

















(¢) if H = Dy and |[N| = 16, then N = Z3, the block graph 'y = K¢, T' is a
topological cover of Ty and the order of I' is 96; G 45 an extension of Z3 by As.

Proof First we give preliminary facts about As which will be used later. We
know Ay can be generated by an element of order § with an involution. In fact,
without loss of generality, take b = (12345) and take any involution a from (15)(23),
(12)(34), (23)(45), (12)(45) and (34)(15). Then it is easy to check that a and h

generate As according to the relations
a® = h" = (ah)® = 1.

On other hand, the element h of order 5 is contained in just one subgroup isomorphic
to Dio: if h=(12345) this group is {1,(12345),(13524), (14253), (15432),(15)(24),
(29)(14), (45)(13), (12)(35), (34)(25)}.

G = As and H = (h) = Zs, then G = (a, H) is discussed as above. By Lemma
9.3, T is the icosahedron, which is defined on {gHlg € G}. If G = A5 and H = Dy,
as above, then G = (a, H) and T is the complete graph I, which is defined on
{gH|g € G} as in Definition 2.1.

Suppose, now, that G is as in Lemma 3.4 (10) or (11), that is G/N = A;,
H = Zs, |N| < 8or HE Dy, |[N| < 16. Let C' be the centralizer of N in G. Since
N is a normal subgroup of G, sois C'. As /N is simple, either C < N or ON = G.
By Lemma 3.4, |[N| < 16 if H = Dy, so we shall treat two subcases [N| < 15 and
|N| < 16 separately.

Subcase 1. |N| < 15.

In this case we shall prove N = 1. We prove it in six steps.

(4) First we prove CN = G. If not, then ' < N, and G//C' is an automorphism
group of N. It is impossible for G/C to have As as a factor group since [N| < 15.
Thus CN = G.

(i3) We claim that C' = G, and hence N is the center of G. If not, € # G. By
Theorem 1 and the assumption, no normal sugroup acts regularly on I', H N C =
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must be that ¢ = 1. Let h be an element of order 5in H. Thus by H NN = 1, we
get a? = h* =1,(ah)®* =2 € N.

As a® = 1, a normalizes H NaHa ' = {1,b} and hence ab = ba. If H = D,
hb = bh~'. Thus b normalizes M. As G is generated by H and a, G = M UbM.
Since [M N H| =5 and |H| =10, then |M : MNH| = |G : H|. Since M = (a, h) =
{a, M N H), by Lemma 2.3 we conclude that T’ is M-symmetric which contradicts
the minimal property of &. Hence, G is generated « by and h which satisfy the
relations a® = h® = 1,(ah)* = z € N, establishing the claim.

(#v) Let P be a Sylow p-subgroup of N for some p # 2,3. We claim that P = 1.

As N is the center of G, P is a normal subgroup of G and @ = P x (h) is a
subgroup of G. Since (|G : Q|,p) = 1 and P has a complement in Q, it follows
from Lemma 2.5 that P has a complement Py in G. As P lies in the center of G,
G =P x P If p#5, P contains Sylow 2-subgroups and Sylow 5-subgroups of G
and hence contains @ and h which generate . Thus G = P; and P = 1.

Suppose p = 5 and P # 1. Then P; contains all the Sylow 2-subgroup of G and
hence contains a. Since G = {(a, h) = (Py, h), so

G = P}UhP}Uh2P1U}13P1Uh4P1.

I H = (h) & Z; then P, is a normal complement of H in ¢ and so acts regularly on
I', contrary to the hypothesis. Hence H = Dy and b lies in P;. Since P is a normal
subgroup of &, hP, = Pih. Tt follows that 6hb™1P, = bhP; = bP/h = Pih = hPy.
That is bhb~' € hP;. However, bhb™! = h™' € h*P,, a contradiction. Thus the
Sylow 5-subgroup of NV is trivial as are the Sylow p-subgroups for p # 2, 3.

(v) Next, let P be a Sylow 3-subgroup of N. We shall prove P = 1.

