On Hamilton cycles in cubic (m, n)-metacirculant graphs, II

Ngo Dac Tan
Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam

Abstract

In this paper we continue to investigate the problem of the existence of a Hamilton cycle in connected cubic (m, n)-metacirculant graphs. We show that a connected cubic (m, n)-metacirculant graph $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ has a Hamilton cycle if either $\alpha^{2} \equiv 1(\bmod n)$ or in the case of an odd number μ one of the numbers $(\alpha+1)$ or $\left(1-\alpha+\alpha^{2}-\cdots-\alpha^{\mu-2}+\alpha^{\mu-1}\right)$ is relatively prime to n. As a corollary of these results we obtain that every connected cubic (m, n)-metacirculant graph has a Hamilton cycle if m and n are positive integers such that every odd prime divisor of m is not a divisor of $\varphi(\mathrm{n})$ where φ is the Euler φ-function.

1. INTRODUCTION

The problem of the existence of a Hamilton cycle in vertex-transitive graphs has been considered by researchers for many years. Among these graphs, (m, n)metacirculant graphs introduced in [3] are interesting because the automorphism groups of such graphs contain a transitive subgroup which is a semidirect product of two cyclic groups and so has a rather simple structure. It has been asked [3] whether all connected (m.n)-metacirculant graphs, other than the Petersen graph, have a Hamilton cycle.

For $n=p^{t}$ with p a prime, connected (m, n)-metacirculant graphs, other than the Petersen graph, have been proved to have a Hamilton cycle [1]. Connected cubic (m, n)-metacirculant graphs, other than the Petersen graph, also have been proved to be hamiltonian for m odd [6], $m=2[4,6]$, and m divisible by $4[10]$. Thus, the remaining values of m, for which we still do not know whether all connected cubic (m, n)-metacirculant graphs have a Hamilton cycle, are of the form $m=2 \mu$ with $\mu \geq 3$ an odd positive integer.

In this paper we continue to investigate the problem of the existence of a Hamilton cycle in connected cubic (m,n)-metacirculant graphs. We will prove here two sufficient conditions for connected cubic (m, n)-metacirculant graphs to be hamiltonian. Namely, we will show that a connected cubic (m, n) -metacirculant graph $G=$

[^0]$M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ has a Hamilton cycle if either $\alpha^{2} \equiv 1(\bmod n)$ or in the case of an odd number μ one of the numbers ($\alpha+1$) or ($1-\alpha+\alpha^{2}-\cdots-\alpha^{\mu-2}+\alpha^{\mu-1}$) is relatively prime to n. As a corollary of these results we obtain that every connected cubic (m, n)-metacirculant graph has a Hamilton cycle if m and n are such that every odd prime divisor of m is not a divisor of $\varphi(\mathrm{n})$ where φ is the Euler φ-function.

2. PRELIMINARIES

In this paper we consider only finite undirected graphs without loops or multiple edges. If G is a graph, then $V(G), E(G)$ and $A u t(G)$ denote its vertex-set, its edgeset and its automorphism group, respectively. A graph G is called vertex-transitive if the action of $\operatorname{Aut}(\mathrm{G})$ on $V(\mathrm{G})$ is transitive. If n is a positive integer, then we write Z_{n} for the ring of integers modulo n and Z_{n}^{*} for the multiplicative group of units in Z_{n}

The construction of (m, n)-metacirculant graphs is now described. The reader is referred to [3] for more details and a discussion of the properties of these graphs.

Let m and n be two positive integers, $\alpha \in Z_{n}^{*}, \mu=\lfloor\mathrm{m} / 2\rfloor$ and $S_{0}, S_{1} \ldots, S_{\mu}$ be subsets of Z_{n} satisfying the following conditions:
(1) $0 \notin S_{0}=-S_{0}$;
(2) $\alpha^{m} S_{r}=S_{r}$ for $0 \leq r \leq \mu$;
(3) If m is even, then $\alpha^{\mu} S_{\mu}=-S_{\mu}$.

Then we define the (m, n)-metacirculant graph $G=M C\left(m, n, \alpha, S_{0}, S_{1}\right.$, $\left.\ldots, S_{\mu}\right)$ to be the graph with vertex-set $V(G)=\left\{v_{j}^{i}: i \in Z_{m} ; j \in Z_{n}\right\}$ and edge-set $E(G)=\left\{v_{j}^{i} v_{h}^{i+r}: 0 \leq r \leq \mu ; i \in Z_{m} ; h, j \in Z_{n}\right.$ and $\left.(h-j) \in \alpha^{i} S_{r}\right\}$, where superscripts and subscripts are always reduced modulo m and modulo n , respectively.

The above construction is designed to allow the permutations ρ with $\rho\left(v_{j}^{i}\right)=$ v_{j+1}^{i} and τ with $\tau\left(v_{j}^{i}\right)=v_{\alpha j}^{i+1}$ to be automorphisms of G . Since the subgroup $\langle\rho, \tau\rangle$ of Aut (G) generated by ρ and τ is transitive on $\mathrm{V}(\mathrm{G}),(\mathrm{m}, \mathrm{n})$-metacirculant graphs are vertex-transitive. These graphs were introduced in [3] as a logical generalization of the Petersen graph for the primary reason of providing a class of vertex-transitive graphs in which there might be some new non-hamiltonian connected vertex-transitive graphs. Among these graphs, cubic (m, n)-metacirculant graphs are especially attractive, being at the same time the simplest nontrivial (m, n)-metacirculant graphs and those most likely to be non-hamiltonian because of their small number of edges.

Now we recall a method for lifting a Hamilton cycle in a quotient graph \bar{G} of a. graph G to a Hamilton cycle in G. This method will be used in the next section to prove Theorem 4. A permutation β is said to be semiregular if all cycles in the disjoint cycle decomposition of β have the same length. If a graph G has a semiregular automorphism β, then the quotient graph G / β with respect to β is defined as follows [2]. The vertices of G / β are the orbits of the subgroup $\langle\beta\rangle$ generated by β and two such vertices are adjacent if and only if there is an edge in G joining a vertex of one corresponding orbit to a vertex in the other orbit.

Let β be of order t and $G^{0}, G^{1}, \ldots, G^{h}$ be the subgraphs induced by G on the orbits of $<\beta>$. Let $v_{0}^{i}, v_{1}^{i}, \ldots, v_{t-1}^{i}$ be a cyclic labelling of the vertices of G^{i} under the action of β and $C=G^{0} G^{i} G^{j} \ldots G^{r} G^{0}$ be a cycle of G / β. Consider a path P of G arising from a lifting of C , namely, start at v_{0}^{0} and choose an edge from v_{0}^{0} to a vertex v_{a}^{i} of G^{i}. Then take an edge from v_{a}^{i} to a vertex v_{b}^{j} of G^{j} following G^{i} in C. Continue in this way until returning to a vertex v_{d}^{0} of G^{0}. The set of all paths that can be constructed in this way using C is called in [2] the coil of C and is denoted by coil(C).

We will use in the next section the following results proved in [7], [8] and [9].
Lemma 1 [7]. Let t be the order of a semiregular automorphism β of a graph G and G^{0} be the subgraph induced by G on an orbit of $<\beta>$. If there exists a Hamilton cycle C in G / β such that coil(C) contains a path P whose terminal vertices are distance d apart in the G^{0} where P starts and terminates and gcd (d, t) $=1$, then G has a Hamilton cycle.

Lemma 2 [8]. Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a cubic (m,n) metacirculant graph such that $m>2$ is even, $S_{0}=\emptyset, S_{i}=\{s\}$ with $0 \leq s<n$ for some $i \in\{1,2, \ldots, \mu-1\}, S_{j}=\emptyset$ for all $i \neq j \in\{1,2, \ldots, \mu-1\}$ and $S_{\mu}=\{k\}$ with $0 \leq k<n$. Then
(i) If G is connected, then either i is odd and $\operatorname{gcd}(i, m)=1$ or i is even, μ is odd and $\operatorname{gcd}(i, m)=2$.
(ii) If i is odd and $\operatorname{gcd}(i, m)=1$, then G is isomorphic to the cubic (m, n). metacirculant graph $G^{\prime}=M C\left(m, n, \alpha^{\prime}, S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\mu}^{\prime}\right)$ with $\alpha^{\prime}=\alpha^{i}, S_{0}^{t}=\emptyset, S_{1}^{\prime}=$ $\{s\}, S_{2}^{t}=\cdots=S_{\mu-1}^{\prime}=\emptyset$ and $S_{\mu}^{\prime}=\{k\}$.
(iii) If i is even, μ is odd, $\operatorname{gcd}(i, m)=2$ and $i=2^{r} i^{\prime}$ with $r \geq 1$ and i^{\prime} odd, then G is isomorphic to the cubic (m, n)-metacirculant graph $G^{\prime \prime}=M C\left(m, n, \alpha^{\prime \prime}\right.$, $\left.S_{0}^{\prime \prime}, S_{1}^{\prime \prime}, \ldots, S_{\mu}^{\prime \prime}\right)$ with $\alpha^{\prime \prime}=\alpha^{i^{\prime}}, S_{0}^{\prime \prime}=S_{1}^{\prime \prime}=\cdots=S_{2^{r}-1}^{\prime \prime}=0, S_{2^{r}}^{\prime \prime}=\{s\}, S_{2^{r}+1}^{\prime \prime}=$ $\cdots=S_{\mu-1}^{\prime \prime}=\emptyset$ and $S_{\mu}^{\prime \prime}=\{k\}$.

