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Abstract

We prove a conjecture of Goodman [4] about the maximum number
of monochromatic triangles in any two-coloring of the edges of K, with
a fixed number of edges in each color.

Moreover, this result is used for finding the multiplicities M(G;n) of
some small graphs G, where M(G;n) is defined as the smallest number
of monochromatic copies of G in any two-coloring of the edges of K.

Together with previous results, this completes the determination of
the multiplicities of all graphs with at most three edges.

1. Introduction

In the following, we consider two-colorings of the edges of the complete graph K,,
for short colorings, and use red and blue as our colors. For a graph G and a coloring
C of K,, we denote the number of monochromatic copies of G in C by Ne(G) (or
just N(G), if it is clear which coloring is referred to).

The multiplicity M(G;n) of a graph G and a positive integer n is defined as
mgn Ne(@) over all colorings € of K,,. It includes the Ramsey number r(G), which

is the smallest n such that M(G;n) is positive, and the Ramsey multiplicity R(G),
which is M(@;7(@)). Those colorings C in which M(G;n) is attained are called
manimizing colorings.

There are very few exact results about multiplicity: The only graphs G for which
M(G;n) was known for all n € IN were the triangle K3 (Goodman [3]), the path
P;, and the stars Ky, for all m € IN (Czerniakiewicz [2], Burr and Rosta [1]). In
Section 3, we will determine the multiplicities of 2K, 3K,, and P3 U e, so that we
have the exact values of M(G;n) for all graphs G with at most three edges.

Goodman [4] also determined min N¢(K3) where the minimum is taken over the

colorings C of K,, with some fixed number of red and blue edges. Moreover, he made
a conjecture about max Ng(K3) with the same constraint. (Without this constraint

the maximum is trivially attained in a coloring where all edges have the same color.)
This conjecture will be proved in Section 2.

Australasian Journal of Combinatorics 14 (1996), pp. 267-282



«. 4101 COHjeCilure 0ol oodrIman

We will use the following relation between the path P; and the triangle K3: For
a given coloring €' of K,, let ¢ be the number of copies of K5 in € which are not
monochromatic. Then we have:

Ne(K3) + t = (;) and
3Nc(Ks) + t = Nc(P),

where the first equation counts all copies of K3 in €' and the second one counts the
monochromatic copies of Ps contained in the copies of K3 in C. (A generalization of
this approach will be discussed later.) This gives:

Ne(kg) =~ AL, M

allowing us to rewrite Goodman’s conjecture in terms of Ne{P;) instead of Ne(Ks).

In the following, we denote the number of red edges of a given coloring C of K,
by r. Trivially, max Ne(Ps) over all colorings C' with r = 0 equals 3(';), so we need
not consider this case.

Forl <r < (’2‘), let the integers ¢, p, v, and X be (uniquely) given by the relations

T:(g)'*"q(n»qwrp with 1<p<n-g-1 and @)

7‘:(;>+)\ with 0< A<y L (3)
Now two colorings Cy(n, ) and Cy(n,r) of K, with vertex set {v1,...,v,} are defined
as follows: In Ci(n,r), the vertices vy, ..., v, form a red K, and are also joined to
each of the remaining vertices vgy1, . . ., v, by ared edge. Apart from that, the vertex
Unp 15 joined to each of the p vertices v,_pi1,...,v, by a red edge. In Ca(n,r), the
vertices Un_,,...,v, form a red K, ; where the edges v,_,v; have been removed
fori=n—v+X+1,...,n All other edges in Cy(n,r) and Cy(n,r) are blue.

It follows from (2) and (3) that Cy(n,r) and Ca(n,r) each contain exactly r red
edges. Note that Ci(n,r) and Cy(n, (;) — ) are complementary colorings.