Let () be a Sylow 3-subgroup of G which contains P. Then QN/N is a Sylow
3-subgroup of G/N. Hence QN/N is cyclic of order 3 and there is an involution of
G /N which maps each element of @QN/N onto its inverse. Let x be s member of
@ — P. Then @ contains a member y such that yzy™ = 27n for some n € N. As
z* € N, s0o 2* = yz®y~!. Thus 2° = y2®y™' = (y2y™ ') = 270" and 1 = 2~ %n®.
Let u = a~'. We have (u’n)® = 1. The subgroup generated by u*n is a complement
of P in (). Thus P has a complement P in G by Lemma 2.5. As P lies in the
center of G, G is the direct product of P and P;. As the order of P is a power of
3, every element of order 2 or 5 lies in P;. In particular, a,h € P; and, as G is
generated by ¢ and h, G = Py and P = 1.

(v1) Since no other prime is a divisor of the order of N, N must be a 2-group.
Now we prove N = 1. ;

Let ) be asubgroup of N which has index 2 in N. Then the members a(} and h()
of G/Q satisfy the relations (aQ)* = (hQ)® = (ahQ)® = Q. Put kQ = (¢hQ)®. Thus
(kQ)* = Q and (ak@)? = (RQ)® = (akhQ)® = Q. That is, (akQ, hQ) = P,/Q = A;.
As N/Q is the centre of G/Q, G/Q = Pi/Q x N/Q. Since N/ has order 2, P,/Q
is a subgroup of index 2 and P; is a subgroup of G of index 2. Hence, by lemma
3.1(b), H is not a subgroup P;. This forces H & Dy; and G = P, UbP,. In these
circumstances Py N H has the same number of cosets in P} as H has in G, i.e. P
acts transitively on the vertices of I'. As h € P, it also acts symmetrically which
is not possible because of the minimal property of G. Hence N has no subgroup
@ of index 2 and as N is 2-group it follows that N = 1, G = A;, and T is one of



the two 5-valent graphs as conclusions (a) and (b) of this Lemma on which As acts
symrmetrically. .

Subcase 2. H isomorphic to Dy and |[N| = 16.

In this case, if K = Cy(N) = G, we have the conclusion, as discussed above. So
we assume that K < N. Since N is a subgroup of order 2, by [5,Th 5.3] the order
of Aut{N) divides

POt = 1 = p) - (0 - P, (2)
where d is the rank of the p-group and p = 2. As the order of (/N divides that of
G/K and G/K < Aut(N), the order of Ay divides (2). It follows from p = 2 that
d=4. Thus ®(N) = 1. Hence N = Z} and N = K.

As G/N = Ay, G/N is generated by aN and AN, subject to the relations
(aN)? = (RN)® = (ahN)Y* = N. As HONN =1 and a’,h € H, thus a® = h* = 1,
(ah)® = n € N. Because N is an elementary abelian 2-group, we get a? = h’ =
(ah)® = n? = 1. As the order of N is 16, the length of the orbits of N on I' is 16.
By the assumption that the order I' is at most 100, it follows from Theorem 1.(d)
that the number of orbits of N is 6. So the block graph I'yy = Kg. Since HNN = 1,
T is a topological cover of I'y and the order of T' is 96. (We recall that I' is said
to be a topological cover of its block graph I'y if, whenever two vertex zHN and
yHN are adjacent in I'y, each vertex in o H N is adjacent in I' to exactly one vertex
in yH N). This completes the proof. O

Lemma 3.6 (/N is not isomorphic to Aq, i.e. case (1) of Lemma 3.4 does not
occur.

Proof By Lemma 3.4 (1), H & As and |N| < 2. To prove this lemma, it suffices
to prove that there is no a € G such that quotient group G/N = (aN,HN) =
Ay subject to the relations of Lemma 2.3. For convenience we use Ara, H in
instead of G/N,aN, HN respectively in the rest of our discussion, and it may be
supposed, without loss of generality, that we take the members of H = As as
the even permutations on the set {1,2,3,4,5}. Similarly we take the members of
A; and A4 as the even permutations on the sets {1,2,3,4,5,6,7} and {1,2,3,4}
respectively. _

If not, choose @ € Ay such that HNH" has index 5in H and (@, H) = A;. Hence
HNH = A, fais involution, then @ fixes HNH" and thus fixes the unique Sylow
2-subgroup @ of HN T°. As HNH" has no Sylow 5-subgroup, @ must interchanges
5and 6 or 5 and 7. Thus @ = (3,7)(5,6) or (i,7)(5,7), where 1,j € {1,2,3,4}.
However A; # (@, H), since the group (@, H) is a permutation group of a six letter
set. So @ is an element of order 4. As @’ e H,afixes HNaHa . So @ induces an
automorphism on H N H® and thus fixes the Sylow 2-subgroup Q of H N H" . Thus
@ =(1,2,3,4)(5,6) or a = (1,2,3,4)(5, 7). Therefore (a, H) is a permutation group
of a six letter set, contrary to our assumption Ay = (@, i). This proves the lemma.
O

Lemma 3.7 G is not isomorphic to As i.e. case (2) of Lemma §.4 does not occur.

