5 -valent Symmetric Graphs of Order at most 100 *

Da-Chang Guo
Department of Mathematics
Guangdong University of Technology
Guangzhou, 510643
People's Republic of China

Abstract

Let T be a finite connected graph and let G be a subgroup of the automorphism group Aut Γ of Γ. Then Γ is said to be G-symmetric, and G is said to be symmetric on Γ, if G is transitive on the set of ordered pairs of adjacent vertices of $\Gamma ; \Gamma$ is said to be symmetric if $A u t \Gamma$ is symmetric. It is shown that there are exactly six types of 5 -valent G-symmetric graphs of order at most 100 which are not bipartite and on which no subgroup acts regularly. Their orders are $6,12,36,66,72$ and 96 .

1 Introduction

Let I be a finite connected graph and G be a subgroup of the automorphism group AutI of Γ. Then Γ is said to be G-symmetric, and G is said to be symmetric on Γ, if G is transitive on the set of ordered pairs of adjacent vertices (arc) of Γ; Γ is said to be symmetric if it is AutГ-symmetric. Note that symmetric graphs (that is those whose automorphism groups act symmetrically) are vertex transitive and hence are regular. The motivation for this paper came from Lorimer [1] about determining all minimal trivalent symmetric graphs of order at most 120 . Similar work for 5 -valent graphs is more complicated than that for trivalent ones. In the trivalent case the order of a vertex stabilizer has a upper bound that is 48 , while in the 5 -valent case the order of a vertex stabilizer divides $5 \cdot 3^{2} \cdot 2^{17}$ (see [3]). In this paper we give a complete list of 5 -valent symmetric graphs which are connected and have order at most 100. In [2] Lorimer gave the following theorem for graphs of prime valency.

[^0]Theorem 1 (Lorimer) Let Γ be a connected G-symmetric graph of valency p, where p is prime. For each normal subgroup N of one of the following holds:
(a) Γ is N-symmetric and N is a non-abelian simple group;
(b) N acts regularly on vertices and Γ is a Cayley graph for N;
(c) N has just two orbits on vertices and Γ is bipartite;
(d) $N \cap H=1$, where H is a vertex stabilizer. N has $r \geq p+1$ orbits on vertices, the natural block graph Γ_{N} on N-orbits is G / N-symmetric of valency p, and Γ is a topological cover of Γ_{N}.

In Theorem 1, if G is chosen to be minimal with respect to acting symmetrically, then (d) implies G / N is a non-abelian simple group and from (a) it follows that $G=N$. The purpose of this paper is to investigate cases (a) and (d) in Theorem 1. The results for 5 -valent graphs are parallel to Theorem 1 of [1], but some new phenomena appear. In [1] only case (a) happened and no case (d) occurred.

Theorem 2 Let Γ be a connected 5 -valent G-symmetric graph. If Γ is not a bipartite graph and no subgroup of automorphisms acts regularly on $V(\Gamma)$ and if Γ has no more than 100 vertices then Γ is one of the following graphs:
(a) the complete graph K_{6} of order 6 on which $\operatorname{PSL}(2,5)$ or $\operatorname{PSL}(2,9)$ acts symmetrically;
(b) the icosahedron on which PSL $(2,5)$ acts symmetrically;
(c) a graph of order 96 which is a topological cover of the graph K_{6} on which the group $Z_{2}^{4} \cdot A_{5}$ acts symmetrically and the automorphism group of the block graph K_{6} is $\operatorname{PSL}(2,5)$;
(d) the graph $L_{2}(9)_{72}^{5}$ of order 72 on which $P S L(2,9)$ acts symmetrically;
(e) the graph $L_{2}(9)_{36}^{5}$ of order 36 on which $\operatorname{PSL}(2,9)$ acts symmetrically;
(f) a graph of order 96 which is a topological cover of graph the K_{6} on which the group $Z_{2}^{4} \cdot A_{6}$ acts symmetrically and the automorphism group of the block graph K_{6} is $\operatorname{PSL}(2,9)$;
(g) the graph $L_{2}(11)_{66}^{5}$ of order 66 on which $P S L(2,11)$ acts symmetrically.

In section 2, we quote some lemmas which will be used later. In section 3, Theorem 2 is proved. For all the group-theoretic concepts not defined here we refer the reader to $[6,7]$.

2 Preliminary Lemmas

As a generalization of Cayley digraphs, Sabidussi [10] gave another construction of vertex-transitive digraphs using groups; it is known as a Sabidussi coset graph.

Definition 2.1 Let G be a finite group and H be a subgroup of G. Let D be a union of several double cosets of the form $H g H$, not containing the subgroup H. We define the Sabidussi coset digraph $\Gamma=\operatorname{Sab}(G, H, D)$ of G with respect to H and D by

$$
\begin{aligned}
& V(\Gamma)=\{g H \mid g \in G\} \\
& E(\Gamma)=\{(g H, g d H) \mid g \in G, d \in D\}
\end{aligned}
$$

Note that we do not consider multigraphs, so if $g d H=g d_{1} H$, the edges $(g H, g d H)$ and $\left(g H, g d_{1} H\right)$ are viewed as equal.

The following obvious facts are basic for the Sabidussi coset graph.
Lemma 2.2 Let $\Gamma=\operatorname{Sab}(G, F, D)$ be the Sabidussi coset digraph of G with respect to H and D. Then
(1) I is a well-defined digraph with in-degree and out-degree $|D: H|$.
(2) Aut contains G by left multiolication, sa
I is vertex-transitive. For a vertex $g H$, the stabilzzer in G is $g H g^{-1}$.
(3) Γ is connected if and only if $G=\langle D\rangle$.
(4) Γ is undirected if and only if $D^{-\frac{1}{2}}=D$.
(5) Γ is G-symmetric if and only if $D=H$ gi H is a single double coset.

Note that Cayley graphs are the special case of Sabidussi coset graphs with $H=1$.

Any vertex-transivive graph (digraph) is a Sabidussi coset digraph. In fact, given a vertex-transitive graph (digraph) Γ and a vertex $v \in V(\Gamma)$, take $G=A u t \Gamma$, $H=G_{v}$, and $D=\left\{g \in G \mid v_{g} \in \Gamma_{1}(v)\right\}$, then D is a union of several double cosets of the form $H g H$ with $D \cap H=D$ and $\Gamma \cong \operatorname{Sab}(G, H, D)$.

So, in theory, if we knew all groups and their subgroup structure, then we would know all vertex-transitive graphs (digraphs) and symmetric graphs.