Lemma 3 [8]. (i) Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a cubic (m, n). metacirculant graph such that $m>2$ is even, $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=S_{\mu-1}=$ \emptyset and $S_{\mu}=\{k\}$. Then G is connected if and only if $\operatorname{gcd}(p, n)=1$, where p is $\left[k-s\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}\right)\right]$ reduced modulo n.
(ii) Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a cubic (m, n)-metacirculant graph such that $m>2$ is even, $\mu=\lfloor m / 2\rfloor$ is odd, $S_{0}=S_{1}=\cdots=S_{2^{r}-1}=\emptyset$ with $r \geq 1, S_{2^{r}}=\{s\}, S_{2^{r}+1}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$. Then G is connected if and only if $\operatorname{gcd}(q, n)=1$, where q is $\left[k\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{2^{\gamma}-1}\right)-s\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}\right)\right]$ reduced modulo n.

Lemma 4 [9]. Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a connected cubic (m, n)-metacirculant graph such that m is even, greater than 2 and not divisible by 4, $S_{0}=S_{1}=\cdots=S_{2^{r}-1}=\emptyset$ with $r \geq 1, S_{2^{r}}=\{s\}$ with $0 \leq s<n, S_{2^{r+1}}=$ $\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$ with $0 \leq k<n$. Let $a=\operatorname{gcd}(\alpha-1, n)$ and $b=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)$. Then Ghas a Hamilton cycle if any one of the following conditions is met:
(b) Either $\operatorname{gcd}(n /(a b), \mu a-1)=1$; or
(ii) $b=1$.

Now we recall the definition of a brick product of a cycle with a path defined in [4]. This product plays a role in the proof of Theorem 1 in the next section. Let C_{n} with $n \geq 3$ and P_{m} with $m \geq 1$ be the graphs with vertexsets $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m+1}\right\}$ and edge-sets $E\left(C_{n}\right)=$ $\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n} u_{1}\right\}, E\left(P_{m}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{m} v_{m+1}\right\}$, respectively. The brick product $C_{n}^{[m+1]}$ of C_{n} with P_{m} is defined as follows [4]. The vertex-set of $C_{n}^{[m+1]}$ is the cartesian product $V\left(C_{n}\right) \times V\left(P_{m}\right)$. The edge-set of $C_{n}^{[m+1]}$ consists of all pairs of the form $\left(u_{i}, v_{h}\right)\left(u_{i+1}, v_{h}\right)$ and $\left(u_{1}, v_{h}\right)\left(u_{n}, v_{h}\right)$, where $\mathrm{i}=1,2, \ldots$, $\mathrm{n}-1$ and $\mathrm{h}=1,2, \ldots, \mathrm{~m}+1$, together with all pairs of the form $\left(u_{i}, v_{h}\right)\left(u_{i}, v_{h+1}\right)$, where $i+h \equiv 0(\bmod 2), \mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{h}=1,2, \ldots, \mathrm{~m}$.

The following result has been proved in [4].
Lemma 5 [4]. Consider the brick product $C_{n}^{[m]}$ with n even. Let $C_{n, 1}$ and $C_{n, m}$ denote the two cycles in $C_{n}^{[m]}$ on the vertex-sets $\left\{\left(u_{i}, v_{1}\right): i=1,2, \ldots, n\right\}$ and $\left\{\left(u_{i}, v_{m}\right): i=1,2, \ldots, n\right\}$, respectively. Let F denote an arbitrary perfect matching joining the vertices of degree 2 in $C_{n, 1}$ with the vertices of degree 2 in $C_{n, m}$. If X is a graph obtained by adding the edges of F to $C_{n}^{[m]}$, then X has a Hamilton cycle.

3. MAIN RESUMTS

In this section we will prove two sufficient conditions for connected cubic (m, n)metacirculant graphs to be hamiltonian. These conditions will be expected helpful in further investigation of the problem of the existence of a Hamilton cycle in connected cubic (m, n)-metacirculant graphs. As a corollary of one of these conditions we obtain that every connected cubic (m, n)-metacirculant graph has a Hamilton cycle if m and n are positive integers such that every odd prime divisor of m is not a divisor of $\varphi(n)$ where φ is the Euler φ-function. This is a partial solution of the above mentioned problem.

Theorem 1. Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a connected cubic (m, n) metacirculant graph such that $\alpha^{2} \equiv 1(\bmod n)$. Then G possesses a Hamilton cyele.

Proof. Let $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a connected cubic (m,n)metacirculant graph such that $\alpha^{2} \equiv 1(\bmod n)$. Suppose that G is isomorphic to the Petersen graph. Then $m n=10$ because the orders of G and the Petersen graph are equal to m and 10 , respectively. Hence m is equal to one of the numbers 1 , 2, 5 or 10 . If $m=1$, then by definition G is a circulant graph. So G is a Cayley graph. If $\mathrm{m}=5$ or 10 , then $\mathrm{n}=2$ or 1 , respectively. Therefore, $\alpha=1$. By $[3$, Theorem 9], G is a Cayley graph. If $m=2$, then the hypothesis $\alpha^{2} \equiv 1(\bmod n)$ implies by $[3$, Theorem 9] again that G is also a Cayley graph. Thus, in all cases G is Cayley. This contradicts the well-known fact that the Petersen graph is not a Cayley graph. It follows that G cannot be isomorphic to the Petersen graph.

If m is odd or $\mathrm{m}=2$ or m is divisible by 4 , then by the results obtained in $[4$, $6,10] \mathrm{G}$ has a Hamilton cycle. If $S_{0} \neq 0$, then by [6] G also possesses a Hamilton cycle. Therefore, we may assume from now on that m is even, greater than 2 and not divisible by 4 and $S_{0}=\emptyset$. Since G is a cubic (m, n)-metacirculant graph, this implies that only the following may happen:
(i) $S_{0}=\emptyset, S_{i}=\{s\}$ with $0 \leq s<n$ for some $i \in\{1,2, \ldots, \mu-1\}, S_{j}=\emptyset$ for all $i \neq j \in\{1,2, \ldots, \mu-1\}$ and $S_{\mu}=\{k\}$ with $0 \leq k<n$;
(ii) $S_{0}=\cdots=S_{\mu-1}=0$ and $\left|S_{\mu}\right|=3$.

Since G is connected and $m>2$ is even, (ii) cannot occur. So only (i) may happen. By Lemma 2, without loss of generality we may assume that $G=$ $M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ has one of the following forms:

1. $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\} ;$
2. $S_{0}=\cdots=S_{2^{r-1}}=$ with $r \geq 1, S_{2 r}=\{s\}, S_{2^{r+1}}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$.

We consider these possibilities in turn. Below we will use the hypothesis $\alpha^{2} \equiv 1$ $(\bmod n)$ frequently without mention. So the reader should keep it in mind.

Case 1: $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ with $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=$ $S_{\mu-1}=0$ and $S_{\mu}=\{k\}$.

An edge in G of the type $v_{j}^{i} v_{j+\alpha^{i} s}^{i+1}$ is called an S_{1}-edge, and of the type $v_{j}^{i} v_{j+\alpha^{i} k}^{i+\mu}$ an S_{μ}-edge. A cycle C in G is called an S_{1}-cycle if every edge in C is an S_{1}-edge. Consider S_{1}-cycles in G . Since every vertex in G is incident with just two S_{1}-edges, it must be contained in exactly one S_{1}-cycle. So two S_{1}-cycles either coincide or are disjoint. Further, it is clear that any S_{1}-cycle P_{j} in G must contain a vertex v_{y}^{0} for some $y \in Z_{n}$ and therefore can be represented in the form

$$
P_{j}=P\left(v_{y}^{0}\right) P\left(v_{y+z}^{0}\right) P\left(v_{y+2 z}^{0}\right) \ldots,
$$

where z is $\mu s+\mu \alpha s$ and

$$
P\left(v_{h}^{0}\right)=v_{h}^{0} v_{h+s}^{1} v_{h+s+\alpha s}^{2} v_{h+2 s+\alpha s}^{3} v_{h+2 s+2 \alpha s}^{4} \cdots v_{h+(\mu-1) s+(\mu-1) \alpha v^{2 \mu-2}}^{v_{h+\mu s+(\mu-1) \alpha s}^{2 \mu-1} .}
$$

It follows that two vertices v_{f}^{i} and v_{g}^{i+2} of G are vertices at distance 2 apart in the same S_{1}-cycle P_{j} if and only if $g=f+s+\alpha s$ in Z_{n}. It is also not difficult to see that all S_{1}-cycles in G are isomorphic to each other and have an even length ℓ.

If G has only one S_{1}-cycle, then this cycle is trivially a Hamilton cycle of G . Therefore, we assume that G has at least two distinct S_{1}-cycles. Let v_{f}^{i} and v_{g}^{i+2} with i even be two vertices at distance 2 apart in the same S_{1}-cycle P_{j}. Then the vertices of G adjacent to v_{f}^{i} and v_{g}^{i+2} by $S_{\mu^{\prime}}$-edges are $v_{f^{\prime}}^{i+\mu}$ and $v_{g^{\prime}}^{i+2+\mu}$. respectively. where $f^{\prime}=f+\alpha^{i} k=f+k$ and $g^{\prime}=g+\alpha^{i+2} k=g+k$. Since $g=f+s+\alpha s$ in Z_{n}, we have $g^{\prime}=g+k=f+s+\alpha s+k=f^{\prime}+s+\alpha s$ in Z_{n}. Thus $v_{f^{\prime}}^{i+\mu}$ and $v_{g^{\prime}}^{i+2+\mu}$ are vertices at distance 2 apart in the same S_{1}-cycle $P_{j^{\prime}}$. Moreover, since μ is odd, the superscripts $i+\mu$ and $i+2+\mu$ of respectively $v_{f^{\prime}}^{i+\mu}$ and $v_{g^{\prime}}^{i+2+\mu}$ are odd.

