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Abstract 

We prove a about the maximum number 
of monochromatic VLJ .• kU"."OVU T,WO-(;OllC)nng of the of Kn with 

fixed number of 
Moreover, this result is used for the multiplicities M( G; n) of 

some small where M( G; n) defined as the smallest number 
of G in any two-coloring of the of Kn-

this the determination of 
with at most three edges. 

1. 

In the we consider of the of the complete K n , 

for short colorings, and use red and blue as our colors. For a graph G and coloring 
C of K n ) we denote the number of monochromatic copies of G in C by Nc ( G) (or 
just N( G), if it is clear which coloring is referred to). 

The m1.dtiplicity M( Gj n) of a graph G and a positive n is defined as 
ffiJn over all colorings C of Kn. It includes the Ramsey number r( G), which 

is the smallest n such that M( Gj n) is positive, and the Ramsey multiplicity R( G), 
which is M(Gjr(G)). Those colorings C in which M(G;n) attained are called 
minimizing colorings. 

There are very few exact results about multiplicity: The only graphs G for which 
M( G; n) was known for all n E IN were the triangle K3 (Goodman [3]), the path 

and the stars K1,m for all m E IN (Czerniakiewicz [2], Burr and Rosta [1 J). In 
Section 3, we will determine the multiplicities of 3K2 , and P3 U e, that we 
have the exact values of n) for all graphs G with at most three 

Goodman also determined min Nc(K3) where the minimum is taken over the 
c 

colorings C of with some fixed number of red and blue edges. Moreover, he made 
a conjecture about max Nc(K3) with the same constraint. (Without this constraint 

c 
the maximum is trivially attained in a coloring where all edges have the same color.) 
This conjecture will be proved in Section 2. 
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relation between the P3 and the For 
a let t be the number of of in C which are not 
monochromatic. Then we have: 

and 

where the first equation counts all of in C and the second one counts the 
monochromatic of contained in the of C. of 
this will be discussed This 

(1) 

allowing us to rewrite Goodman's conjecture in terms of NC(P3) instead of Nc(K3)' 

In the following, we denote the number of red edges of a given coloring C of 
r. Trivially, mlfxNc (P3) over all colorings C with r 0 equals (~), so we need 

not consider this case. 
For 1 r (;) , let the integers q, p, 1/, and ,\ be (uniquely) by the relations 

r= (;) + q(n q) -+ p with ls:p n-q and (2) 

r (;) + A with Os:'\S:1/ 1. (3) 

Now two colorings C1(n, r) and C2(n, r) of Kn with vertex set {VI,"" Vn} are defined 
as follows: In C1(n,r), the vertices VI, ... ,Vq form a red Kq and are also joined to 
each of the remaining vertices vq+lJ ... ,Vn by a red edge. Apart from that, the vertex 
vn - p is joined to each of the p vertices vn - p +l, ... ,Vn by a red edge. In C2( n, r), the 
vertices 'Un-v, ... ,'Un form a red KV+l where the edges Vn-v+>.Vi have been removed 
for i n 1/ -+,\ -+ 1, ... ,no All other edges in C1(n,r) and C2(n,r) are blue. 

It follows from (2) and (3) that C1(n,r) and C2 (n,r) each contain exactly r red 

edges. Note that CI ( n, r) and C2 ( n, (;) r) are complementary colorings. 
With these definitions, what Goodman conjectured can be stated as follows: 

Theorem 1. The maximum of N C (P3 ) over all colorings C of Kn with exactly r red 
edges is attained in C1(n,r) or C2(n,r). With q,p,1/, and .A given by (2) and (3), 
this maximum equals 

max {3 (~) 2(n - l)r + q(n I)' + (4q + p + l)p + q'(n - q), 

3(~) 2r(n - v) + >.(H I)}. 
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and the blue 

Let us call 

(r(vd, .. , 

If r( Vi) and 
we have: 

n 

denote the red 

2( n l)r -+- r( Vi)2 . (4) 

belonging to O. We will 
,",U'.VL.LH!",'" 0 1 or O2 belonging 

reC:Ol()f11:lgs in such way that not decreased. Therefore 
must be the maximum. From the (red) sequences of 

q p, and 

n-q--p-l p 

q(n + (4q p + + q) for Ol(n, r) and (5) 

1)+,\(,\+1) (6) 

then the assertion in theorem. 