With these definitions, what Goodman conjectured can be stated as follows:

Theorem 1. The maximum of Ne¢(Ps) over all colorings C of K,, with exactly r red
edges is attained in Ci(n,r) or Cy(n,r). With ¢,p,v, and A given by (2) and (3),
this maximum equals

max {3@ ~2(n—1)r+g(n— 1) + (4g +p + Lp + g*(n — q),

3(2) —2r(n — v) + A(X + 1)} .
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Proof. Let (' be a coloring of K,, with = red edges. If 7(v;) and b(v;) denote the red
and the blue degrees respectively of a vertex v; in €, we have:

Ne(P3) = '}(g) S (v b(vi) = 3( ) —2(n—1)r+ 5_47"(1}Z . (4)
=1

Let us call Cy(n,r) and Ca(n,r) the colorings Cy and C belonging to C'. We will

show that from any coloring C, we can get to one of the colorings Cy or C; belonging

to C by edge recolorings in such a way that N(Ps) is not decreased. Therefore

N, (Ps) or Ne,(P;) must be the maximum. From the (red) degree sequences of

Ci(n,r) and Ca(n,r),

(r(v1),...,r(va)) =

n-1,....,n—=1,q,...,q,g+p,g+1,...,9+1) and
M aresion st N i

g n—g-—p-1 4
(r(v1),--,r(va)) = (0,...,0,v,..,,A,v—=1...,v-1)
n-p—1 A v—A

respectively, it follows that

ir(vi)z C gn- 1Y+ (gt lptq(n—q) for Ca(n,r)and  (5)

r(v)? = 2r(v = 1)+ XA+ 1) for Co(n,7). (6)

=1
(4), (5), and (6) then imply the assertion in the theorem.

In a coloring € of Kn, let dpay = max{r(vi),...,7(vs),b(v1),...,b(vn)}. Let this
maximum be attained, for instance, by a red degree, say dmax = 7(v1). Suppose that
dmex < 1 — 1, i.e. there is a blue edge vyv for some v € V. Then there must also
be a red edge vv' for some v’ € V, because otherwise b(v) = n —1 > dumax. Now
recolor the edge vyv from blue to red and the edge v’ from red to blue. Then r is
unchanged, and Ng(P;) is increased by

r(v:) + b(v') = (b(v1) = 1) = (r(v") = 1).

As r(vl) = dpnax > 7(v') and thus b(v;) < b(v'), this expression is positive. Of course,
r(vy) is again the maximum after the recoloring, so this process can be repeated
until 7(v;) = n — 1. Now consider the coloring of K1 with vertex set V'\ {v1} and
proceed similarly. In this way we obtain a vertex, vy say, which has the red or blue
degree n — 2 in this coloring. Repeated application of these arguments eventually
yields—if necessary by renumbering the vertices—a coloring C” of K, still with r
red edges and N¢i(Ps) > No(Pa). In C each vertex v; is joined to each succeeding
vertex v; (j > ) by edges of the same color.

Let us call a coloring with this property an order. Moreover, we will speak of
red and blue vertices, according to the color in which the respective vertex is joined
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to all succeeding vertices. For an order on n vertices with exactly k red vertices
Vary -5 Va, (61 < ... < ag), write

(n[al,...)ak)n
Since vy, can be regarded as a red or a blue vertex, the orders (nlas,...,a51,n) and
(nlas,...,ar-1) are identical. Moreover, we have k > 1, because we only consider

colorings with r > 1 red edges.
Note that colorings of this kind also play a part in a proof of Ramsey’s theorem
(e.g. see (5], p. 4f.).

With this notation and with g¢,p, v, and X given by (2) and (3), we have:

Ci(n,r) = (n]l,...,q,n—p) and
Cy(n,r) = (nfn—v,...;n—v+d-In—v+A+l,.. . n)

The number of red edges r of an order (n ] ay, ..., 0;) and of the coloring €} belonging
to 1t can be expressed as

9

Sh—-i)+p =17 = ;(n — a;).