Using Lemma 2.2, we can prove following lemma of [2] for our graphs.
Lemma 2.3 The growp G acts symmetrically on a 5-valent connected graph Γ if and only if thas a subgroup A and member a such that
(a) $a^{2} \in H$,
(b) $H \cap a H a^{-1}$ has index 5 in H,
(c) G is generated by $H a H$.

Lemma 2.4 In Lemma 2.3, a must be an element of G of even order.
Proof If the order of a is an odd number, say k, then k is relatively prime to 2 . Thus there exists integers m and n such that $m k+2 n=1$. It follows that

$$
a^{m k} a^{2 n}=a^{m k+2 n}=a \in H
$$

which contradicts the assumption $a \notin H$.
For convenience we state some well known results which will be used later
Lemma 2.5 (Weiss [?]) The order of a vertex stabilizer divides $5 \cdot 3^{2} \cdot 2^{17}$.
Lemma 2.6 (Gaschütz) Let N be an abelian normal subgroup of G, suppose $N \leq$ $B \leq G$ and that the order of N and the index of B in G are relatively prime. If N has a complement in B then it also has a complement in G.

Lemma 2.7 (see [5])
For every $n \geq 5$ the alternating group A_{n} can be generated by an involution a and another suitable element b :
(1) $a=(1,2)(n-1, n), b=(1,2, \cdots, n-1)$ if n is even;
(2) $a=(1, n)(2, n-1), b=(1,2, \cdots, n-2)$ if n is odd.

3 The Proof of Theorem 2

Proof of Theorem 2: Let Γ be a graph which satisfies the hypotheses of Theorem 2: thus Γ be a 5 -valent symmetric graph of order at most 100 , which is not a bipartite graph. Let G be a group which acts symmetrically on Γ and suppose that G has no proper subgroup with this property and no subgroup acts on Γ regularly.

Let α be a fixed vertex of Γ and let H be its stabilizer in G. Let $\beta_{i}, i=1,2,3,4,5$ be the vertices of Γ adjacent to α and let $a_{i} \in G, i=1,2,3,4,5$ have the properties $a_{i}(\alpha)=\beta_{i}$ and $a_{i}^{2} \in H, i=1,2,3,4,5$. Let N be a maximal normal subgroup of G. Hence N acts semi-regularly on Γ (i.e. $N \cap H=1$) and G / N is a simple group.

The notation established in last two paragraphs will be maintained throughout this section.

The proof of Theorem 2 is organized into foreteen Lemmas. First since Γ is not a bipartite graph, it follows that H and N are subject to the conditions in the following lemma.

Lemma 3.1 (a) HN has even index in G;
(b) G has no subgroup of index 2 which contains H.

Proof See [1].

In order to give a completed list of 5 -valent graphs of order at most 100 , we search for simple groups G / N satisfying the following hypotheses.

Hypotheses 3.2 Let G / N be a simple group of order at most 589,824,000 such that there exists a subgroup H satisfying the following conditions:
(1) 5 is the exact power of 5 which divides $|H|$;
(2) H has even index at most 100 in G;
(3) H satisfies Lemma 2.5;
(4) H satisfies Lemma 3.1.

Lemma 3.3 If Γ satisfies the conditions of Theorem 2 then G must satisfy $H y$ potheses 3.2.

Proof By Lemma 2.5, the order of H is at most $5 \cdot 3^{2} \cdot 2^{17}=5,898,240$. A.s Γ has at most 100 vertices and it is defined by left cosets of H, G has order at most $589,824,000$ and so does G / N. So we have all possible 5 -valent graphs which come from left coset graphs $\Gamma=\operatorname{Sab}(G, H, D)$. However these simple groups must be subject to the relations of Lemma 2.3 , since Γ is a symmetric graph. As Γ is G-symmetric, H acts transitively on the set $\Gamma_{1}(\alpha)$ of neighbours of vertex α, and hence the order of H is divisible by 5 . (2) and (4) hold obviously.

Lemma 3.4 The possibilities for $G / N, H$ and $|N|$ are as in Table 1.

Table 1 The possibilities for $G / N, H,|N|$

N_{0}	G / N	H	$\|N\|$	$N o$	G / N	H	$\|N\|$
(1)	A_{7}	A_{5}	≤ 2	(9)	$P S L(2,9)$	Z_{5}	1
(2)	A_{8}	$A_{5} \times 3: 2$	1	(10)	$P S L(2,5)$	Z_{5}	≤ 8
(3)	A_{8}	S_{6}	≤ 3	(11)	$P S L(2,5)$	D_{10}	≤ 16
(4)	$P S L(2,16)$	A_{5}	1	(12)	M_{11}	S_{5}	1
(5)	$P S L(3,4)$	A_{6}	1	(13)	M_{11}	A_{6}	≤ 4
(6)	$P S L(2,11)$	D_{10}	1	(14)	M_{12}	$M_{10}: 2$	1
(7)	$P S L(2,9)$	A_{5}	≤ 16	(15)	$U_{4}(2)$	S_{6}	≤ 2
(8)	$P S L(2,9)$	D_{10}	≤ 2	(16)	$U_{4}(2)$	A_{6}	1

Proof According to the Atlas [6, p240], the number of simple group of order at most $589,824,000$ is 86 . If we arrange them according to their order, the last one is $P S L(3,13)$. First we exclude 27 simple groups of order at most $589,824,000$ which have no divisor of 5 by Hypotheses 3.2 (1). The second 18 simple groups which are excluded are those whose order has 5 as a divisor but the smallest index of a proper subgroup is at least 101, including 4 members of the family of $\operatorname{PSL}(2, q)$. The remainer we list in table 2 except the family of $P S L(2, q)$. In table $2, M$ means the maximal subgroup whose index is at most 100 , and we exclude directly those not satisfying the Hypotheses 3.2.

