py-free vertex of G,
then we choose for v, a Py-free vertex of (7 \ {v,}, more generally we choose for
Vpei a Py-free vertex of G\ {vn, ..., Vneig1)-

Conversely, suppose that vi,...,v, is a good numbering. Let H be a subgraph
of (7. We want to prove that [ contains a Psy-free vertex. Let ¢ = max{j:v; € H}.
Then Iy (v;) C Te;(vi). Therefore v; is a Py-free vertex in H.

Algorithms that are linear in the number of edges have been designed to recognize
Pyfree graphs (see [4]). Therefore Problem 2’ (and hence Problem 2) can be decided
in O(n') time. Hence slightly triangulated graphs can be recognized in O(n*?*7%)
time.

3 Finding a maximum clique in a slightly trian-
gulated graph

Let v1,..., v, be a good numbering of a slightly triangulated graph G, and let G; be
the subgraph induced by vy, vs,...,v;. We will search for a maximum clique using
the obvious fact that w(@) = max{w(v; Ulg,(vi)) : 7 € [1,n]}. Therefore, our search
for a maximum clique will be restricted to subgraphs which are Py-free.

Py-free graphs are also known as cographs. A cograph has a unique tree repre-
sentation (called a cotree) which corresponds to the recursive decomposition of the
cograph in connected components in the.cograph and its complement. The existence
(and uniqueness) of such a decomposition is a straightforward consequence of the
following lemma due to Seinsche [11].

Lemma 1 (Seinsche) If H is a cograph then H or H is disconnected.
The cotree T of a cograph H is defined recursively by:

o If H is just one vertex, then the cotree of H is isomorphic to this vertex.

o If H is disconnected, let Ay, ..., Ay be the connected components of H. Then
the root of the cotree T of H is labelled ‘0’ and the subtrees at the root are
the cotrees of Ay,..., Ag.

e If His connected, let Ay, ..., Ay be the connected components of H. Then the
root of the cotree T of H is labelled ‘1’ and the subtrees at the root are the
cotrees of Ag,..., Ag

The most efficient algorithms [4] for the recognition of cographs and the con-
struction of the corresponding cotrees (complexity O(m +n)) are incremental in the
sense that the vertices are processed one at a time (given a cograph H Uv and T' the
cotree of H, the cotree of H U v is obtained by modifying T').



Once the cotree T' of a cograph H is constructed, the computation of w(H) is
done recursively using the relation:

S w(H[T) o1

w(H[r; Tl; caey [k}) == { nlax,':lw,kw(ﬂ[ﬁ]) if r = 0.

Here Hr; Ty, ..., T} represents the cograph whose cotree [Ty, . .., Ty) has r as root,

and T1,..., Ty as subtrees at the root. The computation of w(Hr; Ty, ..., Ty]) can
be adapted to find a maximum clique. Let @y, ..., Qs denote the maximum cliques
of the subgraphs of H whose cotrees are respectively Ty,...  Th. If + = 1 then
QU Q... UQy is a maximum clique of Hlr;Ty, ..., T}). Otherwise r = 0 and a

largest clique among ()y,...,Qy is a a maximum clique of H [ v, ..., T
To sum up, to find w((7), compute w(v; U g, (v;)) for all 7, using the algorithm
above, and take the maximum. The overall complexity is Ofn*).

4 A colouring algorithm

Let G be a slightly triangulated graph with a good numbering vy, ..., v, of its ver-
tices. As before, we denote by (7; the subgraph induced by vy, v4, ..., v;. We denote
by H; the neighbourhood g, (v;).

We will colour the vertices of G in the good numbering order. Let Sy,. .., Su(tiin)
be the colour classes of a perfect colouring of G_;. That is, the number of colours
used in this colouring is equal to the clique number. From this perfect colouring of
Glio1, we will obtain a perfect colouring of (5. But first, we need some preparatory
lemmas.

4.1 Some lemmas for the colouring algorithm

The star-cutset lemma plays a key role in colouring perfect graphs. A star-cutsel is
a cutset (7 such that some vertex in C is adjacent to all the remaining vertices in (.
Chvatal has shown in [3] that a minimal imperfect graph cannot have a star-cutset.
The algorithmic proof of this lemma will be used in our colouring algorithm.

Lemma 2 (Chvétal) If cvery proper subgraph of a graph G has a perfect colouring
and if G has a star-cutsel, then G admils a perfect colouring.

Proof :  Let (7 be such a graph, and let v be the center of the star-cutset (the
vertex which dominates C'). Let Ay, As,..., Ay be the components of G\ . As
every proper subgraph of G' is w-colourable, the subgraphs G\ Ay and C U Ay are
w-colourable. Let By be the colour class of v in G \ Ay, and By the colour class of v
in CU Ay, Then By U B, is a stable set, which meets (has a non-empty intersection
with) every maximum clique of G. The graph G\ (B, U B,) is w(G) — 1 colourable.
This colouring of G\ (B;U B,) can be completed with B, U B, into a perfect colouring
of (7. O



Our colonring algorithm will examine the neighbourhood /; to find an available
colour for v;, or a star-cutset, or a colour class that intersects all the maximum cliques
of (.