=1

Since a; >4 fori=1,... k and p > 1, this implies
q < k. (7

The most extensive part of the proof is now to show that the value of N(P;) in
an order (n|ai,...,ax) with r red edges and k < |n/2] is not larger than in the
coloring €y belonging to it. If k > |n/2|, we interchange the two colors, so that we
have an order with & < |n/2] red vertices, and replace r by (g) ~ 7. In this case

2
N(P3) in the order is not larger than in the coloring C, belonging to it. Together,

this implies the assertion.

1t follows from the complementarity of Cy(n,r) and Cy(n, (") — 1) that the value of

The following recoloring is essential to all subsequent arguments: In an order
(n]ai,...,a), choose two red vertices v,, and Uq; (1 < a; < aj < n) such that the
vertices vg,—; and g4 are blue. By definition of an order, the edge Vg;—1Yq; 18 blue
and the edge v,va;41 is red. Now these two edges are recolored to the other color
in each case, so that 7 remains unchanged. In the new coloring the vertices Vg1
and v,; as well as v,; and v,,41 have merely interchanged their roles with each other,
L.e. we now have the order (n|ay,...,a; —1,...,a; +1,..., ax). By this recoloring,
N(Ps) is increased by

7(va;-1) + 7(va;) + b('“aj) + b(”aﬁl)
~[b(vai-1) = 1] = [b(va;) — 1)] = [r(va;) = 1] = [r(vajes) = 1]
= 2[(i—1)+—(i——1—|~n——ai)+(a,'—j)+(n—-j—1)]~4(n—— 1)+4
= 2(aj—a;—1)=2(j —i-1)]. (8)
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The expression in brackets in (8) corresponds to the number of blue vertices between
a; and a; minus the number of red vertices between a; and a;.

The recoloring described above can be illustrated in the following way: The order

(nlai,...,a) is represented by a sequence of n squares numbered 1 to n, and for
each red vertex v,,, a coin is placed on square # a;. As the orders (n|a1,...,ak1,n)
and (n]ay,...,ak 1) are identical, it makes no difference if there is a coin on square

# m or not.

Example.

wi e ee | e [
Figure 1. The order (10]2,4,5,8,10).

The recoloring then consists in shifting two coins on squares # a, and a; apart
by one square each, provided squares # a; — 1 and a; + 1 are empty. This is called a
move (a;,a;). As shown above, a move corresponds to the transition from the order
(nlay,. .. 85 .,04..,ak) b0 (nlay,...,8i—1,...,a;+1,...,ar). The number of
empty squares between the coins moved minus the number of coins between them is
called the balance of the move. By (8), a move increases N(P3) by twice its balance.
A sequence of moves that can be carried out one after the other is called a move
sequence; the balance of the move sequence is the sum of the balances of its moves.

Every order can be transformed by a (not necessarily unique) move sequence
into the coloring '} belonging to it: In each move, for example, shift the leftmost
coin whose left neighboring square is empty, and the rightmost coin whose right
neighboring square is empty, apart. If, at any time, a coin lies on square # n, then
it is removed. As soon as no further move is possible, C is attained. Since each coin
only moves in one direction (or not at all) during the move sequence, this is the case
after finitely many moves.

The balance of a move sequence that transforms a given order (n|a,,...,ax) into
the coloring C; belonging to it, is independent of the move sequence actually chosen,
because by (8) it only depends on the change of N(P3;). Therefore we call it the
balance of the order, written b(n|ai,...,ar). So we have to prove:

b(n[al,”.m,ak)ZOforki\lg—J. (9)

We first show that (9) for k = |n/2] also implies (9) for k < |n/2]. To this end,
we need the following lemma:
Lemma 1. For k > 2,

b(n|l,a:,...,a5-1)=bn—1]a; - 1,..., a6 —1).