Proof By Lemma 3.4 (2), H = A;x3: 2. To prove this lemma it suffices to prove
that there is no element a such that G = (a, H) subject to the relations of Lemma
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2.3. I not, choose @ € G such that H N H* has index 5 in H and G = (a, H).
Hence H N H* = Ayx3 : 2. As «® € H, it follows that a fixes H 0 H*. Thus
(e, HNWH") = Ay x 3 : 4. However Ay has no subgroup isomorphic to A4 x 3 : 4,
this is a contradiction. This proves the lemma. O

Lemma 3.8 Assume G/N = PSL(2,9). Then

(o) if H = Zy then T = L;(9)%, is the graph of order 78;

(b)if H= Dy and [N| <2, then N =1 and T' = Ly(9)5 is the graph of order
36,

(c)if H= Ay and [N| <15, then N = 1 and T is the complete graph Kq of
order 6;

(d) of H= As and |N| = 16, then N = Z%, the block graph Ty = K¢, T is a
topological cover of I'y and the order of T 1s 96; G is the extension of Z3 by Asg.

Proof It is convenient to use the isomorphism PSL(2,9) & Ag and take its mem-
bers as the even permutations on the set {1,2,3,4,5,6,}. A contains two conjugacy
classes of subgroups H = Zs, one generated by (12345), and the other by (12346).
As these subgroups are conjugates within the automorphism group of Ag it may be
supposed, without loss of generality, that H is the first. If h = (12345), it follows
from Lemma 2.4 that there is an element a = (12)(56) with h generating Ag.

(a). Now consider the possibility described in case (9) of Lemma 3.4, that is,
G = Ag and H & Z;. Choose a and h as above and set H = (h)(= Z;). Then
HNH®*=1and G = (a,h) = (a,H). As Ay has order 360, the subgroup H with
the relevant element a defines a graph of order 72 on which Ag acts symmetrically
by Lemma 2.3, which we denote by L,(9)3,.

(b). Now we prove case (b), that is, G/N & Ag, N < 2 and H = Dy,.

First consider the case N = 1, that is, G = Ag. Choose a = (1243)(56), h =
(12345), then (a, h}) = Ag according to the relations

at =1 = (ah)® = (azfz)z =1,

If (a,h) # Ag, then (a,h) < M a maximal subgroup of A¢. However Ag has no
maximal subgroup M which contains both elements of order 5 and elements of
order 4. This contradiction shows G = (a, h} as claimed. As Ag has order 360, the
subgroup H = Dy, with the relevant element a define graphs of order 36, which we
denote by Ly(9)5s, on which Ag acts symmetrically. .

Now consider the possibility in Lemma 3.4 (8). In this case G/N = Ag, |N| < 2
and H = Dy. We claim N = 1. If not, |N| = 2,G = (a, H) subject to the relations
of Lemma 2.3. As H NaHea ' has index 5 in H, it is easy to prove a is not an
involution. Thus a? must be an involution of H. Hence there exists h € H such
that (aN,hN) = G/N according to the relations

(aN)* = (hN)® = (ahN)® = (a*hN)? = N.

Since a’h € H, so a® = h® = (a’h)? = 1. Suppose that (ah)’ = z € N, 22 = 1.
Since N =2 and G/N is a simple group of order 360, N is the center of G. Then

(az)* = h® = (azh)® = ((az)*h)? = 1.
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So {az, h) = As. As N is the center of G it must be that G = M x N, a direct
product. As |N| = 2, then |G : M| = 2. As h and o® both lie in M, it shows H < M
and contradicts Lemma 3.1 (b). It follows that NV = 1 as claimed and hence case
(b) is proved.

In case(c), that is G/N = Ag, H = Ay and [N] < 15. By the same method as
Lemma 3.5 (), (11) we can prove that N is the center of . Now we prove N =1
by following four steps.

(7). Let P be a Sylow p-subgroup of N for some p # 2.3,5. As N is the center
of G, P is a normal subgroup of G. By the Schur-Zassenhaus theorem, P has a
complement ¢} in 7. Since ) contains Sylow Z-subgroups and Sylow 5-subgroups
of G and hence contains a and A which generate &, thus G = ) and P = 1.