Let $C_{\ell}^{[r]}$ be the brick product of a cycle C_{ℓ} with a path P_{r-1}, where C_{ℓ} is isomorphic to S_{1}-cycles of G and r is the number of distinct S_{1}-cycles in G . Denote by $C_{\ell, 1}$ and $C_{\ell, r}$ the two cycles in $C_{\ell}^{[r]}$ on the vertex-sets $\left\{\left(u_{i}, v_{1}\right): i=1,2, \ldots, \ell\right\}$ and $\left\{\left(u_{i}, v_{r}\right): i=1,2, \ldots, \ell\right\}$, respectively. Using the property of G proved in the preceding paragraph and the fact that G is a connected cubic graph, it is not difficult to see that G is isomorphic to a graph X obtained from $C_{\ell}^{[r]}$ by adding the edges of a perfect matching joining the vertices of degree 2 in $C_{\ell, 1}$ with the vertices of degree 2 in $C_{\ell, r}$. By Lemma 5, X has a Hamilton cycle. Therefore, G has a Hamilton cycle in Case 1.

Case 2:: $G=M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ with $S_{0}=\cdots=S_{2^{r}-1}=\emptyset$ for some $r \geq 1, S_{2^{r}}=\{s\}, S_{2^{r}+1}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$.

An edge in G of the type $v_{j}^{i} v_{j+\alpha^{i},}^{i+2^{r}}$ is called an $S_{2^{r}}$-edge, and of the type $v_{j}^{i} v_{j+\alpha^{i} k}^{i+\mu}$ an S_{μ}-edge. A walk W in G is called an $S_{2^{r}}$-walk if every edge in W is an $S_{2^{r} \text {-edge. }}$. Since an S_{2} r-edge connects vertices with superscripts of the same parity, either all superscripts of vertices of an $S_{2 r}$-walk are even or they are all odd modulo m . In the former case, an $S_{2^{r} \text {-walk is called of type } A \text { and in the latter case, it, is called }}^{\text {th }}$, of type B.

Since G is connected, by Lemma 3 ,

$$
\begin{align*}
& \operatorname{gcd}\left(\left[k\left(1+\alpha+\cdots+\alpha^{2^{r}-1}\right)-s\left(1+\alpha+\cdots+\alpha^{\mu-1}\right)\right], n\right)= \\
& \operatorname{gcd}\left(\left[k(\alpha+1)\left(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{2^{r}-2}\right)-s(1+\alpha+\right.\right. \\
& \left.\left.\left.\quad \alpha^{2}+\cdots+\alpha^{\mu-1}\right)\right], n\right)=1 \tag{3.1}
\end{align*}
$$

By the definition of (m, n)-metacirculant graphs, we have $\alpha^{\mu} k \equiv-k(\bmod n) \Longleftrightarrow$ $\left(\alpha^{\mu}+1\right) k \equiv 0(\bmod n)$. Therefore, since $\alpha^{2} \equiv 1(\bmod n)$ and μ is odd,

$$
\begin{equation*}
k(\alpha+1) \equiv k\left(\alpha^{\mu}+1\right) \equiv 0(\bmod n) \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) it follows that

$$
\begin{gather*}
g c d(s, n)=1, \text { and } \tag{3.3}\\
\operatorname{gcd}\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}, n\right)=1 \tag{3.4}
\end{gather*}
$$

On the other hand, by $\alpha^{2} \equiv 1(\bmod n)$, we have

$$
\begin{align*}
\mu \equiv & 1+\alpha^{2}+\cdots+\alpha^{2(\mu-1)} \equiv\left(1-\alpha+\alpha^{2}-\cdots\right. \\
& \left.-\alpha^{\mu-2}+\alpha^{\mu-1}\right)\left(1+\alpha+\cdots+\alpha^{\mu-1}\right)(\bmod n) \tag{3.5}
\end{align*}
$$

Let $b=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)$. Then by (3.4) and (3.5)

$$
\begin{equation*}
\operatorname{gcd}(\mu, n)=b \tag{3.6}
\end{equation*}
$$

This implies in particular that b is odd because μ is odd. Since $\alpha \in Z_{n}^{*}$, we also have

$$
\begin{equation*}
\operatorname{gcd}(\alpha, n)=1 \tag{3.7}
\end{equation*}
$$

Since $\alpha^{2} \equiv 1(\bmod n),(\alpha+1)(\alpha-1) \equiv 0(\bmod n)$. On the other hand, $\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, \alpha-1, n\right)=1$ because of (3.7). Therefore, $b=\operatorname{gcd}(1-$ $\left.\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)$ is a divisor of $\operatorname{gcd}(\alpha+1, n)$. Thus, $b=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\right.$ $\left.\cdots+\alpha^{\mu-1}, n\right)=\operatorname{gcd}(\mu, n)$ is odd, and $\alpha+1=b^{u} x$ with $u \geq 1$.

Let $G^{\prime}=M C\left(m, n, \alpha^{\prime}, S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\mu}^{\prime}\right)$ be a cubic (m,n)-metacirculant graph such that $\alpha^{\prime}=\alpha, S_{2^{r}}^{\prime}=\{1\}, S_{\mu}^{\prime}=\{0\}$ and $S_{j}^{\prime}=\emptyset$ for all $j \neq 2^{r}$ and μ. Further,
let $V\left(G^{\prime}\right)=\left\{w_{j}^{i}: i \in Z_{m} ; j \in Z_{n}\right\}$. Since $\operatorname{gcd}(\mathrm{s}, \mathrm{n})=1$ by (3.3), it is not difficult to verify that the mapping

$$
\psi: V\left(G^{\prime}\right) \rightarrow V(G): \begin{cases}w_{j}^{i} \mapsto v_{j s}^{i} & \text { if } \mathrm{i} \text { is even } \\ w_{j}^{i} \mapsto v_{j s+k}^{i} & \text { if } \mathrm{i} \text { is odd }\end{cases}
$$

is an isomorphism of G^{\prime} and G. Therefore, without loss of generality we may assume that G is a cubic (m, n)-metacirculant graph $M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ such that

$$
\begin{align*}
& b=g c d\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)=g c d(\mu, n) \text { is odd, } \tag{3.8}\\
& \alpha+1=b^{u} x \text { with } u \geq 1, \tag{3.9}\\
& S_{2}=\{1\}, S_{\mu}=\{0\} \text { and } S_{j}=\emptyset \text { for all } j \neq 2^{r} \text { and } \mu .
\end{align*}
$$

Now we prove the following claim which is needed to determine when two vertices v_{j}^{i} and v_{f}^{i} of G belong to the same $S_{2^{r}}$-cycle.

Claim 1. Two vertices v_{j}^{i} and v_{f}^{i} of G belong to the same $S_{2^{r}}$-cycle if and only if $f \equiv j(\bmod b)$.

Proof. Since every vertex of G is incident with just two S_{2} r-edges, the $S_{2^{\text {r }}}$ cycle Q containing v_{j}^{i} can be represented in the form

$$
\begin{equation*}
Q=Q\left(v_{j}^{i}\right) Q\left(v_{j+z}^{i}\right) Q\left(v_{j+2 z}^{i}\right) \ldots, \tag{3.10}
\end{equation*}
$$

where $z \equiv \alpha^{i}+\alpha^{i+2^{r}}+\alpha^{i+2 \cdot 2^{r}}+\cdots+\alpha^{i+(\mu-2) 2^{r}}+\alpha^{i+(\mu-1) 2^{r}} \equiv \mu \alpha^{i}(\bmod n)$, and

$$
\begin{aligned}
Q\left(v_{h}^{i}\right) & =v_{h}^{i} v_{\left(h+\alpha^{i}\right)}^{i+2^{r}} v_{\left(h+\alpha^{i}+\alpha^{i+2 r}\right)}^{i+2 \cdot 2^{r}} \cdots v_{\left(h+z-\alpha^{i}+(\mu-1) 2^{r}\right)}^{i+(\mu-1) 2^{r}} \\
& =v_{h}^{i} v_{h+\alpha^{i}}^{i+2^{r}} v_{h+2 \alpha^{i}}^{i+2 \cdot 2^{r}} \cdots v_{h+(\mu-1) \alpha^{i}}^{i+(\mu-1) 2^{r}}
\end{aligned}
$$

Thus, the vertices of Q with superscript i are $v_{j}^{i}, v_{j+z}^{i}, v_{j+2 z}^{i}, \cdots$ because $i, i+$ $2^{r} . i+2 \cdot 2^{r}, \cdots, i+(\mu-1) 2^{r}$ are distinct from each other modulo m. It follows that v_{f}^{i} belongs to Q if and only if $f \equiv j+t z(\bmod n)$ for some integer t .

Since (3.7) holds,

$$
\begin{equation*}
g c d(z, n)=g c d(\mu, n)=b \tag{3.11}
\end{equation*}
$$

Therefore, if $f \equiv j+t z(\bmod n)$, then (3.8) and (3.11) imply that $f \equiv j(\bmod b)$. Conversely, if $f \equiv j(\bmod b)$, then $f=j+u_{1} b$ for some integer u_{1}. Since (3.11) holds, there exist integers u_{2} and u_{3} such that $b=u_{2} z+u_{3} n$. So $f=j+u_{1} u_{2} z+$ $u_{1} u_{3} n$. This means that $f \equiv j+t z(\bmod n)$ for some integer t . Thus, v_{f}^{i} belongs to Q if and only if $f \equiv j(\bmod b)$.