Example.

el e ee | e |

’

o[ Te] [@[e] | @ |
Figure 2.
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Proof. The proof is clear if one carries out moves (4,7) and (2 — 1,7 — 1) simultane-
ously in the two orders. O

Now if (9) holds for k = |[n/2], then for an order (n|ay, ..., a;) with k < |n/2]
by applying Lemma 1 n — 2k — 1 times we have:

bnlay,...,ak)
= bn—-2k—1]1,...,n—=2k—1a;+n-2k—1,.. . ,ap+n—2k—1)
> 0,

because the second order contains exactly n — k — 1 = |(2n — 2k — 1)/2] coins.

For an order (nlas,...,ax), let a; = i fors = 1,...,k — 4, 0 < t < k, and
O—ys1 > k —t-+ 1. Sotis the unique number of coins with the property that there
is at least one empty square to the left of them.

Example.

weee e [ [ [ef |
Figure 3. Here, t = 2.

‘We now show

b(n|a,... a1) > 0 for k = B‘} (10)

by induction on the triple (k, a1, 1), where the linear ordering on this set of triples is
given by

(k,a1,t) < (K, al,t")
= (k<kE)V(k=kKANay<ad))V(k=kNa =a]At<t) (11)

(the “lexicographic ordering”). (10) is true for (k,ay,%) = (1,1,0), because in this
case there are only the orders (2|1) and (3]1), both of whose balance equals 0.

For the induction step, we need four additional lemmas:

Lemma 2. For k< |n/2] and k4+1 <m <n,
b(rnl|2,...,k,m)>0.

Example.

1| eeee [ | [e [ |
Figure 4.

Proof. If n —m > k —1, then the order (n]2,...,k,m) can be transformed by the
move sequence

(2,m),3,m+1),...,(k,m+k—2)
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into the coloring €y = (n|1,...,k - 1,m + k — 1) belonging to it. The balance of
this move sequence is (use (8))

k—1

b(n|2,...,k,m) = ;[(m~3)~2(l€~1—z’)]
— (m—k- 1)k 1)
> 0.

fn-m<k~—1,letl=(k-1)~(n—m)>1, then the order (n|2,...,k,m)
can be transformed by the move sequences
(2,m),(3,m+1),...,(n —m+1,n-1)
(now remove the coin on square # n) and, if [ > 2,
(n—m-+2,k),(n—m+3,k+1),...(k—-1,k+1-2)
into the coloring Oy = (n]1,...,k — 2,k + [ — 1) belonging to it. This is possible

because k+[—~1 =2k —n+m—2 <m— 2 < n. For the balances of these move
sequences, we have:

Bn|2,... km) = num(m 3)~2k«—l«z)]+2[(l~2)—«2(l~1—i)}

= (n—m)(n— 2k)
0

Lemma 3. For 2 < k < |n/2],
b(n}2,a1,“.,ak,1) Z b(’l’b‘ZlCLl - 2,..‘,61*__1 _2)

Example.

o[ Teje[ (e[ [ (o] ]

s[@] [o®] | o |
Figure 5.

Proof. Combine Lemmas 1 and 2. O
Lemma 4. For 1 <k < [n/2| and a; > 2,

b(nlay,...,a5) 2 bn—1la;1—1,. .. ,a; —1).
Example.

[ ol [e[] [o[ [@[ I ]

10 (@] ele] o] @ | |
Figure 6.

Proof. Combine Lemmas | and 2. [
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Lemma 5.
a) For n even, k = n/2, and a; > 2,

b(nlay,. . ak)=b(n+1{a;—1,... a5 — 1).
b) For n odd, k = (n —1)/2, and a; > 2,

b(nlas,...,a) =b(n+1las —1,... a5 — 1,n).

Example.

) 0l Je_|eje| [o] [e] ]
e ee [® o | [ ]

b) o[ || @[] @] [

10(6] Tele] @] [ e[
Figure 7.

Proof. Statements a) and b) are proved together by induction on n. In the cases
n =2 and n = 3, we have:

a) b(2]12) = b(3|1) =0 and

b) b(3|2) = b(4]1,3) = 0, b(3]3) = b(412,3) = 0.