So the simple groups of order at most $589,824,000$ satisying Hypotheses 3.2, are $\operatorname{PSL}(2,5), \operatorname{PSL}(2,9), \operatorname{PSL}(2,11), A_{7}, \operatorname{PSL}(2,16), \operatorname{PSL}(3,4), M_{11}, M_{12}, U_{4}(2)$, and A_{8}. Applying the following inequality

$$
\begin{equation*}
|N| \cdot|G / N| \leq 100 \cdot|H|, \tag{1}
\end{equation*}
$$

elementary calculations lead to table 1 .
Table 2 Excluding groups which do not satisfy Hypotheses 3.2

No	G	order	M	index	exclude	not hold
1	M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7.11 .23$	M_{23}	24	yes	H3.2 (3)
2(a)	A_{12}	$2^{9} \cdot 3^{5}$.5.7.11	A_{11}	12	yes	H3.2 (3)
2(b)	A_{12}	$2^{9} \cdot 3^{5}$. 5.7 .11	S_{10}	66	yes	H3.2 (3)
3	A_{12}	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	M_{22}	100	yes	H3.2 (3)
4	$\operatorname{PSL}(3,9)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13$	$G L(2,9)$	91	yes	H3.2 (2)
5(a)	A_{11}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$	A_{10}	11	yes	H3.2 (3)
5(b)	A_{11}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7.11$	S_{9}	55	yes	H3.2 (3)
6	M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11.23$	M_{22}	23	yes	H3.2 (3)
7	$\operatorname{PSL}(5,2)$	$2^{1} 0.3^{2} \cdot 5.7 .31$	$2^{4}: P S L(4,2)$	31	yes	H3.2 (3)
8	$\operatorname{PSL}(4,3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 13$	$3^{3}: \operatorname{PSL}(3,3)$	40	yes	H3.2 (3)
9(a)	A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	A_{9}	10	yes	H3.2 (3)
9(b)	A_{10}	$2^{7} \cdot 3^{4} .5^{2} \cdot 7$	S_{8}	45	yes	H3.2 (3)
10(a)	$S_{6}(2)$	$2^{9} .3^{4} .5 .7$	$\left.U_{(} 2\right): 2$	28	yes	H3.2 (3)

Table 2 Excluding groups which do not satisfy Hypotheses 3.2 (continuation)

10(b)	$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5.7$	S_{8}	36	yes	H3.2 (3)
$10(\mathrm{c})$	$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	$2^{5}: S_{6}$	63	yes	H3.2 (2)
11	$S_{4}(4)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$	$2^{6}:\left(3 \times A_{5}\right)$	85	yes	H3.2 (2)
12	J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	$U_{3}(3)$	100	yes	H3.2 (3)
$13(\mathrm{a})$	M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	$\operatorname{PSL}(3,4)$	22	yes	H3.2 (3)
13(b)	M_{22}	$2^{7} \cdot 3^{2} \cdot 5.7 .11$	$2^{4} \cdot: A_{6}$	77	yes	$H 3.2$ (3)
14	$\operatorname{PSL}(3,5)$	$2^{5} \cdot 3.3^{5} \cdot 31$	$5^{2}: G L_{2}(5)$	31	yes	H3.2 (3)
$15(\mathrm{a})$	A_{9}	$2^{6} \cdot 3^{4} \cdot 5.7$	A_{8}	9	yes	H3.2 (2)
$15(\mathrm{~b})$	A_{9}	$2^{6} \cdot 3^{4} \cdot 5.7$	S_{7}	36	yes	H3.2 (3)
$15(\mathrm{c})$	A_{9}	$2^{6} \cdot 3^{4} \cdot 5.7$	$\left(A_{6} \times 3\right): 2$	84	yes	H3.2 (3)
16	$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	A_{7}	50	yes	H3.2 (3)
17(a)	M_{12}	$2^{6} \cdot 3^{3} \cdot 5.11$	M_{11}	12	yes	H3.2 (3)
17(b)	M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	$M_{10}: 2$	66	no	
18	$U_{3}(4)$	$2^{6} \cdot 3.5{ }^{2} \cdot 13$	$2^{2+4}: 15$	65	yes	H3.2 (3)
19	$S z(8)$	2^{6}.5.7.13	$2^{3+3}: 7$	65	yes	H3.2 (3)
20 (a)	$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	$2^{4}: A_{5}$	27	yes	H3.2 (2)
20 (b)	$U_{4}(2)$	$2^{6} .3^{4} .5$	S_{6}	36	no	
20 (c)	$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	$3_{+}^{1+2}: 2 A_{4}$	40	yes	H3.2 (1)
20 (d)	$U_{4}(2)$	$2^{6} \cdot 3^{4} .5$	$3^{3}: S_{4}$	40	yes	H3.2 (1)
20 (e)	$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	2. $\left(A_{4} \times A_{4}\right) .2$	45	yes	H3.2 (1)
21(a)	$\operatorname{PSL}(3,4)$	$2^{6} \cdot 3^{2} \cdot 5.7$	$2^{4}: A_{5}$	21	yes	$H 3.2$ (3)
21(b)	$\operatorname{PSL}(3,4)$	$2^{6} .3^{2} \cdot 5.7$	A_{6}	56	no	
22(a)	A_{8}	$2^{6} \cdot 3^{2} \cdot 5.7$	A_{7}	8	no	
22(b)	A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	$2^{3}: P S L(3,2)$	15	yes	$H 3.2$ (1)
22 (c)	A_{8}	$2^{6} \cdot 3^{2} \cdot 5.7$	S_{6}	28	no	
22 (d)	A_{8}	$2^{6} \cdot 3^{2} \cdot 5.7$	$2^{4}:\left(S_{3} \times S_{3}\right)$	35	yes	H3.2 (1)
$22(\mathrm{e})$	A_{8}	$2^{6} .3^{2} .5 .7$	$\left(A_{5} \times 3\right): 2$	56	no	
23(a)	M_{11}	$2^{4} \cdot 3^{2} \cdot 5.11$	$A_{6} .2$	11	no	
$23(\mathrm{~b})$	M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$\operatorname{PSL}(2,11)$	12	yes	H3.2 (3)
23 (c)	M_{11}	$2^{4} \cdot 3^{2} \cdot 5.11$	S_{5}	11	no	
$23(\mathrm{~d})$	M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$M_{8}: S_{3}$	11	yes	H3.2(3)
24(a)	A_{7}	$2^{3} \cdot 3^{2} \cdot 5.7$	A_{6}	5	no	
24 (b)	A_{7}	$2^{3} \cdot 3^{2} \cdot 5.7$	PSL (2,7)	15	yes	$H 3.2$ (1)
$24(\mathrm{c})$	A_{7}	$2^{3} \cdot 3^{2} \cdot 5.7$	$\left(A_{4} \times 3\right): 2$	35	yes	H3.2 (1)
24(d)	A_{8}	$2^{6} \cdot 3^{2} \cdot 5.7$	S_{5}	21	no	

Lemma 3.5 Assume $G / N \cong P S L(2,5)$.
(a) If $H \cong Z_{5}$ and $|N| \leq 8$, then $N=1$ and Γ is the graph of the vertices and edges of the icosahedron, which has order 12:
(b) if $H \cong D_{10}$ and $|N| \leq 15$, then $N=1$ and Γ is the complete graph K_{6} of order 6 .
(c) if $H \cong D_{10}$ and $|N|=16$, then $N=Z_{2}^{4}$, the block graph $\Gamma_{N}=K_{6}, \Gamma$ is a topological cover of Γ_{N} and the order of Γ is $96 ; G$ is an extension of Z_{2}^{4} by A_{5}.