Consider $S_{2^{r}-\text { cycles in }}$. Since every vertex of G is incident with just two $S_{2^{r-}}$ edges, it must be contained in exactly one $S_{2 r}$-cycle. So any two S_{2}-cycles either coincide or are disjoint. Further, since μ is odd, the numbers $0,2^{r}, 2 \cdot 2^{r}, 3 \cdot 2^{r} . \cdots,(\mu-$
 contain a vertex v_{j}^{0} and every $S_{2^{r} \text {-cycle } \mathrm{Q} \text { of type } \mathrm{B} \text { must contain a vertex } v_{j}^{\mu}, ~}^{\text {m }}$ for some $j \in Z_{n}$ because Q can be represented in the form (3.10). Hence, by Claim 1, the $S_{2^{r-c y c l e s}} A^{0}, A^{1}, A^{2}, \ldots, A^{b-2}, A^{b-1}, B^{0}, B^{1}, B^{2}, \ldots, B^{b-2}$ and B^{b-1} containing $v_{0}^{0}, v_{b-1}^{0}, v_{b-2}^{0}, \ldots, v_{2}^{0}, v_{1}^{0}, v_{0}^{\mu}, v_{1}^{\mu}, v_{2}^{\mu}, \ldots, v_{b-2}^{\mu}$ and v_{b-1}^{μ}, respectively, are all disjoint S_{2} r-cycles of G . So each vertex of G must be contained in exactly one of these S_{2}-cycles. The cycles $A^{0}, A^{1}, A^{2}, \ldots, A^{b-1}$ are of type A and the cycles $B^{0}, B^{1}, B^{2}, \ldots, B^{6-1}$ are of type B. We also note that each edge of each $A^{\ell}, \ell=0,1, \ldots, b-1$, has the form $v_{j}^{i} v_{j+1}^{i+2^{r}}$ with i even, whereas each edge of each $B^{\ell}, \ell=0,1, \ldots, b-1$, has the form $v_{j}^{i} v_{j+\alpha}^{i+2^{r}}$ with i odd.
 longs to. For example, to determine which $S_{2^{r}}$-cycles A^{ℓ} or B^{ℓ} the vertices $v_{\alpha}^{(b-3) 2^{r}}$ and $v_{2+\alpha}^{(b-1) 2^{r}+\mu}$ belong to, we note that $v_{\alpha}^{(b-3) 2^{r}}$ and $v_{2+\alpha}^{(b-1) 2^{r}+\mu}$ are contained in the S_{2}-paths $v_{\alpha}^{(b-3) 2^{r}} v_{\alpha-1}^{(b-4) 2^{r}} v_{\alpha-2}^{(b-5) 2^{r}} \ldots v_{\alpha-(b-3)}^{0}$ and $v_{2+\alpha}^{(b-1) 2^{r}+\mu} v_{2}^{(b-2) 2^{r}+\mu} v_{2-\alpha}^{(b-3) 2^{r}+\mu}$ $\ldots v_{(2+\alpha)-(b-1) \alpha}^{\mu}$, respectively. Since (3.9) holds, $\alpha+1 \equiv 0(\bmod b)$ and $(-\alpha) \equiv 1$ $(\bmod b)$. So $\alpha-(b-3)=(\alpha+1)-b+2 \equiv 2(\bmod b)$ and $(2+\alpha)-(b-1) \alpha=$ $1+(1+\alpha)+(b-1)(-\alpha) \equiv 1+(b-1) \equiv 0(\bmod b)$. By Claim $1, v_{\alpha-(b-3)}^{0}$ is contained in the $S_{2 r}$-cycle containing v_{2}^{0}, i.e.. A^{b-2} and $v_{(2+\alpha)-(b-1) \alpha}^{\mu}$ is contained
 tained in A^{b-2} and B^{0}, respectively. Similar applications of Claim 1 will be used frequently without mention.

We introduce now the following definition similar to that of Bannai's work [5]. An alternating cycle C of G is defined to be a cycle the sequence of adjacent edges of which are $e_{1}, f_{1}, e_{2}, f_{2}, \ldots, e_{2 t}, f_{2 t}$, where $e_{i}, i=1,2, \ldots, 2 t$, are $S_{2^{r}}$-edges and $f_{i}, i=1,2, \ldots, 2 t$, are S_{μ}-edges. For convenience, we will consider an alternating cycle C as a sequence of adjacent edges and will simply write $C=e_{1} f_{1} e_{2} f_{2} \ldots e_{2 t} f_{2 t}$.

For any vertex v_{j}^{i} of G , we have the following alternating cycle $A C\left(v_{j}^{2}\right)=$ $e_{1}\left(v_{j}^{i}\right) f_{1}\left(v_{j}^{i}\right) e_{2}\left(v_{j}^{i}\right) f_{2}\left(v_{j}^{i}\right) e_{3}\left(v_{j}^{i}\right) f_{3}\left(v_{j}^{i}\right) e_{4}\left(v_{j}^{i}\right) f_{4}\left(v_{j}^{i}\right)$, where

$$
\begin{aligned}
e_{1}\left(v_{j}^{i}\right) & =v_{j}^{i} v_{j+\alpha^{i}}^{i+2^{r}}, \\
f_{1}\left(v_{j}^{i}\right) & =v_{j+\alpha^{i}}^{i+v^{r}} v_{j+\alpha^{i}}^{i+2^{r}+\mu}, \\
e_{2}\left(v_{j}^{i}\right) & =v_{\left(j+\alpha^{i}\right)}^{\left(i+2^{r}+\mu\right)} v_{\left(j+\alpha^{i}+\alpha^{\left.i+2^{r}+\mu\right)}\right.}^{\left(i+2 \cdot 2^{r}+\mu\right)} \\
& =v_{\left(j+\alpha^{i}\right)}^{\left(i+2^{r}+\mu\right)} v_{\left(j+\alpha^{i}(1+\alpha)\right)}^{\left(i+2 \cdot 2^{r}+\mu\right)},
\end{aligned}
$$

$$
\begin{aligned}
e_{3}\left(v_{j}^{i}\right) & =v_{\left(j+\alpha^{i}(1+\alpha)\right)}^{\left(i+2 \cdot 2^{r}\right)} v_{\left(j+\alpha^{i}(1+\alpha)-\alpha^{i+2^{r}}\right)}^{\left(i+2^{r}\right)} \\
& =v_{\left(j+\alpha^{i}(1+\alpha)\right)}^{\left(i+2 \cdot 2^{r}\right)} v_{\left(j+\alpha^{i+1}\right)}^{\left(i+2^{r}\right)}, \\
f_{3}\left(v_{j}^{i}\right) & =v_{\left(j+\alpha^{i+1}\right)}^{\left(i+2^{r}\right)} v_{\left(j+\alpha^{i+1}\right)}^{\left(i+2^{r}+\mu\right)}, \\
e_{4}\left(v_{j}^{i}\right) & =v_{\left(j+\alpha^{i+1}\right)}^{\left(i+2^{r}+\mu\right)} v_{\left(j+\alpha^{i+1}-\alpha^{i+\mu}\right)}^{(i+\mu)} \\
& =v_{\left(j+\alpha^{i+1}\right)}^{\left(i+2^{r}+\mu\right)} v_{j}^{i+\mu}, \\
f_{4}\left(v_{j}^{i}\right) & =v_{j}^{i+\mu} v_{j}^{i} .
\end{aligned}
$$

For simplicity of notation we will write $e_{1}, f_{1}, \ldots, e_{4}, f_{4}$ instead of $e_{1}\left(v_{j}^{i}\right), f_{1}\left(v_{j}^{i}\right)$, $\ldots, \epsilon_{4}\left(v_{j}^{i}\right), f_{4}\left(v_{j}^{i}\right)$, respectively. In the context it will be clear which vertex v_{j}^{i} we deal with. An alternating cycle $A C\left(v_{j}^{i}\right)$ plays an important role in the proof of Theorem 1 in Case 2.

A construction of a Hamilton cycle in G in Case 2 will be based on the following property of $A C\left(v_{j}^{i}\right)$.

Claim 2. If $b \geq 3$, then for any vertex v_{j}^{i} of G, the edges e_{1}, e_{2}, e_{3} and e_{4} of the alternating cycle $A C\left(v_{j}^{i}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$ belong to distinct $S_{2+-c y c l e s . ~}^{\text {- }}$.
 an edge of an $S_{2 r-c y c l e}$ of type A (resp. type B) and ϵ_{2} and ϵ_{4} are edges of $S_{2^{r-c y c l e s}}$ of type B (resp. type A). This is clear from the definition of an alternating cycle
 prove Claim 2, it is sufficient to show that the $S_{2^{r}}$-cycle containing e_{1} is different

 $v_{j+\alpha^{i+1}}^{i+2^{r}}$ are vertices of Q . By Claim $1, j+\alpha^{i+1} \equiv j+\alpha^{i}(\bmod b) \Longleftrightarrow \alpha^{i}(\alpha-1) \equiv 0$ $(\bmod b)$. This implies by (3.7) and (3.8) that $\alpha-1 \equiv 0(\bmod b) \Longleftrightarrow \alpha+1 \equiv 2$ $(\bmod b)$ which is impossible because $b \geq 3$ and $\alpha+1=b^{u} x$ with $u \geq 1$ by (3.9). The obtained contradiction shows that the S_{2} r-cycle containing ϵ_{1} is different from
 e_{2} is different from the $S_{2 r}$-cycle containing e_{4}.

Now we consider separately three subcases.

Subcase 2.1: $\mathrm{b}=1$. In this subcase, G has a Hamilton cycle by Lemma 4(ii).
Subcase 2.2: $\mathrm{b}=3$. First assume that the vertices $v_{0}^{\mu}, v_{3 \alpha}^{3 \cdot 2^{r}+\mu}$ and $v_{3}^{3 \cdot 2^{r}+\mu}$ of B^{0} are pairwise distinct (Fig. 1). This implies that the vertices $v_{\alpha}^{2^{r}}, v_{4 \alpha}^{4 \cdot 2^{r}}$ and $v_{\alpha+3}^{4 \cdot 2^{r}}$ of A^{2} are also pairwise distinct. Further, the edge $v_{4 \alpha}^{4 \cdot 2^{r}}+\mu v_{5 \alpha}^{5 \cdot 2^{r}+\mu}$ is an edge of the subpath P of B^{0} not containing v_{0}^{μ} and connecting $v_{\alpha}^{2^{r}+\mu}$ with $v_{3}^{3 \cdot 2^{r}+\mu}$. Moreover, $v_{4 \alpha}^{4 \cdot 2^{r}+\mu}$ and $v_{5 \alpha}^{5 \cdot 2^{r}+\mu}$ are not the endvertices of P. Such a graph G possesses a Hamilton cycle shown in Figure 1.