Induction step for a): Let n be even, k = n/2, and a; > 2. Consider the orders
(nlaa,...,ax) (“order # 1”) and (n+1]a; —1,..., a5~ 1) (“order # 2”). We assume
that statement b) holds for n — 1.

In order # 1, carry out moves of the form (a1,7), (a3 — 1,72),..., until the
left coin moved lies on square # 2 or no further such move is possible. Carry out
the corresponding moves (a1 — 1,71 — 1), (a1 — 2,7, —1),... in order # 2. Then
the difference between the balances of the two orders has not been changed by these
moves. Therefore we can assume that the respective move sequence has been applied
to orders # 1 and 2.

Case 1. a; == 2, and there is an s with 2 < ;< kand a; + 1 < n, such that square
# a; + 1 is empty. Then we have:
b(n|l,a2,. .. ai+1,. .. a8) + (a; — 21 + 1),
as the move (2, a;) has balance (a; — 3) — 2(s — 2)
= b(n—1[azwl,...,a;,‘..,ak~1)+(a.~~2i+1) by Lemma 1
= b(n{az——Z,...,ai"1,...,ak——2,n—l)+(a,v~—2i+l)

by induction

Il

b(nlay,...,a)

= b(nlay—2,...,8;—2,...,a, — 2,n), as the move

(ai —1,n — 1) has balance (n — a; — 1) —2(k —1)
= bn+1|l,a,—1,...,ak — 1,n + 1) by Lemma 1
= bn+1]laa—1,... a0, —1).
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Jase 2. a; > 2, or for i = 2,...,k either a; = n or square # a; + 1 is occupied.
Because of the initial moves, orders # 1 and 2 then have the form
(n|m,k+2,...,n) and
(n+1llm-—1Lk+1, .. ,n—1) respectively with 2 <m <k+ 1.

Here, the assertion is proved directly: Order # 2 is transformed by the move se-
guences

(m—1,n-1)(m~2n—2),...,(2,n-m+2) and,ifm<k-1,
(k+1,n—m-+1),(kn—m),...,(m+2k+2)

first into the order (n -+ 111 k+1,...,n—m+1,n—m+ 3,...,n) and then into
the order (n+1|1,m+1,k+3,...,n), which (place a coin on square # n + 1 first)
has the same balance as order # 1 by Lemma 1. Moreover, the balances of the two
ITLOVE SEqUENCes are

E;{(n —m—1)=2k—-1-14)]=0 and i[(kmmml)'z(’“‘m“i)]zg’

which implies the assertion.

Induction step for b): We omit this step because it is essentially the same as for
a), only some more cases have to be distinguished. o

Now all lemmas needed for the induction step of the proof of (10) are available.
Let an order (n]ay,...,ax) be given, for which (k,ay,t) > (1,1,0) (in the linear
ordering (11)) and k = |n/2] holds. We assume that b(n'|a],...,a}) > 0 holds for
k' = |n'/2] and (K, a},t') < (k,a4,t).

Case 1. n even, a; > 2.

il

b(nlay,..., o) bln+1la; ~1,...,ap — 1) by Lemma 5 a)

0 by induction (k equal, a; smaller).

v

Case 2. n even, a7 = 1.

bnley,...,ax) = bn-—1lay—1,...,0; — 1) by Lemma l

.

> 0 by induction (k smaller).

Case 3. n odd, ay > 2.

Y

bnlay,...,ak) b(n—1]a; —1,...,a5 — 1) by Lemma 4

N/
Y

0 by induction (k equal, a; smaller).

Case 4. nodd, a1 =1, ap <mn— 2.