In the remainder of this subsection we treat the case of the colouring algorithm
wheu the {w — 1)-cliques of H; are not all in the same component. The following
lemmas will show that in this case, either we can colour v, without changing the
colouring of (;_; or we can find a star-cutset in (.

Let N7 U Ny be a partition of H; such that
Yny,ng € Ny x Nayning € E(G))

and such that there are {w — i)-cliques in both Ny and Ny, Let [ denote the set of
vertices of (; \ (v, U H;) adjacent to both Ny and N;. ie.

I E= (F(’,’i (1\]1) n ].1(:,"(]\’72)) \ V.
Lemma 3 [f I = @ then {v;} is 0 cutset.

Proof : Suppose that [ = @. If v; is not a cutset there exists a chordless path from
Ny to N,. But this would imply that G; contains a chordless cycle with 5 or more
vertices, which is impossible. O

Lemma 4 If 3z € I, Ny C Tg,(z) or Ny C T (), then v; is the center of a star-
cutset, or can receive the colour of .

Proof :  Suppose that dz € I, N, C Dg,(z)or Ny C Tg,(z). Without loss of
generslity we assume that Ny C Ig (z). Let z be such that |Tg(2) N Hy is a
maximum among the vertices of / that satisfy Ny C I'gi(z). If N7 C I'g,(2) then v;
can receive the colour of z. So assume that Ny ¢ Dg,(z). If v; U (D, (2) N H,) is not
a star-cutset, then there is a chordless chain included in G; \ (I, (z) N H;)) whose
length is at least 2, and joining = to Ny \ g, (2). Let y1, 2, ..., yx = 2 be this chain.
We have k > 3, y1 € Ny, and Vj > 2,y; & T (v;). We will consider two cases. We
abbreviate I'¢; (z) N N; by N;(z2).

case 1 Suppose that Ny \ Np(yz) # 0. Let z be a vertex of N \ No(y2). Let [ be
the smallest index such that y,z € E. Then {vi,v1,¥2,..., 41,2} induces a chordless
cycle with length at least 5, a contradiction.

case 2 Suppose that Nao(yz) = N,. Then k is at least 4. Otherwise there would be
a (w-+ 1)-clique in x Uy, U Ny. As we chose  such that |I'g, (2) N H;] is a maximum
and as Ni(y2)\ Ni(z) # 0, 3t € Ni(z)\ N1(y2). Uty € E then {y1,t,z,n3,32} = Cs,
where ny is any vertex of N,. If ty; ¢ E then let [ be the smallest index such that
yt € E. Then [ is at least 3 and {v;, y1,¥2,..., ¥, ¢} induces a chordless cycle with
length at least 5. O

Lemma5 [fVz € I,N; ¢ Te(x) and Ny ¢ T (2) then v is the center of a

star-cutset.



Proof :  We assume that the intersection / is nonempty and that Yz € 1. N, s
Fg (2) and Ny ¢ T (2). Consider z € I such that |I'g,(2) N H;| is a maximum. We
have Ny ¢ T, () and Ny ¢ T, (z). 1f v; U Ny(2) U N, is not a star-catset then let
L1, ¥y, ..., 2, = x be a chordless chain joining Ny \ g, (z) to = in G4\ (0,UN; (2)UN,).
We have k > 3, z; € Ny, and ¥y > 2,z;  H;. We have Ny(z) C Ny(xy). Otherwise
let = € Ny(x) \ No(zy) and let [ be the smallest index such that ;2 € E. Then
{vi vy, @0, ... 2y, 2} induces a chordless cyele with length at least 5, a contradiction.
Therefore we indeed have Ny(z) C Ny(zz). Since |Dg,(2) N H,| is maximum there
exists w € Ni(x)\ Ny(zy). We have zqu € E. Otherwise there exists [ such that
{vi, 21, @y, .. 2, u} induces a chordless cycle with length at least 5, a contradiction.
Itk > 4 then xay, & E and {z,,u,2,n5, 29} = Cy, where n, € Ny(z). To sum
up, there is a chordless chain joining = to Ny \ Ni(z) whose length equals 2 and
with the properties found above on the inclusions of the neighbourhoods. The same
holds for Ny \ Ny(x). Let {z,bi, a1} be a chordless chain from x to N; \ Ni{z), and
let {r.by,a,} be a chordless chain from z to N, \ Ny(z). As Na(z) C Ny(by) and
No(z) \ Na(by) # B, we must have by # by. Otherwise [Fe (z) N H;| would not be
maximum. Let u; € Ny(z)\ Ni(by), and let u, € Ny(z) \ N2(by). The vertices u;
and a; are not adjacent (j € {1,2}). Otherwise {v;,a;, b;, z,1;} would be a (5. To
finish the proof of lemma 5 we have two cases to consider.

case 1 ayby &  and ab; ¢ E.

case 1.1 If byb, € £ then {v;, a1,by,b9, 02} = Cs.

case 1.2 I biby ¢ £ then {v;, a1,b1,2,by,05} = C.

case 2 If a1, € E then {v, a1,by,2,u;} = Cs. Similarly. if asb; € FE then
{v,, a2, b1, 2,u1 b = Cs. 0

4.2 'The colouring algorithm

The algorithm proceeds by recursion on the number of vertices of G;. If we find a
star-cutset in (; or a colour class of ;_; that intersects all the maximum cliques
of &, then we will be able to colour &, recursively. Let 57,... yOw(Gi_y) denote the
colonr classes of a perfect colouring of G;.;. We are going to find a perfect colouring
for ¢7; by examining the colouring of H; in (;_;.