(¢1). Let P be a Sylow 5-subgroup of N. As N is the center of G, P is a normal
subgroup of ¢ and Py = P x (h) is a Sylow B-subgroup of &, where h € H is as
above. Since (|G : P1|,5) = 1 and P has a complement in Py it follows from Lemrna
2.5 that P has a complement () in G. As P lies in the center of G, G = P x (). Since
() contains Sylow Z-subgroups and Sylow 3-subgroups of &, and since H = Ay can
also be generated by an element of order 2 with an element of order 3, it follows
that @ > (a,H) = G, Thus G = Q and P = 1.

(731). Let P be a Sylow 3-subgroug of N. Choose t € H and s € G such that
(tN,sN) is a Sylow 3-subgroup of G/N = A;. Thus we have (sN)* = (tN)* = N
and hence st € N. Since H NN = 1, we deduce t* = 1. Oun the other hand,
¢ has an element y of even order such that ysy™ = ¢7'n for some n € N. Since
SeN, & =ysfy = (ysy ) = (t7)?n® = n". So (sn”1)* = 1and (sn”lt) x P
is a Sylow 3-subgroup of G. Using Lemma 2.5, P has a normal complement Q.
Thus every element of order 2 or 5 lies in () and hence @ > (a, H) = G. It follows
that P = 1.

(v). As no other prime is a divisor of the order of N, N must be a 2-group.
Let () be a subgroup of N which has index 2 in N. Since G/N = A, there
exist a,h € G such that («N)* = (AN)® = (ahN)® = (a*hN)* = N as in (b).
So a*, h%, (a®R)?, (ah)® € N. Since a* h,a" € H and H NN = 1, it follows that
a' = k% = (a’h)? = 1 and (¢h)'® € Q. Therefore

(aQ)* = (hQ)* = (ahQ))'® = (a’hQ)? = Q.
Set 2@ = (ahQ)®. Then (2Q)* = Q and
(a0 = (hQ)° = (=hQ)° = ((a)*hQ)" = Q.

Thus M/Q = (azQ,hQ) = As. Hence G/Q = M/Q x N/Q. Since |[N/Q| = 2,
|G : M| = 2. Hence, by Lemma 3.1 (b) H is not a subgroup of M. It shows that
H contains an involution b such that G = M UMM and |M : M N H| = |G : H|.
That is, M acts transitively on the vertices of I'. As h € M, I' 1s M-symmetric.
This contradicts the minimal property of G. Hence N has no subgroup (} of index
2 and as N is a 2-group it follows that V = 1.

Now choose a = (12)(56) and H = As. As in Lemma 3.6, we have G = (a, H)
and H N H® has index 5 in H. It follows that I" defined by {¢H|g € G} is the
complete graph K4 of order 6 on which Ag acts symmetrically.
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(d) if H = As and |N| = 16, then N = Z# by the method of Subcase 2 of
Lemma 3.5 and it follows that I is a topological cover of I'y & K and the order of
I'is 96 and G is the extension of Z3 by 4,. O

Lemma 3.9 If G is isomorphic to PSL(2,11) then T = Lo(11)3 which is defined
in [9].

Proof By Lemma 3.4 (6), G = PSL(2,11), H = Dyo. In this case I' is the unique
vertex-primitive graph of order 66 which is determined in Lemma 4.4 of [9] and so
we omit the direct check. We denote it by Ly(11)5. O

Lemma 3.10 G 1s not isomorphic to PSL(2,16) 1.c. case (4) of Lemma 3.4 does
not occur.

Proof By Lemma 3.4 (4), H 2 A;. To prove this lemma it suffices to prove that
there is no element a such that G = (a, H) subject to the relations of Lemma 2.3.
If not, choose a € G such that HNH*® has index 5 in H and hence HNH* = A,. As
PSL(2,16) has no element of order 4, a must be an involution. As a fixes H N H*,
(a, HNH®*) = S4. This contradicts the fact PSL(2, 16) has no subgroup isomorphic
to S4. The proof is complete. O

Lemma 3.11 If H = Ag or H = S, then I' 1s not a 5-valent graph.

Proof If I' is a 5-valent graph then |H : H N H*| = 5 where a with H generates
G. Thus if H & Ag, then |[H N H?| = 72. However Ag has no subgroup of order 72,
so H = Ag is impossible. Similarly Sg has no subgroup of order 144, so it is also
impossible that H = Ss. The proof is complete. O

Lemma 3.12 (o) G is not isomorphic to My (in this case H = Ag) 1.e. case (13)
of Lemma 8.4 does not occur.