I

b(nlai,...,ax) b(n—1|2,a3+1,...,a5+ 1) by Lemma 5 a)
b(n —3|ay~1,...,ax — 1) by Lemma 3

0 by induction (k smaller).

i
i

v
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Case 5. nodd,a; =1, 0, =n— 1.

bnjay,...,ax) = bn+1]1,2,a2+1,...,24-1+1,n) by Lemma 1
b(n]2,3,a2+2,..., k1 + 2) by Lemma 5 b)
b(n —2|1,as,...,ak_1) by Lemma 3

Il

Vv

0 by induction (k smaller).
Case 6. nodd,a; =1, a1 <n—2, ar = n.

bnlay,...,ax) = bn+2{1,2,3,a2+2,... 061+ 2,7+ 2)
by Lemma 1 (applied twice)
= b(n+2|1,2,3,02+2,...,a5-1+2)
b(n+1]2,3,4,a+3,...,a¢-1 4+ 3) by Lemma 5 a)

il

> b(n—1[1,2,as+1,...,ak-1 +1) by Lemma 3
= bln—2]1,as,...,a5-1) by Lemnma 1
> 0 by induction {k smaller).

Case 7. nodd,ay =1, a5.1=n—1, ap = n.

b(nlay,...,ax) = bn+3|1,2,3,4,a;+3,...,a5-2+3,n+2,n+3)
by Lemma 1 (applied three times)
= bdn+3]1,2,3,4,a:+3,...,8k2+3,n+2)
= bn+2|2,3,4,5,05 +4,...,04-2 +4) by Lemma 5 b)
= b(n|1,2,3,a2+2,...,a5-2 +2) by Lemma 3
> 0 by induction (k equal, a; equal, ¢ smaller).

This implies (10) and therefore, as shown above, also (9), which completes the proof.
‘ ]

3. The multiplicities of all graphs with at most
three edges

Figure 8 shows all nontrivial graphs with at most three edges and no isolated vertices.
Recall that the multiplicities of Ps, K3, K, 3, and Py are already known; we will give
short new proofs for the last three of them and determine the multiplicities of the
remaining three graphs, 2K,, 3K,, and P3Ue.

I I A /I\ III /\'

@—=

P3 2Kz K3 K13 P4 3K2 P3U8
Figure 8.
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Theorem 2.

M(2K,;n) = 3@ + (g)(q —2)(n—q)+ 2(5) (";q) + 3(” s q) (12)

with ¢ = {n - g - ;ﬁnz — 10n ?—Mﬁ] . (13)
Proof. With the notation from the proof of Theorem 1, let us call an order of the
form (n|1,...,¢) a regular coloring. The blue edges in it form a K,_, and the red
ones form a K, +,7’fn,q‘ By considering the four possible cases for the monochromatic
copies of 2K, we obtain the expression in (12) as the value of N(2K;) in a regular
coloring (n|1,...,q).

Let » and b again denote the numbers of red and blue edges respectively in a
coloring ' of K,,. U we consider only the colorings C with some fixed 7, then it
follows from Theorem 1 and No(Ps) + Ne(2Kz) = (5) + (}) that N(2K,) is the
minimum in one of the colorings €y or U, belonging to them. Therefore (because
of the complementarity of Ci(n,r) and COy(n, ('2‘) - 7)), we need only consider the
orders (n|l,...,¢q,d) with0 <¢g<n—landg+1<d<n.

We show that N(2K,) is not increased during the transition from a coloring of
this form to the regular coloring (n|1,...,q), where g is defined by (13). Hence this
regular coloring is a minimizing coloring.

Let the colored K, have vertex set V = {wvy,...,v.}. If the edge vqugyr in
the order (nl,...,q,d) is recolored from red to blue, i.e. during the transition to
(n|l,...,q¢,d+1), then N(2K3) is increased by the number of blue edges minus the
number of red edges in (n|1,.. ., q,d) restricted to K, \ {vg, vas1}, which is a regular
coloring (n — 2|1,...,q). This difference is

(n - ; - q) B (g) —g(n—2—q) = ¢* + (5 —2n)q + (JL“E)_(“;@, (14)

Now let n > 5. Since g € {0,...,n — 1}, the expression in (14) is greater than or
equal to zero for