Proof First we give preliminary facts about A_{5} which will be used later. We know A_{5} can be generated by an element of order 5 with an involution. In fact, without loss of generality, take $h=(12345)$ and take any involution a from (15)(23), $(12)(34),(23)(45),(12)(45)$ and $(34)(15)$. Then it is easy to check that a and h generate A_{5} according to the relations

$$
a^{2}=h^{5}=(a h)^{3}=1 .
$$

On other hand, the element h of order 5 is contained in just one subgroup isomorphic to D_{10} : if $\mathrm{h}=(12345)$ this group is $\{1,(12345),(13524),(14253),(15432),(15)(24)$, $(23)(14),(45)(13),(12)(35),(34)(25)\}$.

If $G=A_{5}$ and $H=\langle h\rangle \cong Z_{5}$, then $G=\langle a, H\rangle$ is discussed as above. By Lemma $2.3, \Gamma$ is the icosahedron, which is defined on $\{g H \mid g \in G\}$. If $G=A_{5}$ and $H \cong D_{10}$ as above, then $G=\langle a, H\rangle$ and Γ is the complete graph K_{6}, which is defined on $\{g H \mid g \in G\}$ as in Definition 2.1.

Suppose, now, that G is as in Lemma 3.4 (10) or (11), that is $G / N \cong A_{5}$, $H \cong Z_{5},|N| \leq 8$ or $H \cong D_{10},|N| \leq 16$. Let C be the centralizer of N in G. Since N is a normal subgroup of G, so is C. As G / N is simple, either $C \leq N$ or $C N=G$. By Lemma 3.4, $|N| \leq 16$ if $H \cong D_{10}$, so we shall treat two subcases $|N| \leq 15$ and $|N| \leq 16$ separately.

Subcase 1. $|N| \leq 15$.
In this case we shall prove $N=1$. We prove it in six steps.
(i) First we prove $C N=G$. If not, then $C \leq N$, and G / C is an automorphism group of N. It is impossible for G / C to have A_{5} as a factor group since $|N| \leq 15$. Thus $C N=G$.
(ii) We claim that $C=G$, and hence N is the center of G. If not, $C \neq G$. By Theorem 1 and the assumption, no normal sugroup acts regularly on $\Gamma, H \cap C=1$ and $H C \neq G$. Since G is generated by $H a H, a \notin H C$. As $G / C=N C / C \cong$ $N / N \cap C, G / C$ has order at most 15.

Suppose that G is as in Lemma 3.4 (10). Since $H \cong Z_{5}$ and $|N| \leq 8,|G / C| \leq 8$. As $H \cap C=1, H C / C$ is a proper subgroup of G / C of order 5 , and this contradicts $|G / C| \leq 8$.

Suppose that G is as in Lemma 3.4 (11). Since $H \cong D_{10}$ and $|N| \leq 15$, so $|G / C| \leq 15$. As $H \cap C=1$, the proper subgroup $H C / C$ of G / C has order 10, and this contradicts $|G / C| \leq 15$. These considerations were based on the assumption $C \neq G$. Therefore, $G=C$ and N is the center of G, establishing the claim. In particular, N is abelian.
(iii) Now we prove $G=\langle a, h\rangle$, where h is an element of of order 5 of H. Let $M=\langle a, h\rangle$. Since $G=\langle a, H\rangle$, if $H \cong Z_{5}$ then $M=G$. Suppose that $H \cong D_{10}$. As $G / N \cong A_{5}$ and $G=\langle a, H\rangle, G / N=\langle a N, H N\rangle$ according to the relations

$$
(a N)^{2}=(h N)^{5}=(a h N)^{3}=N
$$

G / N is not generated by H. Thus $a \notin N$. As $a^{2} \in H$ and $H \cap a H a^{-1}$ has index 5 in H, a is either an involution or it has order 4. As A_{5} has no element of order 4 it
must be that $a^{2}=1$. Let h be an element of order 5 in H. Thus by $H \cap N=1$, we get $a^{2}=h^{5}=1,(a h)^{3}=z \in N$.

As $a^{2}=1, a$ normalizes $H \cap a H a^{-1}=\{1, b\}$ and hence $a b=b a$. If $H \cong D_{10}$, $h b=b h^{-1}$. Thus b normalizes M. As G is generated by H and $a, G=M \cup b M$. Since $|M \cap H|=5$ and $|H|=10$, then $|M: M \cap H|=|G: H|$. Since $M=\langle a, h\rangle=$ $\langle a, M \cap H\rangle$, by Lemma 2.3 we conclude that Γ is M-symmetric which contradicts the minimal property of G. Hence, G is generated a by and h which satisfy the relations $a^{2}=h^{5}=1,(a h)^{3}=z \in N$, establishing the claim.
(iv) Let P be a Sylow p-subgroup of N for some $p \neq 2,3$. We claim that $P=1$.

As N is the center of G, P is a normal subgroup of G and $Q=P \times\langle h\rangle$ is a subgroup of G. Since $(|G: Q|, p)=1$ and P has a complement in Q, it follows from Lemma 2.5 that P has a complement P_{1} in G. As P lies in the center of G, $G=P \times P_{1}$. If $p \neq 5, P_{1}$ contains Sylow 2 -subgroups and Sylow 5 -subgroups of G and hence contains a and h which generate G. Thus $G=P_{1}$ and $P=1$.

Suppose $p=5$ and $P \neq 1$. Then P_{1} contains all the Sylow 2-subgroup of G and hence contains a. Since $G=\langle a, h\rangle=\left\langle P_{1}, h\right\rangle$, so

$$
G=P_{1} \cup h P_{1} \cup h^{2} P_{1} \cup h^{3} P_{1} \cup h^{4} P_{1} .
$$

If $H=\langle h\rangle \cong Z_{5}$ then P_{1} is a normal complement of H in G and so acts regularly on Γ, contrary to the hypothesis. Hence $H \cong D_{10}$ and b lies in P_{1}. Since P_{1} is a normal subgroup of $G, h P_{1}=P_{1} h$. It follows that $b h b^{-1} P_{1}=b h P_{1}=b P_{1} h=P_{1} h=h P_{1}$. That is $b h b^{-1} \in h P_{1}$. However, $b h b^{-1}=h^{-1} \in h^{4} P_{1}$, a contradiction. Thus the Sylow 5 -subgroup of N is trivial as are the Sylow p-subgroups for $p \neq 2,3$.
(v) Next, let P be a Sylow 3 -subgroup of N. We shall prove $P=1$.