Next assume that $v_{3 \alpha}^{3 \cdot 2^{r}+\mu}=v_{3}^{3 \cdot 2^{r}+\mu}$ but $v_{3 \alpha}^{3 \cdot 2^{r}+\mu} \neq v_{0}^{\mu}$ (Fig. 2). If $v_{0}^{\mu} \neq v_{6}^{6 \cdot 2^{r}+\mu}$, then since $3 \alpha \equiv 3(\bmod n), 4 \alpha=3 \alpha+\alpha \equiv 3+\alpha(\bmod n)$ and $4 \alpha+1 \equiv 4+\alpha$ $(\bmod n)$. Therefore, $v_{4 \alpha}^{4 \cdot 2^{r}+\mu}=v_{3+\alpha}^{4 \cdot 2^{r}+\mu}$ and $v_{4 \alpha+1}^{5 \cdot 2^{r}+\mu}=v_{4+\alpha}^{5 \cdot 2^{r}+\mu}$. Further, the edge $v_{4 \alpha}^{4 \cdot 2^{r}+\mu} v_{5 \alpha}^{5 \cdot 2^{r}+\mu}$ is an edge of the subpath P of B^{0} not containing v_{0}^{μ} and connecting $v_{\alpha}^{2^{r}+\mu}$ with $v_{6}^{6 \cdot 2^{r}+\mu}=v_{6 \alpha}^{6 \cdot 2^{r}+\mu}$. Moreover, $v_{4 \alpha}^{4 \cdot 2^{r}}+\mu$ and $v_{5 \alpha}^{5 \cdot 2^{r}+\mu}$ are not the endvertices of P . Such a graph G possesses a Hamilton cycle shown in Figure 2. If $v_{0}^{\mu}=v_{6}^{6 \cdot 2^{r}+\mu}$, then $6 \cdot 2^{r}+\mu \equiv \mu(\bmod m)$ and $6 \equiv 0(\bmod n)$. So $\mu=3$ and $\mathrm{n}=3$ or 6 . Therefore, $v_{3 \alpha}^{3 \cdot 2^{r}+\mu}=v_{3 \alpha x}^{3} \neq v_{0}^{3}$. This implies that $3 \alpha \not \equiv 0(\bmod n) \Longleftrightarrow 3 \neq 0(\bmod n)$. So $n \neq 3$. Thus, this possibility happens only if $\mu=3$ and $n=6$. We leave to the reader to verify that for these values of μ and n the graph G also has a Hamilton cycle.

Finally assume that $v_{0}^{\mu}=v_{3 \alpha}^{3 \cdot 2^{r}+\mu}=v_{3}^{3 \cdot 2^{r}+\mu}$. From $v_{0}^{\mu}=v_{3}^{3 \cdot 2^{r}+\mu}$ it follows that $3 \cdot 2^{r}+\mu \equiv \mu(\bmod m)$ and $3 \equiv 0(\bmod n)$. So $\mu=3$ and $n=3$. We again leave to the reader to verify that for these values of μ and n the graph G also has a Hamilton cycle. This completes the proof for Subcase 2.2 .

Subcase 2.3: $b \geq 5$. Let e be an $S_{2 r}$-edge and C be the $S_{2 \text { r-cycle contain- }}$ ing e. From C by deleting the edge e we obtain a path which is called the S_{2} rcomplementing path of e and is denoted by $\mathrm{CP}(\mathrm{e})$. Let $A C\left(v_{j}^{i}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$ be the alternating cycle for v_{j}^{i} defined earlier. From $A C\left(v_{j}^{i}\right)$ by deleting the edge ϵ_{1} we obtain a path which is called the alternating path for v_{j}^{i} and is denoted by $A P\left(v_{j}^{i}\right)$, i.e., $A P\left(v_{j}^{i}\right)=f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$. In its turn, from $A P\left(v_{j}^{i}\right)$ by replacing each $e_{i}, i=2,3,4$, by its S_{2} r-complementing path $C P\left(e_{i}\right)$ we can get another path in G which we denote by $\overline{A P}\left(v_{j}^{i}\right)$.

The idea for a construction of a Hamilton cycle of G in this subcase is as follows. Let a cycle C in G containing all vertices of some $S_{2^{r}-\text { cycles and only these vertices }}$ have been constructed. We choose an appropriate vertex v_{j}^{i} of C such that the $S_{2^{r} \text {-edge }} v_{j}^{i} v_{j+\alpha^{i}}^{i+2^{r}}$ is an edge of C and the vertices v_{j}^{i} and $v_{j+\alpha^{i}}^{i+2^{r}}$ are the only common vertices of C and $\overline{A P}\left(v_{j}^{i}\right)$. Then by replacing the edge $v_{j}^{i} v_{j+\alpha^{i}}^{i+2^{r}}$ by $\overline{A P}\left(v_{j}^{i}\right)$ we get from C a longer cycle C^{\prime} containing all vertices of a larger number of $S_{2^{r} \text {-cycles }}$ and only these vertices. By appropriate choices of vertices v_{j}^{i} we can continue this

Fig. 1
procedure until very few $S_{2 r-c y c l e s ~ h a v i n g ~ t h e i r ~ v e r t i c e s ~ n o t ~ c o n t a i n e d ~ i n ~ t h e ~ l a s t ~}^{\text {n }}$, obtained cycle D remain. Then from D we construct a Hamilton cycle for G by an appropriate way. We give now the detail of this construction.

By induction, we will construct a sequence $C_{0}, C_{1}, C_{2}, C_{3}, \ldots$ of cycles of G with the following properties:

Property (i): For an even index i, C_{i} contains all vertices of each of $S_{2 r}$-cycles $A^{0}, A^{2}, A^{4}, \ldots, A^{3 i}, A^{3 i+2}, B^{0}, B^{2}, B^{4}, \ldots, B^{3 i}$ and $B^{3 i+2}$ and only these vertices. (All superscripts of A^{ℓ} and B^{ℓ} are always reduced modulo b.) Moreover, the edge

$$
v_{1}^{(3 i+3) 2^{r}} v_{2}^{(3 i+4) 2^{r}}
$$

of $A^{3 i+2}$ is an edge of C_{i}.
Property (ii): For an odd index i, C_{i} contains all vertices of each of $S_{2^{r}-}$ cycles $A^{0}, A^{2}, A^{4}, \ldots, A^{3(i+1)-2}, B^{0}, B^{2}, B^{4}, \ldots, B^{3(i+1)-2}$ and $B^{3(i+1)}$ and only these vertices. (All superscripts of A^{ℓ} and B^{ℓ} are always reduced modulo b.) Moreover, the edge

$$
v_{0}^{(3 i+3) 2^{r}+\mu} v_{\alpha}^{(3 i+4) 2^{\tau}+\mu}
$$

of $B^{3(i+1)}$ is an edge of C_{i}.
The sequence of cycles $C_{0}, C_{1}, C_{2}, C_{3}, \ldots$ is constructed as follows. First we take the alternating cycle $A C\left(v_{0}^{\mu}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$. Using Claim 1 and (3.9) it is not difficult to verify that e_{1}, e_{2}, e_{3} and e_{4} are edges of $S_{2 r \text {-cycles }} B^{0}, A^{2}, B^{2}$ and A^{0}, respectively. So from $A C\left(v_{0}^{\mu}\right)$ by replacing each $e_{i}, i=1,2,3,4$, by its
 of each of A^{0}, A^{2}, B^{0} and B^{2} and only them. Since $b \geq 5$ and $b=\operatorname{gcd}(\mu, n)$ by (3.8), $\mu \geq 5$. So the edge $v_{1}^{3 \cdot 2^{r}} v_{2}^{4 \cdot 2^{r}}$ of A^{2} is different from $\epsilon_{2}=v_{\alpha}^{2^{r}} v_{\alpha+1}^{2 \cdot 2}$. It follows that this edge is an edge of the obtained cycle. Thus, if we take this cycle as the cycle C_{0} of the sequence, then it is clear that C_{0} satisfies Property (i).

Let for an even index i the cycle C_{i} satisfying Property (i) have been constructed. Take the alternating cycle $A C\left(v_{1}^{(3 i+3) 2^{r}}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$. By the definition of $A C\left(v_{j}^{i}\right),(3.9)$ and Claim 1 it is not difficult to verify that e_{1}, e_{2}, e_{3} and e_{4} are edges of $A^{3 i+2}, B^{3 i+6}, A^{3 i+4}$ and $B^{3 i+4}$, respectively. By Property (i), e_{1} is an edge of C_{i}. So if all vertices of each of $B^{3 i+6}, A^{3 i+4}$ and $B^{3 i+4}$ are not contained in C_{i}, then from C_{i} by replacing the edge e_{1} by the path $\overline{A P}\left(v_{1}^{(3 i+3) 2^{T}}\right)$ we can get a cycle containing all vertices of each of $A^{0}, A^{2}, A^{4}, \ldots, A^{3 i+4}, B^{0}, B^{2}, B^{4}, \ldots, B^{3 i+4}$ and $B^{3 i+6}$ and only these vertices. Since $b \geq 5$ and $\operatorname{gcd}(\mu, n)=b$ by (3.8), we have $\mu \geq 5$. Hence it is not difficult to see that the edge $v_{0}^{(3 i+6) 2^{r}+\mu} v_{\alpha}^{(3 i+7) 2^{r}+\mu}$ of $B^{3 i+6}$ is different from $e_{2}=v_{2}^{(3 i+4) 2^{r}+\mu} v_{2+\alpha}^{(3 i+5) 2^{r}+\mu}$. So this edge is an edge of the obtained

Fig. 2
cycle. We take this cycle as the cycle C_{i+1} of the sequence. Then it is clear that C_{i+1} satisfies Property (ii).