5 1 5
i<a= [n_m_: 2n2—10n+13J
2 2

and less than or equal to zero for
> gy = &' 5 1\/271,2 —10n + 1{;
s T S
g9 55

If g < g; and g5 = ¢: + 1, then one reaches the regular coloring (n]1,...,q;) via
the orders (n|1,...,¢,d") with (¢',d') = (¢,d),(q,d — 1),...,(q,¢+ 1),{¢ + 1,n),
(g+L,mn—1),(¢+1,n—2),...,(¢+1,9+2),...,(q1,q1 + 1), whereby N(2K,) is not
increased. If 2n? — 10n 4 13 is a square number, i.e. g, == ¢, then the desired regular
coloring is already reached when (¢',d'}) = (g — 1,¢1). But then the expression in

277



14) is equal to zero for ¢ = gy, which means that all the orders (n 1, . g, d) with
) s eq 9=q : 915

d' = g1 +1,...,n are minimizing colorings.
If ¢ > g5, then one reaches the regular coloring (n|1,... ,q2) via the orders
(nilv"')qfad’> with (q/)dl) = (Q7d)3(q:d + 1)7”‘”7(q7rb)2(q o 1&‘1)1(‘? - 17

g+1),...,(¢ —1L,n),... (g2 — 1,q5), whereby N(2K,) is not increased either. o

For determining the multiplicities of further graphs G, we generalize the method
that already led to (1):

Consider any coloring U of K,. Let Ty, ...,7T; be the non-isomerphic two-
colorings of . In particular, let 7y be the coloring where all edges have the same
color. Denote the number of copies of G in ' colored according to T} by ty, . . . stk
So we have to = No(G).

Moreover, let fy, ..., Hiyq be k-1 non-isomorphic proper subgraphs of . E(H;)
denotes the number of “extensions” of H; to (/ in i, i.e. the number of copies of &/
that contain a fixed copy of H;. Finally, let M;(H;) be the number of monochromatic
copies of H,; contained in a graph ( colored according to 7%,

Now if we count, for each monochromatic copy of H; in €, all of its extensions
to G, then each copy of G colored according to 7T} is counted exactly Mi{H;) times,
50 we have:

ZM,(H}) t.g = E(HJ) Nc(_HJ fOI‘ ] = 15 - ,k + 1. (15)
120
It is convenient to divide the equation for H; = K, by the number of edges of &
(which is the value of M;(K,) for all 4) and then interpret it as

k
>t = (number of copies of ¢ in K,).

i=0
This approach leads to

Theorem 3. If the system of linear equations (15)int,,... 4, hasa unique solution,
N¢ (@) = to is obtained as a linear combination of Ne(Hy), ..., No(Hpi).

Our first application of Theorem 3 was (1), where the following non-isomorphic
colorings of K3 were considered (solid and dashed lines represent the two colors):

To T
Figure 9.

Taking the minimum on both sides of (1) gives

Theorem 4.
M(P3yin) —~ (731)

M(Ks;n) = 3
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Here and in the following theorems, M(Ps;n) can be replaced by (see [1])
 n(e-2) for n = 0 mod 2
M(Ps:n) = «% n(n—1)(n-3) forn =1 mod 4
| memU0e) Ly for n= 3 mod 4.

Theorem 5. (
n -~ 3YM(FPy;n) — 47
M{K1,3§n) = ( ) ( ; ) "4) .

Proof. There are two non-isomorphic colorings of Ky 3:

Figure 10.
Here, the system of equations (15) reads:

to + 13 = 4(:)
3o + £ = (n—3)Ne(P).

Again, in in the resulting equation for Ng(K: 3) = to, the minimum is taken on both
sicdes. O

Theorem 8.