Let Q be a Sylow 3 -subgroup of G which contains P. Then $Q N / N$ is a Sylow 3 -subgroup of G / N. Hence $Q N / N$ is cyclic of order 3 and there is an involution of G / N which maps each element of $Q N / N$ onto its inverse. Let x be a member of $Q-P$. Then G contains a member y such that $y x y^{-1}=x^{-1} n$ for some $n \in N$. As $x^{3} \in N$, so $x^{3}=y x^{3} y^{-1}$. Thus $x^{3}=y x^{3} y^{-1}=\left(y x y^{-1}\right)^{3}=x^{-3} n^{3}$ and $1=x^{-6} n^{3}$. Let $u=x^{-1}$. We have $\left(u^{2} n\right)^{3}=1$. The subgroup generated by $u^{2} n$ is a complement of P in Q. Thus P has a complement P_{1} in G by Lemma 2.5. As P lies in the center of G, G is the direct product of P and P_{1}. As the order of P is a power of 3 , every element of order 2 or 5 lies in P_{1}. In particular, $a, h \in P_{\mathrm{i}}$ and, as G is generated by a and $h, G=P_{1}$ and $P=1$.
(vi) Since no other prime is a divisor of the order of N, N must be a 2 -group. Now we prove $N=1$.

Let Q be a subgroup of N which has index 2 in N. Then the members $a Q$ and $h Q$ of G / Q satisfy the relations $(a Q)^{2}=(h Q)^{5}=(a h Q)^{6}=Q$. Put $k Q=(a h Q)^{3}$. Thus $(k Q)^{2}=Q$ and $(a k Q)^{2}=(h Q)^{5}=(a k h Q)^{3}=Q$. That is, $\langle a k Q, h Q\rangle=P_{1} / Q \cong A_{5}$. As N / Q is the centre of $G / Q, G / Q=P_{1} / Q \times N / Q$. Since N / Q has order $2, P_{1} / Q$ is a subgroup of index 2 and P_{1} is a subgroup of G of index 2. Hence, by lemma 3.1(b), H is not a subgroup P_{1}. This forces $H \cong D_{10}$ and $G=P_{1} \cup b P_{1}$. In these circumstances $P_{1} \cap H$ has the same number of cosets in P_{1} as H has in G, i.e. P_{1} acts transitively on the vertices of Γ. As $h \in P_{1}$ it also acts symmetrically which is not possible because of the minimal property of G. Hence N has no subgroup Q of index 2 and as N is 2 -group it follows that $N=1, G \cong A_{5}$, and Γ is one of
the two 5 -valent graphs as conclusions (a) and (b) of this Lemma on which A_{5} acts symmetrically.

Subcase 2. H isomorphic to D_{10} and $|N|=16$.
In this case, if $K=C_{G}(N)=G$, we have the conclusion, as discussed above. So we assume that $K \leq N$. Since N is a subgroup of order 2^{4}, by $[5, \mathrm{Th} 5.3]$ the order of $\operatorname{Aut}(\mathbb{N})$ divides

$$
\begin{equation*}
p^{d(n-d)}\left(p^{d}-1\right)\left(p^{d}-p\right) \cdots\left(p^{d}-p^{d-1}\right) \tag{2}
\end{equation*}
$$

where d is the rank of the p-group and $p=2$. As the order of G / N divides that of G / K and $G / K \leq \operatorname{Aut}(N)$, the order of A_{5} divides (2). It follows from $p=2$ that $d=4$. Thus $\Phi(N)=1$. Hence $N \cong Z_{2}^{4}$ and $N=K$.

As $G / N \cong A_{5}, G / N$ is generated by $a N$ and $h N$, subject to the relations $(a N)^{2}=(h N)^{5}=(a h N)^{3}=N$. As $H \cap N=1$ and $a^{2}, h \in H$, thus $a^{2}=h^{5}=1$, $(a h)^{3}=n \in N$. Because N is an elementary abelian 2-group, we get $a^{2}=h^{5}=$ $(a h)^{6}=n^{2}=1$. As the order of N is 16 , the length of the orbits of N on Γ is 16 . By the assumption that the order Γ is at most 100, it follows from Theorem 1.(d) that the number of orbits of N is 6 . So the block graph $\Gamma_{N} \cong K_{6}$. Since $H \cap N=1$, Γ is a topological cover of Γ_{N} and the order of Γ is 96 . (We recall that Γ is said to be a topological cover of its block graph Γ_{N} if, whenever two vertex $x H N$ and $y H N$ are adjacent in Γ_{N}, each vertex in $x H N$ is adjacent in Γ to exactly one vertex. in $y H N$). This completes the proof.
Lemma 3.6 G / N is not isomorphic to A_{7}, i.e. case (1) of Lemma 9.4 does not occur.

Proof By Lemma 3.4 (1), $H \cong A_{5}$ and $|N| \leq 2$. To prove this lemma, it suffices to prove that there is no $a \in G$ such that quotient group $G / N=\langle a N, H N\rangle \cong$ A_{7} subject to the relations of Lemma 2.3. For convenience we use A_{7}, \bar{a}, \bar{H} in instead of $G / N, a N, H N$ respectively in the rest of our discussion, and it may be supposed, without loss of generality, that we take the members of $H \cong A_{5}$ as the even permutations on the set $\{1,2,3,4,5\}$. Similarly we take the members of A_{7} and A_{4} as the even permutations on the sets $\{1,2,3,4,5,6,7\}$ and $\{1,2,3,4\}$ respectively.

