Smallest defining sets for $2-(9,4,3)$ and $3-(10,5,3)$ designs: Corrigendum

Tony Moran
Centre for Combinatorics
Department of Mathematics
The University of Queensland
Queensland 4072 AUSTRALIA

In [1], sizes and numbers of smallest defining sets for each of the eleven nonisomorphic $2-(9,4,3)$ designs and the seven non-isomorphic $3-(10,5,3)$ designs were given.

The size of the smallest defining sets for the $3-(10,5,3)$ design N_{1} was given as six blocks. Ramsay [2] has, however, found a defining set of five blocks for this design. There are, as stated in Section 6 of [1], 99 feasible sets of five blocks for N_{1}. Of these 99 sets, 95 are isomorphic to 5 -sets of blocks in the design N_{5}. Four of the remaining five feasible sets are isomorphic to 5 -sets of blocks in the design N_{2}. This leaves one set of five blocks, which does not have an isomorph in any of the other $3-(10,5,3)$ designs; this set is consequently a defining set for N_{1} and is isomorphic to that found by Ramsay. Thus Theorem 2 should be amended to the following statement.

Theorem 2 The $3-(10,5,3)$ designs N_{2}, N_{3}, N_{4} and N_{7} have smallest defining sets of eight blocks each; the designs N_{5} and N_{6} have smallest defining sets of six blocks, while the remaining $3-(10,5,3)$ design N_{1} has smallest defining sets of five blocks.

A representative of the isomorphism class of smallest defining sets of five blocks for N_{1} is the set of blocks $\{1,2,6,15,34\}$. The set has trivial automorphism group and there are 720 sets of blocks in the isomorphism class, and consequently exactly 720 smallest defining sets for N_{1}.

Ramsay has also pointed out that the remark at the end of Section 6 (that a case has been found of the strict inequality of Corollary 9.1 holding) is therefore not correct.

The incorrect results were due to human error in compiling the isomorphism classes of 5 -sets of blocks in the design N_{7}.

Australasian Journal of Combinatorics 14 (1996), pp.311-312

The total numbers of smallest defining sets of the $3-(10,5,3)$ designs N_{4} and N_{7} given in Table 19 in [1] are also incorrect. There are actually 824304 smallest defining sets of N_{4} and 819612 of N_{7}. The incorrect figures were due to arithmetic error.

Finally, in Section 6 of [1], the phrases 'Type I' and 'Type II' should be interchanged.

References

[1] Tony Moran, Smallest defining sets for $2-(9,4,3)$ and $3-(10,5,3)$ designs, Australasian Journal of Combinatorics 10 (1994), 265-288.
[2] C.Ramsay, An algorithm for enumerating the trades in designs, with an application to defining sets, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.