In b( vd, ... ,b( vn )}. Let this 
red say dmax r( VI)' that 

- 1, i.e. there VI V for some V E V. Then there must also 
vv' for some Vi E V, because otherwise b( v) n - 1 > Now 

V1V from blue to red and the vv' from red to blue. Then r is 
'A.u'-'U''--"HI'''~''., and N C (P3) increased 

+ b( v') - (b( VI) 1) (r( Vi) -- 1). 

As reVI) = r( v') and thus b( vd this expression is Of course, 
r( VI) again the maximum after the so this process can be 
until = n 1. Now consider the with vertex set V \ {VI} and 
-n"'.r"\/'~>pti similarly. In this way we obtain a V2 say, which has the red or blue 

n - in this application of these arguments eventually 
ICI\_~"--ll necessary by renumbering the vertices-a coloring 0' of still with r 

red edges and NCI(P3) NC(P3). In 0' each vertex Vi is to each succeeding 
vertex Vj (j > i) by of the same color. 

Let us call a coloring with this property an order. Moreover, we will speak of 
red and blue vertices, according to the color in which the respective vertex is joined 
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to all su(:ceemng Uprr1r,n0 For 
write 

red UPlrT lI~PQ 

vVith this notation and with p, 

The number of 

r) 
r) 

to it can be PVlr\rp,,, '''>rl 

., ,q,n p) 

In v, .. ,n 

Since ai i for 1, . , and p 1 j this 

< 

The most '"'VI pnc,,;rp 

+ 
of the '-'Vl.VJ..IlHr-

an order (n I al) ., ak) not 
'-'V''-'~'UF. C1 to it. the two 

(7) 

In 

have an order with k :::; r by - r. In this case 

it follows from the cmnp,leIne:ntctnt;y of r) (~) r) that the value of 

N(P3) in the order is not than in the coloring C2 belonging to it. 
this implies the assertion. 

The is essential to all an order 
(n I aI, ... , ak), choose two red vertices Va; and Vaj ai < aj < n) such that the 
vertices V ai -1 and Vaj+l are blue. definition of an order, the Vui-lVai is blue 
and the edge V aj V aj +1 is red. Now these two edges are recolored to the other color 
in each case, so that r remains unchanged. In the new coloring the vertices V ai --1 

and Va; as well as Vaj and V aj+l have merely interchanged their roles with each other, 
i.e. we now have the order (n I al, .. . , ai -- 1, ... , aj + 1, ... , ak). By this recOlC1n:rlg 

N(P3 ) is increased by 

r(Vai -1) + r(vaJ + b(vaJ + b(Vaj+l) 

-[b(vai-d - 1] [b(vaJ - 1)]- [r(vaJ - 1]- [r(vaj+l) 1] 
2[(i - 1) + (i - 1 + n -- ai) + (aj - j) + (n j - 1)]- 4(n -- 1) + 4 

2[(aj ai - 1) 2(j - i-I)]. (8) 
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The exore:SSllon in brackets in rn"TP"n('T1r1" to the number of blue vertices between 

ai and aj minus the number of and aj. 

The described above can be illustrated in the way: The order 
rel)re:seJrrte:d by a sequence of n squares numbered 1 to n, and for 

each red vertex Va" a coin 
and (n I aI, ... , ak-l) are identical, 
# n or not. 

on square ai. As the orders (n I al, ... ) ak-I, 
makes no difference if there is a coin on square 

10 
L-.L-~_-L-L~ __ ~_~~_-L~ 

Figure 1. The order (1012,4,5,8,10). 

The then consists in shifting two coins on squares # at and aj apart 
by one square provided squares # ai - 1 and + 1 are empty. This called a 
move As shown above, to the transition from the order 

I al)" ., ... , aj,"" ak) to (n I al, .. ·, ai 1, ... , aj + 1, .. ,ak). The number of 
ernpty squares between the coins moved minus the number of coins between them 
called the balance of the move. (8), a increases by twice its balance. 
A sequence of moves that can carried out after the other is called a move 

sequence; the balance of the move sequence 

order be transformed 
into the c.,VJ.V.lJLH,t; belonging to it: In 

HCIJ<..LlU'""J.H.l~ square IS 

it is removed. As soon as no further move 
only moves in one direction not at 
after many moves. 