If not, choose $\bar{a} \in A_{7}$ such that $\bar{H} \cap \bar{H}^{\bar{a}}$ has index 5 in \bar{H} and $\langle\bar{a}, \bar{H}\rangle=A_{7}$. Hence $\bar{H} \cap \bar{H}^{\bar{a}} \cong A_{4}$. If \bar{a} is involution, then \bar{a} fixes $\bar{H} \cap \bar{H}^{\bar{a}}$ and thus fixes the unique Sylow 2-subgroup Q of $\bar{H} \cap \bar{H}^{\bar{a}}$. As $\bar{H} \cap \bar{H}^{\bar{a}}$ has no Sylow 5 -subgroup, \bar{a} must interchanges 5 and 6 or 5 and 7 . Thus $\bar{a}=(i, j)(5,6)$ or $(i, j)(5,7)$, where $i, j \in\{1,2,3,4\}$. However $A_{7} \neq\langle\bar{a}, \bar{H}\rangle$, since the group $\langle\bar{a}, \bar{H}\rangle$ is a permutation group of a six letter set. So \bar{a} is an element of order 4. As $\bar{a}^{2} \in \bar{H}, \bar{a}$ fixes $\bar{H} \cap \bar{a} \bar{H} \bar{a}^{-1}$. So \bar{a} induces an automorphism on $\bar{H} \cap \bar{H}^{\bar{a}}$ and thus fixes the Sylow 2 -subgroup Q of $\bar{H} \cap \bar{H}^{\bar{a}}$. Thus $\bar{a}=(1,2,3,4)(5,6)$ or $a=(1,2,3,4)(5,7)$. Therefore $\langle a, H\rangle$ is a permutation group of a six letter set, contrary to our assumption $A_{7}=\langle\bar{a}, \bar{H}\rangle$. This proves the lemma.

Lemma 3.7 G is not isomorphic to A_{8} i.e. case (2) of Lemma 3.4 does not occur.
Proof By Lemma 3.4 (2), $H \cong A_{5} \times 3: 2$. To prove this lemma it suffices to prove that there is no element a such that $G=\langle a, H\rangle$ subject to the relations of Lemma
2.3. If not, choose $a \in G$ such that $H \cap H^{a}$ has index 5 in H and $G=\langle a, H\rangle$. Hence $H \cap H^{a} \cong A_{4} \times 3: 2$. As $a^{2} \in H$, it follows that a fixes $H \cap H^{a}$. Thus $\left\langle a, H \cap H^{a}\right\rangle \cong A_{4} \times 3: 4$. However A_{8} has no subgroup isomorphic to $A_{4} \times 3: 4$, this is a contradiction. This proves the lemma.

Lemma 3.8 Assume $G / N \cong P S L(2,9)$. Then
(a) if $H \cong Z_{5}$ then $\Gamma=L_{2}(9)_{72}^{5}$ is the graph of order 72,
(b) if $H \cong D_{10}$ and $|N| \leq 2$, then $N=1$ and $\Gamma=L_{2}(9)_{36}^{5}$ is the graph of order 36;
(c) if $H \cong A_{5}$ and $|N| \leq 15$, then $N=1$ and Γ is the complete graph K_{6} of order 6;
(d) if $H \cong A_{5}$ and $|N|=16$, then $N \cong Z_{2}^{4}$, the block graph $\Gamma_{N}=K_{6}, \Gamma$ is a topological cover of Γ_{N} and the order of Γ is $96 ; G$ is the extension of Z_{2}^{4} by A_{6}.

Proof It is convenient to use the isomorphism $\operatorname{PSL}(2,9) \cong A_{6}$ and take its members as the even permutations on the set $\{1,2,3,4,5,6,\} . A_{6}$ contains two conjugacy classes of subgroups $H \cong Z_{5}$, one generated by (12345), and the other by (12346). As these subgroups are conjugates within the automorphism group of A_{6} it may be supposed, without loss of generality, that H is the first. If $h=(12345)$, it follows from Lemma 2.4 that there is an element $a=(12)(56)$ with h generating A_{6}.
(a). Now consider the possibility described in case (9) of Lemma 3.4, that is, $G \cong A_{6}$ and $H \cong Z_{5}$. Choose a and h as above and set $H=\langle h\rangle\left(\cong Z_{5}\right)$. Then $H \cap H^{a}=1$ and $G=\langle a, h\rangle=\langle a, H\rangle$. As A_{6} has order 360 , the subgroup H with the relevant element, a defines a graph of order 72 on which A_{6} acts symmetrically by Lemma 2.3 , which we denote by $L_{2}(9)_{72}^{5}$.
(b). Now we prove case (b), that is, $G / N \cong A_{6}, N \leq 2$ and $H \cong D_{10}$.

First consider the case $N=1$, that is, $G \cong A_{6}$. Choose $a=(1243)(56), h=$ (12345), then $\langle a, h\rangle=A_{6}$ according to the relations

$$
a^{4}=h^{5}=(a h)^{5}=\left(a^{2} h\right)^{2}=1 .
$$

If $\langle a, h\rangle \neq A_{6}$, then $\langle a, h\rangle \leq M$ a maximal subgroup of A_{6}. However A_{6} has no maximal subgroup M which contains both elements of order 5 and elements of order 4. This contradiction shows $G=\langle a, h\rangle$ as claimed. As A_{6} has order 360, the subgroup $H \cong D_{10}$ with the relevant element a define graphs of order 36 , which we denote by $L_{2}(9)_{36}^{5}$, on which A_{6} acts symmetrically.

Now consider the possibility in Lemma 3.4 (8). In this case $G / N \cong A_{6},|N| \leq 2$ and $H \cong D_{10}$. We claim $N=1$. If not, $|N|=2, G=\langle a, H\rangle$ subject to the relations of Lemma 2.3. As $H \cap a H a^{-1}$ has index 5 in H, it is easy to prove a is not an involution. Thus a^{2} must be an involution of H. Hence there exists $h \in H$ such that $\langle a N, h N\rangle=G / N$ according to the relations

$$
(a N)^{4}=(h N)^{5}=(a h N)^{5}=\left(a^{2} h N\right)^{2}=N
$$

Since $a^{2} h \in H$, so $a^{4}=h^{5}=\left(a^{2} h\right)^{2}=1$. Suppose that $(a h)^{5}=z \in N, z^{2}=1$. Since $N=2$ and G / N is a simple group of order $360, N$ is the center of G . Then

$$
(a z)^{4}=h^{5}=(a z h)^{5}=\left((a z)^{2} h\right)^{2}=1 .
$$

So $\langle a z, h\rangle \cong A_{6}$. As N is the center of G it must be that $G=M \times N$, a direct product. As $|N|=2$, then $|G: M|=2$. As h and a^{2} both lie in M, it shows $H \leq M$ and contradicts Lemma 3.1 (b). It follows that $N=1$ as claimed and hence case (b) is proved.