(b) G/N 1is not isomorphic to Ag (in this case H = Sg) i.e. case (3) of Lemma
3.4 does not occur.

(¢) G/N is not isomorphic to Uy(2) (in this case H = S or H = Ag) 1.e. case
(15) or case (16) of Lemma 3.4 daes not occur.

(d) G is not isomorphic to My, (in this case H = Ag : 2%) i.e. case (12) of
Lemma 8.4 does not occur.

Proof By Lemma 3.4 case (13), G = My, H & 4g; case (3), G/N = Ag, H = Sg;
case (15) or (16), G/N = Uy(2), H = Ss or H = Ag. (a), (b), (¢) are consequences
of Lemma 3.11.

By Lemma 3.4 case (12), H = My, : 2= Ag : 2% As [H| = |4 : 22| = 25.3%5
and H N H* has index 5 in H, |H N H®| = 2°.3% = 288. Since As has no subgroup
of order 72, it follows that Ag : 2° has no subgroup of order 72.2% = 288. This
contradicts | H N H?| = 288, and the proof is complete. O

Lemma 3.13 Let G and H be as in Theorem £ with G primitive, and suppose that
H = 5. Let K be subgroup of H satisfying K = Sy. Let k be the number of points
n I' fized by K. Then G has k — 1 suborbits of length 5.
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Proof Since K is maximal in H, we have, for § € Fix p(K) — {a}, |87 = |H :
K| =5 and by Lemma 2.3 of [9], BY NFix p(K) = {B}. So H has k — 1 orbits of
length 5in T, O

Lemma 3.14 G is not isomorphic to My, and H = Ss i.e. case (12) of Lemmad. 4
does not occur.

Proof By Lemma 3.4 (13), G = My, H = S5. To prove this lemma it suffices
to prove that there is no element a such that G = (a, H) subject to the relation
|H : Hn H? = 5. The last relation implies H N He =5, It is equivalent to show
that the action of H on a left coset {gH | g € G} has no suborbit of length 5.
Tt suffices by Lemma 3.13 to show that for K < H and K = 54, K has only one
fixed point in {gH}. We see the sporadic group My is the automorphism group
of a 4-(11,5.1) design and the stabilizer of a block is H = Ss. Since there is only
one conjugacy class of H in G, the action of G on {gH?} is equivalent to that on
the block system B = {Bi} of the 4-(11,5,1) design. Let D be such a design,
X = {1,2, 11} be the point set, and B be its set of blocks. Now suppose that
the stabilizer of block By = {1,3,4,5,9} is H and K < H, K = 54 Thus K
fixes By. Thus K induces an action on Bg. Let t be an element of order 3 in K.
Then t = (t1,ta,t3)(ta, 5,16 (b7, ts, t9) and it induces an action on Bg, namely it
fixes a sub-block of By of length 3 and fixes every other point By, without loss of
generality, say 5,9. Then ¢ = (1,3, 4)(t4, ts, te)(tr, ts, te). Let x be the permutation
character of degree 66 of My;. Now x = X1 + X2 + X5 + Xs, (6, P18] and elementary
calculations lead to x(¢) = 3. This implies that there are just three blocks which
are fixed by the action of t in B. As {t4ts,t6},{tr,ts,to } are each in two blocks
of B, t determines the three fixed blocks of B. So the other two blocks fixed by ¢
must be 31 = {t,;, ts, tg, 5, 9}, B2 = {t7,t8, tg, 5, 9}

Let u be an element of order 4 in K. Then u fixes By and thus induces an
action on Bo. That is, u fixes a sub-block of length 4 as the action of a 4-cycle
and fixes the remaining one point. If K fixes another block of B, then this block
must one of B; and B, without loss of generality, say B;. Hence u fixes By and
induces an action on By: u fixes a sub-block of length 4 and fixes a point. Since
B, must have points 5,9 as above discussed, thus either 5 or 9 must be in the sub-
block of length 4, without loss of generality, say 5. It is obvious that the sub-block
{5“i = 1,2,3,4} of u in By is equal to that of u in Bg. Since their length is 4,
B, = B, by the definition of a 4-(11,5,1) design and this contradicts that K has
another fixed block. This shows that the action of K has only one fixed block and
the proof is now complete. O
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