Now let for an odd index i the cycle C_{i} satisfying Property (ii) have been constructed. Take the alternating cycle $A C\left(v_{0}^{(3 i+3) 2^{r}+\mu}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$. Then as before it is not difficult to verify that e_{1}, e_{2}, e_{3} and e_{4} are edges of $B^{3(i+1)}, A^{3(i+1)+2}$, $B^{3(i+1)+2}$ and $A^{3(i+1)}$, respectively. By Property (ii), ϵ_{1} is an edge of C_{i}. So if all vertices of each of $A^{3(i+1)+2}, B^{3(i+1)+2}$ and $A^{3(i+1)}$ are not contained in C_{i}, then from C_{i} by replacing the edge e_{1} by the path $\overline{A P}\left(v_{0}^{(3 i+3) 2^{r}+\mu}\right.$) we can get a cycle containing all vertices of each of $A^{0}, A^{2}, A^{4}, \ldots, A^{3(i+1)}, A^{3(i+1)+2}, B^{0}, B^{2}, B^{4}, \ldots$, $B^{3(i+1)}$ and $B^{3(i+1)+2}$ and only these vertices. Since $b \geq 5$, as before, it is not difficult to see that the edge $v_{1}^{(3 i+6) 2^{r}} v_{2}^{(3 i+7) 2^{r}}$ of $A^{3(i+1)+2}$ is different from e_{2}. So this edge is an edge of the obtained cycle. Take this cycle as the cycle C_{i+1} of the sequence. Then C_{i+1} satisfies Property (i).

Note that the number of S_{2}-cycles all vertices of which are contained in a cycle C_{i} of the constructed sequence is $4+3 i$. Therefore, we have the following three possibilities to consider.

(2.3.1) $2 \mathrm{~b}=(4+3 \mathrm{t})+2$ for some positive integer t .

Since $b \geq 5$ is odd and $t=(2 b-6) / 3, t \geq 4$ is even and b must be divisible by 3 . It is not difficult to see that we can construct the cycle C_{t-1}. Since $t-1=(2 b-9) / 3$ is odd, by Property (ii) all vertices of each of $A^{0}, A^{2}, A^{4}, \ldots, A^{b-1}, A^{1}, A^{3}, \ldots$, $A^{b-10}, A^{b-8}, B^{0}, B^{2}, B^{4}, \ldots, B^{b-1}, B^{1}, B^{3}, \ldots, B^{b-10}, B^{b-8}$ and B^{b-6} are contained in C_{t-1}. The remaining vertices of G not contained in C_{t-1} are vertices of $A^{b-6}, A^{b-4}, A^{b-2}, B^{b-4}$ and B^{b-2}.

To facilitate understanding what follows the reader is advised to make himself a drawing of a cycle C_{i} and a path $\overline{A P}\left(v_{y}^{x}\right)$ (with all three $S_{2 r \text {-complementing paths }}$ contained in it) when a cycle C_{i+1} is obtained from C_{i} by replacing the edge $v_{y}^{x} v_{y+\alpha^{x}}^{x+2^{r}}$ of C_{i} by the path $\overline{A P}\left(v_{y}^{x}\right)$.

Take the vertex $v_{\alpha-1}^{(b+\alpha-3) 2^{r}}$ of A^{b-2} and consider the alternating cycle $A C\left(v_{\alpha-1}^{(b+\alpha-3) 2^{r}}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} \epsilon_{4} f_{4}$ (Fig. 3). By Claim 1 and the definition of an alternating cycle $A C\left(v_{j}^{i}\right)$, it is not difficult to verify that e_{1}, e_{2}, e_{3} and e_{4} are edges of A^{b-2}, B^{b-4}, A^{0} and B^{b-6}, respectively, and both e_{3} and e_{4} are edges of C_{t-1}. We determine in what order the vertices $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}$ and $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$ incident with e_{3} and the vertices $v_{(\alpha-1)}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$ and $v_{(2 \alpha-1)}^{\left((b+\alpha-2) 2^{r}+\mu\right)}$ incident with e_{4} lie in C_{t-1}. For this we follow each cycle $C_{i}, i=0,1,2, \ldots$, by starting at v_{0}^{0} and then going in the direction from v_{0}^{0} to v_{0}^{μ}. It is clear from the constructions of C_{i} that if a vertex v_{y}^{x} appears before a vertex v_{w}^{z} in C_{i} and $i<j$, then v_{y}^{x} also appears before v_{w}^{z} in C_{j}.

Fig. 3

Since $v_{2 \alpha}^{(b+\alpha-1) 2^{r}} \neq v_{0}^{0}$, it is not difficult to verify that $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}$ appears before $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$ in C_{0} (Fig. 3). By the remark at the end of the preceding paragraph, $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}$ also appears before $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$ in C_{t-1}.

For any even index $i<t$ consider the edge $v_{1}^{(3 i+3) 2^{r}} v_{2}^{(3 i+4) 2^{r}}$ of $A^{3 i+2}$. By Property (i) this edge is an edge of C_{i}. We prove now by induction on i that the vertex $v_{2}^{(3 i+4) 2^{r}}$ incident with this edge appears before $v_{1}^{(3 i+3) 2^{r}}$ in C_{i}. In C_{0}, it is easy to verify that $v_{2}^{4 \cdot 2^{r}}$ appears before $v_{1}^{3 \cdot 2^{r}}$. (These vertices are vertices of A^{2}.) Suppose that for an even index $i<t$ such that $i+2<t$, the vertex $v_{2}^{(3 i+4) 2^{r}}$ has been proved to appear before $v_{1}^{(3 i+3) 2^{r}}$ in C_{i}. Since the cycle C_{i+1} is obtained from C_{i} by replacing the edge $v_{1}^{(3 i+3) 2^{r}} v_{2}^{(3 i+4) 2^{r}}$ of C_{i} by the path $\overline{A P}\left(v_{1}^{(3 i+3) 2^{r}}\right)$ containing the vertices $v_{0}^{\left((3 i+6) 2^{r}+\mu\right)}$ and $v_{\alpha}^{\left((3 i+7) 2^{r}+\mu\right)}$ of $B^{3 i+6}$, we can easily see that $v_{\alpha}^{\left((3 i+7) 2^{r}+\mu\right)}$ appears before $v_{0}^{\left((3 i+6) 2^{r}+\mu\right)}$ in C_{i+1}. In its turn, C_{i+2} is obtained from C_{i+1} by replacing the edge $v_{0}^{\left((3 i+6) 2^{r}+\mu\right)} v_{\alpha}^{\left((3 i+7) 2^{r}+\mu\right)}$ by the path $\overline{A P}\left(v_{0}^{\left((3 i+6) 2^{r}+\mu\right)}\right)$ containing the vertices $v_{1}^{(3 i+9) 2^{r}}$ and $v_{2}^{(3 i+10) 2^{r}}$ of $A^{3 i+8}$. Therefore, it is also easily seen that $v_{2}^{(3 i+10) 2^{r}}$ appears before $v_{1}^{(3 i+9) 2^{r}}$ in C_{i+2}. The assertion has been proved.

Since $2 b=(4+3 t)+2$, we have $t-2=(2 b-12) / 3$ is even. So $3(t-2)+2 \equiv b-10$ $(\bmod b)$ and the cycle C_{t-2} contains all vertices of each of $A^{0}, A^{2}, A^{4}, \ldots, A^{b-1}, A^{1}$. $A^{3}, \ldots, A^{b-10}, B^{0}, B^{2}, B^{4}, \ldots, B^{b-1}, B^{1}, B^{3}, \ldots, B^{b-10}$. By the assertion proved in the preceding paragraph. the vertex $v_{2}^{(3(t-2)+4) 2^{r}}=v_{2}^{(b-8) 2^{r}}$ appears before $v_{1}^{(3(t-2)+3) 2^{r}}=v_{1}^{(b-9) 2^{r}}$ in C_{t-2}. Since C_{t-1} is obtained from C_{t-2} by replacing the edge $v_{1}^{(b-9) 2^{r}} v_{2}^{(b-8) 2^{r}}$ by the path $\overline{A P}\left(v_{1}^{(b-9) 2^{r}}\right)$ containing the vertices $v_{2 \alpha-1}^{\left((b+\alpha-2) 2^{r}+\mu\right)}$ and $v_{\alpha-1}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$ of B^{b-6}, it is easily checked (Fig. 3) that the vertex $v_{2 \alpha-1}^{\left((b+\alpha-2) 2^{r}+\mu\right)}$ appears before $v_{\alpha-1}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$ in C_{t-1}. Thus, the order in which the vertices $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}, v_{2 \alpha}^{(b+\alpha-1) 2^{r}}, v_{\alpha-1}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$ and $v_{2 \alpha-1}^{\left((b+\alpha-2) 2^{r}+\mu\right)}$ lie in C_{t-1} are as shown in Figure 4.