In case(c), that is $G / N \cong A_{6}, H \cong A_{5}$ and $|N| \leq 15$. By the same method as Lemma $3.5(i),(i i)$ we can prove that N is the center of G. Now we prove $N=1$ by following four steps.
(i). Let P be a Sylow p-subgroup of N for some $p \neq 2,3,5$. As N is the center of G, P is a normal subgroup of G. By the Schur-Zassenhaus theorem, P has a complement Q in G. Since Q contains Sylow 2 -subgroups and Sylow 5 -subgroups of G and hence contains a and A_{5} which generate G, thus $G=Q$ and $P=1$.
(ii). Let P be a Sylow 5 -subgroup of N. As N is the center of G, P is a normal subgroup of G and $P_{1}=P \times\langle h\rangle$ is a Sylow 5 -subgroup of G, where $h \in H$ is as above. Since $\left(\left|G: P_{1}\right|, 5\right)=1$ and P has a complement in P_{1}, it follows from Lemma 2.5 that P has a complement Q in G. As P lies in the center of $G, G=P \times Q$. Since Q contains Sylow 2-subgroups and Sylow 3 -subgroups of G, and since $H \cong A_{5}$ can also be generated by an element of order 2 with an element of order 3 , it follows that $Q \geq\langle a, H\rangle=G$. Thus $G=Q$ and $P=1$.
(iii). Let P be a Sylow 3 -subgroug of N. Choose $t \in H$ and $s \in G$ such that $\langle t N, s N\rangle$ is a Sylow 3-subgroup of $G / N \cong A_{6}$. Thus we have $(s N)^{3}=(t N)^{3}=N$ and hence $s^{3}, t^{3} \in N$. Since $H \cap N=1$, we deduce $t^{3}=1$. On the other hand, G has an element y of even order such that $y s y^{-1}=t^{-1} n$ for some $n \in N$. Since $s^{3} \in N, s^{3}=y s^{3} y^{-1}=\left(y s y^{-1}\right)^{3}=\left(t^{-1}\right)^{3} n^{3}=n^{3} . S o\left(s n^{-1}\right)^{3}=1$ and $\left\langle s n^{-1}, t\right\rangle \times P$ is a Sylow 3 -subgroup of G. Using Lemma $2.5, P$ has a normal complement Q. Thus every element of order 2 or 5 lies in Q and hence $Q \geq\langle a, H\rangle=G$. It follows that $P=1$.
(v). As no other prime is a divisor of the order of N, N must be a 2 -group. Let Q be a subgroup of N which has index 2 in N. Since $G / N \cong A_{6}$, there exist $a, h \in G$ such that $(a N)^{4}=(h N)^{5}=(a h N)^{5}=\left(a^{2} h N\right)^{2}=N$ as in (b). So $a^{4}, h^{5},\left(a^{2} h\right)^{2},(a h)^{5} \in N$. Since $a^{2}, h, a^{h} \in H$ and $H \cap N=1$, it follows that $a^{4}=h^{5}=\left(a^{2} h\right)^{2}=1$ and $(a h)^{10} \in Q$. Therefore

$$
(a Q)^{4}=(h Q)^{5}=(a h Q)^{10}=\left(a^{2} h Q\right)^{2}=Q
$$

Set $z Q=(a h Q)^{5}$. Then $(z Q)^{2}=Q$ and

$$
(a z Q)^{4}=(h Q)^{5}=(a z h Q)^{5}=\left((a z)^{2} h Q\right)^{2}=Q
$$

Thus $M / Q=\langle a z Q, h Q\rangle \cong A_{6}$. Hence $G / Q=M / Q \times N / Q$. Since $|N / Q|=2$, $|G: M|=2$. Hence, by Lemma 3.1 (b) H is not a subgroup of M. It shows that H contains an involution b such that $G=M \cup b M$ and $|M: M \cap H|=|G: H|$. That is, M acts transitively on the vertices of Γ. As $h \in M, \Gamma$ is M-symmetric. This contradicts the minimal property of G. Hence N has no subgroup Q of index 2 and as N is a 2 -group it follows that $N=1$.

Now choose $a=(12)(56)$ and $H \cong A_{5}$. As in Lemma 3.6, we have $G=\langle a, H\rangle$ and $H \cap H^{a}$ has index 5 in H. It follows that Γ defined by $\{g H \mid g \in G\}$ is the complete graph K_{6} of order 6 on which A_{6} acts symmetrically.
(d) if $H \cong A_{5}$ and $|N|=16$, then $N=Z_{2}^{4}$ by the method of Subcase 2 of Lemma 3.5 and it follows that Γ is a topological cover of $\Gamma_{N} \cong K_{6}$ and the order of Γ is 96 and G is the extension of Z_{2}^{4} by A_{6}.

Lemma 3.9 If G is isomorphic to $P S L(2,11)$ then $\Gamma \cong L_{2}(11)_{66}^{5}$ which is defined in 19].

Proof By Lemma $3.4(6), G \cong P S L(2,11), H \cong D_{10}$. In this case Γ is the unique vertex-primitive graph of order 66 which is determined in Lemma 4.4 of [9] and so we omit the direct check. We denote it by $L_{2}(11)_{66}^{5}$.

Lemma 3.10 G is not isomorphic to $\operatorname{PSL}(2,16)$ i.e. case (4) of Lemma 3.4 does not occur.

Proof By Lemma $3.4(4), H \cong A_{5}$. To prove this lemma it suffices to prove that there is no element a such that $G=\langle a, H\rangle$ subject to the relations of Lemma 2.3. If not, choose $a \in G$ such that $H \cap H^{a}$ has index 5 in H and hence $H \cap H^{a} \cong A_{4}$. As $\operatorname{PSL}(2,16)$ has no element of order 4, a must be an involution. As a fixes $H \cap H^{a}$, $\left\langle a, H \cap H^{a}\right\rangle \cong S_{4}$. This contradicts the fact PSL(2,16) has no subgroup isomorphic to S_{4}. The proof is complete.

Lemma 3.11 If $H \cong A_{6}$ or $H \cong S_{6}$, then Γ is not a 5-valent graph.
Proof If Γ is a 5 -valent graph then $\left|H: H \cap H^{a}\right|=5$ where a with H generates G. Thus if $H \cong A_{6}$, then $\left|H \cap H^{a}\right|=72$. However A_{6} has no subgroup of order 72, so $H \cong A_{6}$ is impossible. Similarly S_{6} has no subgroup of order 144 , so it is also impossible that $H \cong S_{6}$. The proof is complete.

Lemma 3.12 (a) G is not isomorphic to M_{11} (in this case $H \cong A_{6}$) i.e. case (13) of Lemma 3.4 does not occur.
(b) G / N is not isomorphic to A_{8} (in this case $H \cong S_{6}$) i.e. case (3) of Lemma 3.4 does not occur.
(c) G / N is not isomorphic to $U_{4}(2)$ (in this case $H \cong S_{6}$ or $H \cong A_{6}$) i.e. case (15) or case (16) of Lemma 3.4 does not occur.
(d) G is not isomorphic to M_{12} (in this case $H \cong A_{6}: 2^{2}$) i.e. case (12) of Lemma 3.4 does not occur.