nlOve sequence 
\JA''''.LJ..Lj.H''-', shift the leftmost 

coin whose right 
lies on square # n, then 

is attained. Since each coin 
the case 

The balance of a move sequence that transforms a given order (n I aI, ... , ak) into 
the C1 belonging to independent of the move sequence actually chosen, 

it only on the of N(P3). Therefore we call it the 
the order, written b( n I 0,1, ... , we have to prove: 

We first show that (9) for k 
we need the following lemma: 
.......... u ......... u L For k ~ 2, 

In/2J also implies (9) for k < In/2J To this 

b(n 11, 0,1, .. ·, ak-l) = b(n 11 a1 - 1, ... , ak-1 - 1). 
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Proof. The if one 
ously in the two orders. 

out moves y')and(i 1,j l)simultane­
o 

by 

I aI, .. , ak) 

2k 1 11, .. , n - 2k 1, al n 2k - 1, .. ,ak n 2k - 1) 

0, 

because the order contains n k 1 2k COIns. 

For order for i 1, ., k t, t :s; k, and 

ak--t~l k L with the nrr>nprtu that there 

is at least one empty square to the 

We now show 

b(n I aI, ... , o for k 

induction on the 
given 

(k, aI, t), where the linear 

( k, aI, t) < (k', tf) 

on this set of 

{=:;> (k < k') V (k k' 1\ al < a~) V (k = k' 1\ al a~ 1\ t < tf) 

IS 

(the "lexicographic ordering"). (10) is true for (k, aI, t) (1,1,0), because in this 
case there are only the orders (211) and (311), both of whose balance O. 

For the induction step, we need four additional lemmas: 

Lemma 2. For k :s; In/2J and k + 1 :s; m:S; n, 

b(nI2, ... ,k,m) 2: O. 

Proof. If n - m 2: k - 1, then the order (n 12, ... , k, m) can be transformed by the 
move sequence 

(2,m),(3,m+ 1), ... ,(k,m+ k 2) 
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into the 0 1 (n 11, . ,k 
(8)) 

I,m + k 1) bel.onlunJl to it. The balance of 
this move sequence is 

k-l 
3) 

(m k l)(k 1) 
O. 

1 i)] 

If n m k 1, let l ( k I)-- I, then the order 12, ... ,k, m) 
can be transformed the move sequences 

m),(3,m+l), .,(n m+1,n 1) 

remove the coin on square # n) if l :2: 2, 

(n m+2,k),(n-m+3,k+1),. ,(k 1,k+l-2) 

... , k - 2, k + 1 1) to it. This is possible 
m < n. For the balances of these move 

sequences, we have: 

i-l 

b(n I ... ,k, 3) i)] + 2) 2(1 1 i)] 

2k) 

o 

Lemma For 2 k :::; I 
b(nI2,al, ... ,ak-d ~ b(n 2I al-- ... ,ak-1-2). 

Proof. Combine Lemmas 1 and 2. o 

Lemma For 1 :::; k :::; 

b( n I al, ... , ak) ~ b( n - 1 I al , ak -·1). 

Figure 6. 

Proof. Combine Lemmas 1 and 2. o 
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Lemma 5. 

a) For n even, k = n/2, and al 2, 

b(n I . , 

b) For n k= and 2, 

b( n I aI, ... , b( nIl all, . ,ak 1, 

a) 

Proof. Statements a) and b) are 
n 2 and n 3, we have: 

induction n. In the cases 

a) 

b) b(312) 

12) 
b( 412,3) O. 

Induction for Let n be even, k and al Consider the orders 
# 2"). We assume (n I aI, ... , ak) ("order # and 1 I al - 1) 

that statement b) holds n - 1. 
In order # 1, carry out moves of the form (aI, (al 

left coin moved lies on square # or no further such move out 
the correspon ding moves 1,]1 - 1), (all), ... in order # 2. Then 
the difference between the balances of the two orders has not been these 
moves. Therefore we can assume that the respective move sequence has been applied 
to orders # and 2. 