By the definition of the alternating cycle $A C\left(v_{\alpha-1}^{(b+\alpha-3) 2^{r}}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$, the edge f_{3} connects the vertex $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}$ with the vertex $v_{(2 \alpha-1)}^{\left((b+\alpha-2) 2^{r}+\mu\right)}$. On the other hand, for the vertex $v_{1}^{(b-5) 2^{r}}$ of A^{b-6}, let $A C\left(v_{1}^{(b-5) 2^{r}}\right)=e_{1}^{\prime} f_{1}^{\prime} e_{2}^{\prime} f_{2}^{\prime} e_{3}^{\prime} f_{3}^{\prime} e_{4}^{\prime} f_{4}^{\prime}$ (Fig. 3). Then $e_{1}^{t}, e_{2}^{t}, e_{3}^{\prime}$ and e_{4}^{t} are edges of $A^{b-6}, B^{b-2}, A^{b-4}$ and B^{b-4}, respectively. Form the path

$$
Q=f_{2} Q_{1} f_{4}^{\prime} C P\left(e_{1}^{\prime}\right) f_{1}^{\prime} C P\left(e_{2}^{\prime}\right) f_{2}^{\prime} C P\left(e_{3}^{\prime}\right) f_{3}^{\prime} Q_{2} f_{1} C P\left(e_{1}\right) f_{4}
$$

where Q_{1} and Q_{2} are the subpaths of B^{b-4} not containing both e_{2} and e_{4}^{\prime} and connecting the vertices incident with f_{2} and f_{4}^{\prime} and with f_{3}^{\prime} and f_{1}, respectively (Fig. 3). Then Q connects the vertex $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$ with the vertex $v_{(\alpha-1)}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$. It is not difficult to verify that every vertex of Q except its endvertices is a vertex of one of $A^{b-2}, A^{b-4}, A^{b-6}, B^{b-2}$ or B^{b-4}, and conversely, every vertex of each of
$A^{b-2}, A^{b-4}, A^{b-6}, B^{b-2}$ and B^{b-4} is contained in Q . Therefore, G has the following Hamilton cycle C (Fig. 4). Start C at the vertex $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$ and go around C_{t-1} in the chosen direction until reaching $v_{(2 \alpha-1)}^{\left((b+\alpha-2) 2^{2}+\mu\right)}$. Now take the edge f_{3} to $v_{2 \alpha-1}^{(b+\alpha-2) 2^{r}}$ and again go around C_{t-1} but in the direction opposite to the chosen direction until reaching $v_{(\alpha-1)}^{\left((b+\alpha-3) 2^{r}+\mu\right)}$. Finally go along the path Q to return to $v_{2 \alpha}^{(b+\alpha-1) 2^{r}}$.
(2.3.2) $2 \mathrm{~b}=(4+3 \mathrm{t})+1$ for some positive integer t .

Since $b \geq 5$ is odd and $t=(2 b-5) / 3, t \geq 3$ and it is odd. Also, the cycle C_{t-1} can be constructed. Since $t-1=2(b-4) / 3$ is even, by Property (i), the cycle C_{t-1} contains all vertices of each of $S_{2 r}$-cycles $A^{0}, A^{2}, A^{4}, \ldots, A^{b-1}, A^{1}, A^{3}, \ldots, A^{b-8}$, $A^{b-6}, B^{0}, B^{2}, B^{4}, \ldots, B^{b-1}, B^{1}, B^{3}, \ldots, B^{b-8}$ and B^{b-6}. The remaining vertices of G not contained in C_{t-1} are vertices of $A^{b-4}, A^{b-2}, B^{b-4}$ and B^{b-2}.

Take the vertices $v_{0}^{(b-4) 2^{r}}$ and $v_{2}^{(b-2) 2^{r}}$ of A^{b-4} and consider the alternating cycles $A C\left(v_{0}^{(b-4) 2^{r}}\right)=e_{1} f_{1} e_{2} f_{2} e_{3} f_{3} e_{4} f_{4}$ and $A C\left(v_{2}^{(b-2) 2^{r}}\right)=e_{1}^{\prime} f_{1}^{\prime} e_{2}^{\prime} f_{2}^{\prime} e_{3}^{\prime} f_{3}^{\prime} e_{4}^{\prime} f_{4}^{\prime}$ (Fig. 5). By definition, we see that e_{1}, e_{2}, e_{3} and e_{4} are edges of $A^{b-4}, B^{b-2}, A^{b-2}$ and B^{b-4}, respectively. Similarly, $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ and e_{4}^{\prime} are edges of A^{b-4}, B^{2}, A^{b-2} and B^{0}, respectively. Now we form paths P_{1} and P_{2} of G as follows. Start P_{1} with the subpath $f_{4}^{\prime}\left(v_{2}^{(b-2) 2^{r}} v_{1}^{(b-3) 2^{r}}\right) f_{1}$. Then take the $S_{2^{r}}$-complementing path $C P\left(e_{2}\right)$. The last subpath of P_{1} is $f_{2}\left(v_{\alpha+1}^{(b-2) 2^{r}} v_{\alpha+2}^{(b-1) 2^{r}}\right) f_{3}^{\prime}$. Start P_{2} with the subpath $f_{1}^{\prime}\left(v_{3}^{(b-1) 2^{r}} v_{4}^{b 2^{r}} \ldots v_{n-1}^{(b-5) 2^{r}} v_{0}^{(b-4) 2^{r}}\right) f_{4}$. Then take the $S_{2^{r}}$-complementing path $C P\left(e_{4}\right)$. The last subpath of P_{2} is $f_{3}\left(v_{\alpha}^{(b-3) 2^{r}} v_{\alpha-1}^{(b-4) 2^{r}} v_{\alpha-2}^{(b-5) 2^{r}} \ldots v_{\alpha+4}^{(b+1) 2^{r}} v_{\alpha+3}^{b 2^{r}}\right) f_{2}^{\prime}$.

By the constructions of P_{1} and P_{2}, it is clear that P_{1} and P_{2} are disjoint, all vertices of each of $A^{b-4}, A^{b-2}, B^{b-4}$ and B^{b-2} are contained in either P_{1} or P_{2} and only vertices of P_{1} and P_{2} contained in C_{t-1} are their endvertices. Further, the endvertices of P_{1} are the vertices incident with e_{4}^{\prime} and the endvertices of P_{2} are the vertices incident with e_{2}^{\prime}. It is also not difficult to show that e_{4}^{\prime} and e_{2}^{\prime} are edges of C_{t-1}. Therefore, from C_{t-1} by replacing e_{4}^{\prime} by P_{1} and e_{2}^{\prime} by P_{2} we get a Hamilton cycle of G.
(2.3.3) $2 \mathrm{~b}=4+3 \mathrm{t}$ for some positive integer t .

Recall that $b \geq 5$ is odd. Since $t=(2 b-4) / 3, t \geq 2$ and it is even. By Properties (i) and (ii) of C_{i}, it is not difficult to see that we can construct the cycle C_{t} which contains all vertices of all $S_{2^{r}}$-cycles of G . This means that C_{t} is a Hamilton cycle of G.

The proof of Theorem 1 is complete.

Fig. 4

Fig. 5

As an application of Theorem 1, we prove now the following result which is a partial affirmative answer to the question whether all connected cubic (m, n)metacirculant graphs, other than the Petersen graph, have a Hamilton cycle.

Theorem 2. Let m and n be positive integers such that every odd prime divisor of m is not a divisor of $\varphi(n)$ where φ is the Euler φ-function. Then every connected cubic (m, n)-metacirculant graph possesses a Hamilton cycle.

Proof. Let m and n satisfy the hypotheses of Theorem 2 and let $G=$ $M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a connected cubic (m,n)-metacirculant graph. If m is odd or $\mathrm{m}=2$ or m is divisible by 4 , then by the results obtained in $[4,6,10]$ G possesses a Hamilton cycle. Therefore, we may assume from now on that $m>2$ is even and not divisible by 4. Suppose that G is isomorphic to the Petersen graph. Then $m n=10$ because the orders of G and the Petersen graph are equal to $m n$ and 10 , respectively. Since $m>2$ is even, this implies that $m=10, n=1$. It is clear that for these values of m and $n G$ is a Cayley graph, contradicting the fact that the Petersen graph is not a Cayley graph. Thus, G is not isomorphic to the Petersen graph. So if $S_{0} \neq \emptyset$, then G again has a Hamilton cycle by [6]. Therefore, we also may assume from now on that $S_{0}=\emptyset$. Since G is a cubic (m, n) -metacirculant graph, this implies that only the following may happen:
(i) $S_{0}=\emptyset, S_{i}=\{s\}$ with $0 \leq s<n$ for some $i \in\{1,2, \ldots, \mu-1\}, S_{j}=\emptyset$ for all $i \neq j \in\{1,2, \ldots, \mu-1\}$ and $S_{\mu}=\{k\}$ with $0 \leq k<n$;
(ii) $S_{0}=\cdots=S_{\mu-1}=\emptyset$ and $\left|S_{\mu}\right|=3$.

Since G is connected and $m>2$ is even, (ii) cannot occur. So only (i) may happen. By Lemma 2, without loss of generality, we may assume that such a graph G has one of the following forms:

1. $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$;
2. $S_{0}=S_{1}=\cdots=S_{2^{r-1}}=\emptyset$ for some $r \geq 1, S_{2^{r}}=\{s\}, S_{2^{r}+1}=\cdots=S_{\mu-1}=$ \emptyset and $S_{\mu}=\{k\}$.

In both cases 1 and 2, by Lemma 3,

$$
\begin{equation*}
\operatorname{gcd}\left(k, s\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}\right), n\right)=1 \tag{3.12}
\end{equation*}
$$

On the other hand, by the definition of (m, n)-metacirculant graphs, we have I. $\alpha^{2 \mu_{s}} \equiv s(\bmod n)$
$\Longleftrightarrow\left(\alpha^{\mu}+1\right)(\alpha-1)\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}\right) s \equiv 0(\bmod n)$, and

$$
\begin{equation*}
\Longleftrightarrow\left(\alpha^{\mu}+1\right) k \equiv 0(\bmod n) \tag{3.14}
\end{equation*}
$$

Let $z=n / g c d\left(\alpha^{\mu}+1, n\right)$. Then z is a divisor of both k and $(\alpha-1)(1+\alpha+$ $\left.\cdots+\alpha^{\mu-1}\right) s$. Therefore, by (3.12) z is a divisor of $\alpha-1$. Thus,

$$
\begin{equation*}
\left(\alpha^{\mu}+1\right)(\alpha-1)=(\alpha+1)\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}\right)(\alpha-1) \equiv 0(\bmod n) \tag{3.15}
\end{equation*}
$$

It follows that $\left(\alpha^{m}-1\right)=\left(\alpha^{\mu}+1\right)(\alpha-1)\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu-1}\right) \equiv 0(\bmod n)$, i.e., the order of α in Z_{n}^{*} is a divisor of m. But it is well-known that $\left|Z_{n}^{*}\right|=\varphi(n)$. So by the hypotheses of our theorem, it follows that $\alpha^{2} \equiv 1(\bmod n)$. By Theorem 1, G possesses a Hamilton cycle. This completes the proof of Theorem 2.