Begin (Colouring Algorithm)

case 1 w(() = 2.

Then G is bipartite, therefore easily colourable.

case 2 Lc)(h’,) S W(G,‘_l).

We introduce a new colour for v;.

case 3 w(H;) < w(G;) ~ 1.

Then x(Gi\ S1) = w(G;) — 1. Recursively we colour &, \ Sy with w(G) — 1 colours.
The union of the colour classes of G;\ Sy together with S; yields a perfect colouring
case 4 w(H;) = w(G;) — 1.

We can suppose that all the w(G;) colours appear in H;, otherwise we use the missing
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colour for v;.

case 4.1 H, is connected.

By Seinsche’s lemma, the subgraph A, admits a partition into two parts A and B,
such that Va,b € A x B,ab € E(G;). Note that a colour cannot be simultaneously
present in A and B, and that we have w(A) + w(B) = w{() — 1. Without loss
of generality, suppose that the colours [1,...,p] appear in A, and that the colours
[p+1,....p+q]appear in B. We have w(A) <p—1orw(#H) < ¢— 1, otherwise we
would have w(G) = p+g = w(A)+w(B) = w(C;) —1, a contradiction. Without loss
of generality suppose that w(A) < p—1. Recursively, we obtain a perfect colouring of
(a5, 5, Uw; with p colours. This new colouring together with Spp1,..., Spy
yield a perfect colouring of G,.

case 4.2 H; 1s disconnected.

Let Ay, ..., A be the connected components of ;.

case 4.2.1 The (w — 1)-cliques of H, are not all in the same component.

case 4.2.1.1 [ = (.

Then according to lemma 3, {v;} 1s a cutset.

case 4.2.1.2 dz € I, N, C F(”;z(ﬂ_f?) or Ny C F(j;i(l').

Then lemina 4 shows that v; is the center of a star-cutset (this star-cutset is charac-
terized in lemma 4) or can receive the colour of z.

case 4.2.1.3Vr € I, N, ¢ D¢, {z) and Ny ¢ T, (2).

Then according to lemma 5, v, is the center of a star-cutset (this star-cutset is char-
acterized in the same lemma).

case 4.2.2 All the (w — 1)-cliques of H; are in the same component.

Without loss of generality, suppose that this component is A:. As Ay is a con-
nected Pi-free subgraph, A; admits a partition into two parts £ and B’ such that
Vo, € B x BBV € E(G;). We have

W(A1) = w(B) + w(B') = w(G;) — 1.

Suppose without loss of generality that the colours 1,...,p appear in B and that the
colours p+1,...,p+ q appear in B Iif w(B) < p and w(B’') < g then

w(Gy) ~ 1 =w(A) =w(B) +w(B) <p+q—2=w(G) -2

This is a contradiction. Therefore w(B) = p or w(B') = q. Suppose without loss of
generality that w{B) = p. Let S be a colour class of G;_; which appears in B. The
colour class ) meets every maximum clique of ;. Therefore, w((#;\ 51) = w(G;)—1.
We colour recursively (; \ Sy with w(G;) — 1 colours. The union of the colour classes
of G\ 51 together with Sy yields a perfect colouring of .

End (Colouring Algorithm)
This colouring algorithm should be regarded as a constructive proof of the perfection
of slightly triangulated graphs, which gives as a by-product a perfect colouring. From

a practical point of view, it should be noted that the use of the star-cutset lemma
leads to a complexity which is not polynomial in the worst cases.

1"



Let us show that, in general, a colouring algorithm which uses the star-cutset
lemma cannot be polynomial. Assume that a graph G has a star-cutset . Let
A1, A, oo, Ay be the connected components of ¢\ C. Let ¢(G) denote the time
spent to colour the graph G, and ¢é(n) the maximum time spent to colour a graph
of order n. Then

YCUAUA . UA) = ¢(CU A+ S(CU A + - +$(C U Ay).

In the extreme case where k = 2 and |A;| = [A,] = 1, we have PO UA U Ay) =
H(C'U Aq) + H(C'U Ay). This implies that ¢(n) = 2 x ¢(n — 1). In this worst case
the complexity is exponential.

A more efficient colouring algorithm for slighly triangulated graphs would cer-
tainly use a new combinatorial characterization of these graphs. This has been the
case for another class of perfect graphs also generalizing triangulated graphs (see [7]
for the details of the story).
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