Case 1. al 2, and there is an i with 2 :S: i :S: k and ai + 1 n, such that square 
# ai + 1 is empty. Then we have: 

b(n I al,···, ak) = b(n 11, a2, ... , ai + 1, .. , ak) + (ai - 2i + 1), 

as the move (2, ai) has balance (ai 3) - 2(i - 2) 

b( n - 1 I a2 1, ... , ai, ... , ak - 1) + (ai - 2i + 1) by Lemma 1 

b(nla2-2, ... ,ai 1, ... ,ak-2,n l)+(ai 2i+1) 
by induction 

b(n I a2 - 2, ... , ai - 2, ... ,ak -- 2, n), as the move 

(ai -l,n -1) has balance (n - ai 1) - 2(k i) 

b(n + 111, a2 1, ... , ak - 1, n + 1) by Lemma 1 

b( n + 1 11, a2 - 1, ... , ak - 1). 
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Case 1. n even, al 2. 

n even, all. 

n 

I al,· .. , 

Case 4. n 

I al,··· , 

· .. , k n square ai 

# 1 and 2 then have the form 

1) ..-."e,no,..h"",I" with 2 m k + 1. 

Order # 2 is transformed the move se~ 

... , n - m 2) 

... , (m + 2, k +- 2) 

if m k -- I, 

1, .. ,n m + 1,n m 3, ... ,n) and then into 
which a coin on square # n 1 first) 

Lemma 1. the balances of the two 

le-~'m 

o [(k m 1) - -m 0, 

"-;C'C'C.u_~Hl'ii y the same as for 

the induction of the of (10) are available. 
for which ai, t) 1, 0) the linear 

assume that b( n' I 2': 0 holds for 

1, .. , ak 1) by Lemlna 5 a) 

al smaller). 

, ... ,ak 1) 
ind uction (k smaller). 

Lemma 1 

n- 2. 

- 112, a2 + 1, ... , ale + 1) by Lemma 5 a) 

-- ~3 I az 1, .. , ale - 1) by Lemma 3 

o induction smaller). 

275 



Case n odd, 

b( n I aI, . , ak) 

n al 

b(n I al,· , ak) 

-l. 

b(n + 11 ,2, + 1,. • 1 ak-l + 1, n) Lemma 1 

b(n 12,3, a2 + 2, . ,ak--l + 2) Lemma 5 b) 

b(n 211, a2,···, Lemrna 

0 induction (k 

1, ak-l n 2, ak n. 

n + 2) 
by Lemma 1 

b(n+211,2,3, +2, ... ,ak-l 2) 
b(n + 112,3,4, a2 + 3, .. , ak--l + by Lemma 5 a) 

b( n -- 1 11, 2, a2 + ... , ak-l + 1) by Lemma 3 

b(n - 211, a2, . .. , ak-l) by Lemma 1 

o by induction (k 

Case 7. n odd, all, ak--l = n 1, ak n. 

b(n+311 2,3,4,a2 +3, . . ,ak_2+3,n 2,n 3) 
by Lemma 1 (applied three 

b(n + 311,2,3,4, a2 + 3, .. , ak-2 + 3, n + 2) 

b(n + 212,3,4,5, a2 + 4, ... , ak-2 + 4) by Lemma 5 b) 

b(n 11,2,3, a2 + 2, ... 1 ak-2 + 2) by Lemma 3 

> 0 by induction (k equal, al t smaller). 

This implies (10) and therefore, as shown above, also (9), which completes the 
o 

3. multiplicities of all graphs with 
three edges 

Figure 8 shows all nontrivial graphs with at most three and no isolated vertices. 
Recall that the multiplicities of P3 ) K 3 , and P4 are already known; we will give 
short new proofs for the last three of them and determine the multiplicities of the 
remaining three graphs, 2K2 ) 3K2, and U e. 

I I ~ A I I I ~. .. .. .. .. • .. .. 
~ 

P3 2K2 K3 K 1 ,3 P4 3K2 P3 U e 

Figure 8. 
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(q q) +3 (
TL 

III 

minus the 
a 

+ -------.. ------------
2 

77 



This ap·PfC)aCn 

linear equatlClTIS 

the minimum on both sides of 

Theorem 4. 

8 

9. 

., 



+ 

+ 

the minimum is taken on both 
o 

for n :S; 4 

for n 5. 

o for n :S; 4. 
There 



so, as 

+ 

Theorem 7. 

n) 

Proof. There are two nO][l-Hwn:1ornhlC C-"-'.LV1.Ui;;", of 

I I I I I : 
12. 

The proof is similar that of Theorem 5 with the 
(15): 

15(~) 
(n;4) Nc(2K2)' 

o 

Theorem 8. 

o for n 5 

300, 780,1683 for n 6, 7, 8, 9,10 
M(P3 U e;n) = n) 

+2 [ (L(;~/2J) + (r(;~/21)] - 15 (~) for n ~ 11. 
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+ 

follows similar to 



2 