The hypotheses of Theorem 2 become simple when m has only one odd prime divisor. For such values of m, it seems that the problem of the existence of a Hamilton cycle in connected cubic (m, n)-metacirculant graphs would be easier to solve than for other values of m. Because of this we reformulate Theorem 2 for these values of m in the following corollary.

Corollary 3. Let $m=2^{a} p^{b}$ with p an odd prime and n be such that $\varphi(n)$ is not divisible by p. Then every connected cubic (m, n)-metacirculant graph has a Hamilton cycle.

The following result also might be useful in considering the problem of the existence of a Hamilton cycle in connected cubic (m,n)-metacirculant graphs. Since connected cubic (m, n) -metacirculant graphs have been proved to be hamiltonian for m odd $[6], \mathrm{m}=2[4,6]$ and m divisible by $4[10]$, we may assume in the following theorem that m is even, greater than 2 and not divisible by 4 .

Theorem 4. Let m be even, greater than 2 and not divisible by 4 and $G=$ $M C\left(m, n, \alpha, S_{0}, S_{1}, \ldots, S_{\mu}\right)$ be a connected cubic (m,n)-metacirculant graph. Then G possesses a Hamilton cycle if one of the numbers $(\alpha+1)$ or $\left(1-\alpha+\alpha^{2}-\cdots-\right.$ $\alpha^{\mu-2}+\alpha^{\mu-1}$) is relatively prime to n.

Proof. Let the hypotheses of Theorem 4 be satisfied. Suppose that G is isomorphic to the Petersen graph. Then $m=10$ because the orders of G and the Petersen graph are equal to mn and 10 , respectively. Since m is even and greater than 2 , this implies that $m=10, n=1$. It is clear that for these values of m and n the graph G is a Cayley graph, contradicting the fact that the Petersen graph is not a Cayley graph. Thus, G is not isomorphic to the Petersen graph. So if $S_{0} \neq \emptyset$, then G has a Hamilton cycle by [6]. Therefore, we assume from now on that $S_{0}=\emptyset$.

Since G is a cubic (m, n)-metacirculant graph, this implies that only the following may happen:
(i) $S_{0}=\emptyset, S_{i}=\{s\}$ with $0 \leq s<n$ for some $i \in\{1,2, \ldots, \mu-1\}, S_{j}=\emptyset$ for all $i \neq j \in\{1,2, \ldots, \mu-1\}$ and $S_{\mu}=\{k\}$ with $0 \leq k<n$;
(ii) $S_{0}=\cdots=S_{\mu-1}=\emptyset$ and $\left|S_{\mu}\right|=3$.

Since G is connected and $m>2$ is even, (ii) cannot occur. So only (i) may happen. By Lemma 2, without loss of generality we may assume that G has one of the following forms:

1. $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\} ;$
2. $S_{0}=\cdots=S_{2^{r}-1}=\emptyset$ for some $r \geq 1, S_{2^{r}}=\{s\}, S_{2^{r}+1}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$.

We consider these possibilities in turn.
Case 1. $S_{0}=\emptyset, S_{1}=\{s\}, S_{2}=\cdots=S_{\mu-1}=\emptyset$ and $S_{\mu}=\{k\}$.
Let ρ be the automorphism of G defined by $\rho\left(v_{j}^{i}\right)=v_{j+1}^{i}$. Then ρ is semiregular. Therefore, $\rho^{\alpha-1}$ is also semiregular and we can construct the quotient graph $G / \rho^{\alpha-1}$. It is not difficult to verify that $G / \rho^{\alpha-1}$ is isomorphic to the cubic (m, a)metacirculant graph $G^{\prime}=M C\left(m, a, \alpha^{\prime}, S_{0}^{\prime}, S_{1}^{\prime}, \ldots, S_{\mu}^{\prime}\right)$, where $a=\operatorname{gcd}(\alpha-1, n), 1=$ $\alpha^{\prime} \equiv \alpha(\bmod a), S_{0}^{\prime}=\emptyset, S_{1}^{\prime}=\left\{s^{\prime}\right\}$ with $s^{\prime} \equiv s(\bmod a), S_{2}^{\prime}=\cdots=S_{\mu-1}^{\prime}=\emptyset$ and $S_{\mu}^{\prime}=\left\{k^{\prime}\right\}$ with $k^{\prime} \equiv k(\bmod a)$. Therefore, we can identify these two graphs.

First assume that $\alpha+1$ is relatively prime to n. If n is even, then G has a Hamilton cycle [9, Lemma 6]. If n is odd, then we can construct a Hamilton cycle C of G^{\prime} as in the proof of the main theorem in [10]. The path P of coil(C), which starts at v_{0}^{0}, terminates at v_{f}^{0} with $f \equiv(\alpha-1) d(\bmod n)$, where

$$
d=-\left[k-s\left(1+\alpha+\cdots+\alpha^{\mu-1}\right)\right]\left(1+\alpha+\cdots+\alpha^{\mu}\right)
$$

(The reader is referred to [10] for all these details.) Let $c=\operatorname{gcd}\left(\alpha^{\mu}+1, n\right)$. By [10, Lemma 4], $\mathrm{n}=\mathrm{ac}$. Therefore, the order t of $\rho^{\alpha-1}$ is $n / a=c=\operatorname{gcd}\left(\alpha^{\mu}+1, n\right)=$ $\operatorname{gcd}\left((\alpha+1)\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}\right), n\right)$. Since $\operatorname{gcd}(\alpha+1, n)=1$, it follows that $c=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)$.

We have $\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{\mu}\right)=(1+\alpha)\left(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{\mu-1}\right)$. If p is an (odd) divisor of $g=\operatorname{gcd}\left(1+\alpha+\cdots+\alpha^{\mu}, c\right)$, then p is a divisor of both $\left(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{\mu-1}\right)$ and $\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}\right)$ because $\operatorname{gcd}(\alpha+1, n)=1$. Therefore, p is a divisor of $\alpha+\alpha^{3}+\alpha^{5} \cdots+\alpha^{\mu-2}=\alpha\left(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{\mu-3}\right)$. Since $\operatorname{gcd}(\alpha, n)=1$, it follows that p is a divisor of $\left(1+\alpha^{2}+\alpha^{4}+\cdots+\alpha^{\mu-3}\right)$. So p is a divisor of $\alpha^{\mu-1}$, contradicting $\operatorname{gcd}\left(\alpha^{\mu-1}, n\right)=1$. Thus, $\operatorname{gcd}\left(1+\alpha+\cdots+\alpha^{\mu}, c\right)=1$.

On the other hand, by Lemma $3, \operatorname{gcd}\left(\left[k-s\left(1+\alpha+\cdots+\alpha^{\mu-1}\right)\right], n\right)=1$. So $\operatorname{gcd}(d, c)$ $=\operatorname{gcd}(d, t)=1$. By Lemma 1, G has a Hamilton cycle in this subcase.

Now assume that $\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)=1$. This implies by (3.15) that $\alpha^{2} \equiv 1(\bmod n)$. By Theorem 1, G again possesses a Hamilton cycle in this subcase.

Case 2. $S_{0}=\cdots=S_{2^{r-1}}=\emptyset$ for some $r \geq 1, S_{2^{r}}=\{s\}, S_{2^{r+1}}=\cdots=S_{\mu-1}=$ \emptyset and $S_{\mu}=\{k\}$.

Let $a=\operatorname{gcd}(\alpha-1, n), b=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right) . \operatorname{By}(3.15), \mathrm{n} /(\mathrm{ab})$ is a divisor of $\operatorname{gcd}(\alpha+1, n)$. Therefore, if $\operatorname{gcd}(\alpha+1, n)=1$, then $\mathrm{n} /(\mathrm{ab})=1$ and $\operatorname{gcd}(n /(a b), \mu a-1)=1$. By Lemma 4(i), G has a Hamilton cycle in this subcase. If $b=\operatorname{gcd}\left(1-\alpha+\alpha^{2}-\cdots+\alpha^{\mu-1}, n\right)=1$, then by Lemma 4(ii), G again has a Hamilton cycle.

The proof of Theorem 4 is complete.

References

[1] B. Alspach, Hamilton cycles in metacirculant graphs with prime power cardinal blocks, Annals of Discrete Math., 41 (1989) 7-16.
[2] B. Alspach, Lifting Hamilton cycles of quotient graphs. Discrete Math.. 78 (1989) 25-36.
[3] B. Alspach and T.D. Parsons, A construction for vertex-transitive graphs. Canad. J. Math., 34 (1982) 307-318.
[4] B. Alspach and C.--Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin., 28 (1989) 101-108.
[5] K. Bannai, Hamiltonian cycles in generalized Petersen graphs, J. Combin. Theory, B 34 (1978) 181-188.
[6] Ngo Dac Tan, On cubic metacirculant graphs, Acta Math. Vietnamica, 15 (2) (1990) 57-71.
[7] Ngo Dac Tan, Hamilton cycles in cubic (4,n)-metacirculant graphs, Acta Math. Vietnamica, 17 (2) (1992) 83-93.
[8] Ngo Dac Tan, Connectedness of cubic metacirculant graphs, Acta Math. Vietnamica, 18 (1) (1993) 3-17.
[9] Ngo Dac Tan, On Hamilton cycles in cubic (m,n)-metacirculant graphs, Australas. J. Combin., 8 (1993) 211-232.
[10] Ngo Dac Tan, Hamilton cycles in cubic (m,n)-metacirculant graphs with m divisible by 4, Graphs and Combin., 10 (1994) 67-73.

[^0]: This research was supported in part by the Vietnamese National Basic Research Program in Natural Sciences.