0 forn <4
M{Pyin) = ") /g1 n
’ | (n— 5)M(Ps;n) + 2 {(}(zgm} + (f(zg/ﬂ)} —6(7) forn>5.
Froof. The order (4]1) contains no monochromatic Py, so M(Py;n) =0 for n < 4.
Now let n > 5 and consider a coloring ' of K, with » red and b blue edges. There
are three non-isomorphic colorings of Py:

e N == . = T

Ty 8 Ty
Figure 11.

The system of equations (15) reads:

t(} + t1 + fg == 12(1‘)
to + 1&1 = 4N0(2K2)
2&3 -+ fz = 2{17» — 3) Nc(Pg)
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NC(P4) — tg = ('I’E - 3)NC(P3) + 2N(;(2K2) e 6(7;))

and so, as No(Ps) 4+ Nc(2K;) = (;) + (2)

N(Py) = (n — B)Ne(Ps) + 2 Kg) + (;’)} - 6(2)

Because of v+ b = (2) and Jensen’s inequality, (;) - (g) is a minimum if » and b
both are as close to (;)/2 as possible, so the minimum is (g(;‘g/zj) + (f(;’g/iﬂ)_ More-
over, there are colorings € of K, satisfying this condition and minimizing No(Ps)
at the same time, e.g.: For n = 0 (mod 2), let the red edges form a K,z n/2 where
a matching with [n/4]| edges has been removed. For n = 1,3 (mod 4), let the red
edges form a K(n_1)/2,(n~1)/2 Where a matching with |n/4] edges has been removed
and the last vertex has been joined to each vertex of this matching. 0o

Theorem 7.
(") M(2K2n) - 15(7)

M(3Ky;n) = :

Proof. There are two non-isomorphic colorings of 3Kj:

11

To 7
Figure 12.

The proof is similar to that of Theorem 5 with the following system of equations
(15):
to + o= 15(3)

3o + ho= ("*)Ne(2Ka).

i

Theorem 8.

0 forn <5

21,90, 300,780, 1683 forn =6,7,8,9,10
(n—é)gn—ll) M(Pa; TL)

+2 {(L(?Q/ZJ) + (F(zglﬂ)] ~15(7) forn> 1L

M(P;Ue;n)=
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Froof. The:« are three non-somorphic colorings of Py U e:

— /&\G ‘/@\
PN S o
@ ® @ e

& @

T T T
Figure 13.

The syssem of equations (15) reads:

ta 4+ 11 4+ 1y = 30(:)
2t bt = Aln—4)No(2K)
te + iy = <11;3)N0(P3\)

s

Consider a coloring O of K, with » red and & blue edges. Then it follows similar to
the proof of Theorem 6 that

, (n—4)(n-11 o b
et = C0 10 (O] () s

Trivially, M(P; Ue;n) = 0 for n < 4. For n > 11, the coefficient of No(P;) in
(16) is non-negative, and the assertion follows similar to the proof of Theorem 6.

And finally, for n = 5,...,10, this coefficient is negative. For the colorings C of
K, with some fixed r and b, the minimum of No(P; U e) is therefore attained in one
of the colorings O or {, belonging to them by Theorem 1. So for these values of
r, we ouly need to consider the colorings & of the form (n{1,...,q,d). Calculating
the respective values of No(F; U ¢}, one finds the orders (5|1), (6]1,3), (6]1,4),
(711,2), (811,2), (811,2,6), and {10]1,2,4) as minimizing colorings and the values
given 1o the theorer, 0

4. Conclusion

Uniortunately, Theorem 3 fails for graphs & with four edges, e.g. Uy, Ps, or K3 + e
There are either fewer proper subgraphs H; than non-isomorphic two-colorings 7
of G, or the system of equations (15} does not have a unique solution. Even if
the system has a unigue solution Ng(CG) = Xfﬁf} c; Ng{H;), there might not be a
coloring in which all terms ¢, No(H;) are minimized at the same time.

Another open problem is the determination of M(mK,;n) for m > 4. 1t seems
that the typical minimizing colorings for these matchings are again certain regular
colorings, but it is not clear how to prove this.
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