Proof By Lemma 3.4 case (13), $G \cong M_{11}, H \cong A_{6}$; case (3), $G / N \cong A_{8}, H \cong S_{6}$; case (15) or (16), $G / N \cong U_{4}(2), H \cong S_{6}$ or $H \cong A_{6}$. (a), (b), (c) are consequences of Lemma 3.11.

By Lemma 3.4 case (12), $H \cong M_{10}: 2 \cong A_{6}: 2^{2}$. As $|H|=\left|A_{6}: 2^{2}\right|=2^{5} .3^{2} .5$ and $H \cap H^{a}$ has index 5 in $H,\left|H \cap H^{a}\right|=2^{5} .3^{2}=288$. Since A_{6} has no subgroup of order 72 , it follows that $A_{6}: 2^{2}$ has no subgroup of order $72.2^{2}=288$. This contradicts $\left|H \cap H^{a}\right|=288$, and the proof is complete.

Lemma 3.13 Let G and H be as in Theorem 2 with G primitive, and suppose that $H \cong S_{5}$. Let K be subgroup of H satisfying $K \cong S_{4}$. Let k be the number of points in Γ fixed by K. Then G has $k-1$ suborbits of length 5 .

Proof Since K is maximal in H, we have, for $\beta \in \operatorname{Fix}_{\Gamma}(K)-\{\alpha\},\left|\beta^{H}\right|=\mid H$: $K \mid=5$ and by Lemma 2.3 of [9], $\beta^{H} \cap \operatorname{Fix}_{\Gamma}(K)=\{\beta\}$. So H has $k-1$ orbits of length 5 in Γ.

Lemma 3.14 G is not isomorphic to M_{11} and $H \cong S_{5}$ i.e. case (12) of Lemma3. 4 does not occur.

Proof By Lemma 3.4 (13), $G \cong M_{11}, H \cong S_{5}$. To prove this lemma it suffices to prove that there is no element a such that $G=\langle a, H\rangle$ subject to the relation $\left|H: H \cap H^{a}\right|=5$. The last relation implies $H \cap H^{a} \cong S_{4}$. It is equivalent to show that the action of H on a left $\operatorname{coset}\{g H \mid g \in G\}$ has no suborbit of length 5 . It suffices by Lemma 3.13 to show that for $K \leq H$ and $K \cong S_{4}, K$ has only one fixed point in $\{g H\}$. We see the sporadic group M_{11} is the automorphism group of a $4-(11,5,1)$ design and the stabilizer of a block is $H \cong S_{5}$. Since there is only one conjugacy class of H in G, the action of G on $\{g H\}$ is equivalent to that on the block system $\bar{B}=\left\{B_{i}\right\}$ of the $4-(11,5,1)$ design. Let D be such a design, $X=\{1,2, \cdots 11\}$ be the point set, and \bar{B} be its set of blocks. Now suppose that the stabilizer of block $B_{0}=\{1,3,4,5,9\}$ is H and $K \leq H, K \cong S_{4}$. Thus K fixes B_{0}. Thus K induces an action on B_{0}. Let t be an element of order 3 in K. Then $t=\left(t_{1}, t_{2}, t_{3}\right)\left(t_{4}, t_{5}, t_{6}\right)\left(t_{7}, t_{8}, t_{9}\right)$ and it induces an action on B_{0}, namely it fixes a sub-block of B_{0} of length 3 and fixes every other point B_{0}, without loss of generality, say 5,9 . Then $t=(1,3,4)\left(t_{4}, t_{5}, t_{6}\right)\left(t_{7}, t_{8}, t_{9}\right)$. Let χ be the permutation character of degree 66 of M_{11}. Now $\chi=\chi_{1}+\chi_{2}+\chi_{5}+\chi_{8},[6, \mathrm{P} 18]$ and elementary calculations lead to $\chi(t)=3$. This implies that there are just three blocks which are fixed by the action of t in \bar{B}. As $\left\{t_{4}, t_{5}, t_{6}\right\},\left\{t_{7}, t_{8}, t_{9}\right\}$ are each in two blocks of \bar{B}, t determines the three fixed blocks of \bar{B}. So the other two blocks fixed by t must be $B_{1}=\left\{t_{4}, t_{5}, t_{6}, 5,9\right\}, B_{2}=\left\{t_{7}, t_{8}, t_{9}, 5,9\right\}$.

Let u be an element of order 4 in K. Then u fixes B_{0} and thus induces an action on B_{0}. That is, u fixes a sub-block of length 4 as the action of a 4 -cycle and fixes the remaining one point. If K fixes another block of \bar{B}, then this block must one of B_{1} and B_{2}, without loss of generality, say B_{1}. Hence u fixes B_{1} and induces an action on B_{1} : u fixes a sub-block of length 4 and fixes a point. Since B_{1} must have points 5,9 as above discussed, thus either 5 or 9 must be in the subblock of length 4 , without loss of generality, say 5 . It is obvious that the sub-block $\left\{5^{u^{i}} \mid i=1,2,3,4\right\}$ of u in B_{1} is equal to that of u in B_{0}. Since their length is 4, $B_{0}=B_{1}$ by the definition of a $4-(11,5,1)$ design and this contradicts that K has another fixed block. This shows that the action of K has only one fixed block and the proof is now complete.

References

[1] P. Lorimer, Trivalent symmetric graphs of order at most 120, Europ. J. Combinatorics, 5 (1984), 163-171.
[2] P.Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, 8 (1984), 55-68.
[3] R.M. Weiss, Über symmetrische graphen vom grad fünf, J. Combin. Theory Ser. B, 17 (1974), 59-64.
[4] C.E. Praeger, On minimal symmetric automorphism groups of finite symmetric graphs, J. Australasian Combin. 4 (1991), 237-252.
[5] L.D. Martino and M.C. Tamburini, Generators and Relations in Group and Geometries, Kluwer Acdemic Publishers, Netherlands, 1991, 195-233.
[6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, An Atlas of Finite Groups, Clarendon press, Oxford, 1985.
[7] M.Y. Xu, Introduction of finite groups, Scientific Publishing Press, Beijing, 1987.
[8] N. Biggs and A.T. White, Permutation groups and combinatorial structures, Cambridge University Press, 1979.
[9] C.E. Praeger and M.Y. Xu, Vertex primitive groups of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318.
[10] G.O. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438.

[^0]: *This paper was written while the author was visiting Peking University. The author thanks Professor M.Y. Xu, his tutor, for his guidance.

