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ABSTRACT

In this paper we continue to investigate the problem of the existence of a Hamil-
ton cycle in connected cubic (m,n)-metacirculant graphs. We show that a con-
nected cubic (m,n)-metacirculant graph G = MC(m,n,a, So, S1,... ,S,) has
a Hamilton cycle if either @ = 1 (mod n) or in the case of an odd number y

one of the numbers (o + 1) or (1 —a+a? — - — a#™% 4 a#~1) is relatively
prime to n. As a corollary of these results we obtain that every connected cubic
{m,n)-metacirculant graph has a Hamilton cycle if m and n are positive integers
such that every odd prime divisor of m is not a divisor of ¢ (n) where ¢ is the
Euler @-function.

1. INTRODUCTION

The problem of the existence of a Hamilton cycle in vertex-transitive graphs
has been considered by researchers for many years. Among these graphs, (m,n)-
metacirculant graphs introduced in [3] are interesting because the automorphism
groups of such graphs contain a transitive subgroup which is a semidirect product
of two cyclic groups and so has a rather simple structure. It has been asked (3]
whether all connected (m.n)-metacirculant graphs, other than the Petersen graph,

have a Hamilton cycle.

For n = p' with p a prime, connected (m,n)-metacirculant graphs, other than
the Petersen graph, have been proved to have a Hamilton cycle [1]. Connected cubic
(m,n)-metacirculant graphs, other than the Petersen graph, also have been proved
to be hamiltonian for m odd [6], m = 2 [4, 6], and m divisible by 4 [10]. Thus, the
remaining values of m, for which we still do not know whether all connected cubic
(m,n)-metacirculant graphs have a Hamilton cycle, are of the form m = 2u with

p 2 3 an odd positive integer.

In this paper we continue to investigate the problem of the existence of a Hamil-
ton cycle in connected cubic (m,n)-metacirculant graphs. We will prove here two
sufficient conditions for connected cubic (m,n)-metacirculant graphs to be hamilto-
nian. Namely, we will show that a connected cubic (m,n)-metacirculant graph G =
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MC(m,n,«, S, S1,...,S,) has a Hamilton cycle if either & = 1 (mod n) or in the
case of an odd number p one of the numbers (a+1) or (1—a+a’— - —a? 2 4ot 1)
is relatively prime to n. As a corollary of these results we obtain that every con-
nected cubic (m,n)-metacirculant graph has a Hamilton cycle if m and n are such
that every odd prime divisor of m is not a divisor of ¢(n) where ¢ is the Euler

w-function.

2. PRELIMINARIES

In this paper we consider only finite undirected graphs without loops or multiple
edges. If G is a graph, then V(G), E(G) and Aut(G) denote its vertex-set, its edge-
set and its automorphism group, respectively. A graph G is called vertex-transitive
if the action of Aut(G) on V(G) is transitive. If n is a positive integer, then we
write Z, for the ring of integers modulo n and Z for the multiplicative group of
units in Z,.

The construction of (m, n)-metacirculant graphs is now described. The reader
is referred to [3] for more details and a discussion of the properties of these graphs.

Let m and n be two positive integers, o € Z%, p = |m/2] and Sp.51....,5,
be subsets of Z,, satisfying the following conditions:
(1) 0 QZ S() = “5();
(2) a™S, =S, for 0 <r <
(3) If m is even, then a*S, = —5,.
Then we define the (m,n)-metacirculant graph G = MC(m.n,a. S, 5.
. +8u) to be the graph with vertex-set V(G) = {vi 4 € Zn; j € Zn} and
edge set B(G) = {viv, ST 0<r < i€ Zp hyj € Z, and (h—=7j) € a’'S,},
where superscripts and subscripts are always reduced modulo m and modulo n.

respectively.

The above construction is designed to allow the permutations p with p(v] ) =
vip, and 7 with T('L)]) = v;';l to be automorphisms of G. Since the subgroup
< p.7 > of Aut(G) generated by p and 7 is transitive on V(G), (m,n)-metacirculant
graphs are vertex-transitive. These graphs were introduced in [3] as a logical gen-
eralization of the Petersen graph for the primary reason of providing a class of
vertex-transitive graphs in which there might be some new non-hamiltonian con-
nected vertex-transitive graphs. Among these graphs, cubie (m,n)-metacirculant

graphs are especially attractive, being at the same time the simplest nontrivial
{(m,n)-metacirculant graphs and those most likely to be non-hamiltonian because of
their small number of edges.
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Now we recall a method for lifting a Hamilton cycle in a quotient graph G of
a graph G to a Hamilton cycle in G. This method will be used in the next section
to prove Theorem 4. A permutation § is said to be semiregular if all cycles in
the disjoint cycle decomposition of 3 have the same length. If a graph G has a
semiregular automorphism B, then the quotient graph G/ with respect to 8 is
defined as follows [2]. The vertices of G/ are the orbits of the subgroup < § >
generated by £ and two such vertices are adjacent if and only if there is an edge in

G joining a vertex of one corresponding orbit to a vertex in the other orbit.

Let B be of order t and G°,G1, ... ,G* be the subgraphs induced by G on the
orbits of < 8 >. Let v}, vi,... ,vi_, be a cyclic labelling of the vertices of G* under
the action of B and C' = G°G*GY ... G"G® be a cycle of G/B. Consider a path P of
G arising from a lifting of C, namely, start at v] and choose an edge from v to a
vertex v’ of G'. Then take an edge from v’ to a vertex vg of GY following G* in C.
Continue in this way until returning to a vertex v§ of G°. The set of all paths that
can be constructed in this way using C is called in [2] the coil of C and is denoted
by coil(C).

We will use in the next section the following results proved in (7}, (8] and [9].

Lemuma 1 [7]. Let t be the order of o semiregular automorphism 3 of a graph
G and G° be the subgraph induced by G on an orbit of < B >. If there exists
o Hamilton cycle C i G/B such that coil(C) contains a path P whose terminal
vertices are distance d apart in the G° where P starts and terminates and ged(d,t)

= 1, then G has a Hamalton cycle.

Lemma 2 [8]. Let G = MC(m,n,a,Sy, S1,...,5,) be @ cubic (m,n)-metacir-
culant graph such that m > 2 15 even, Sq = ,S; = {s} with 0 < s < n for some
ie{1,2,...,u—1}, S; =0 foralli #j€{1,2,...,u— 1} and S, = {k} with
0<k<n. Then

(i) If G is connected, then either i is odd and ged(im) = 1 or i1s even, p1 is
odd and gcd(v,m) = 2.

(i) If i is odd and ged(iym) = 1, then G is isomorphic to the cubic (m,n)-
metacirculant graph G' = MC(m,n,a', S5, 5,...,5,) with o' = a*,5; = 0,57 =
{s},9 =--- =5, =0 and 5, = {k}.

(it3) If i is even, p is odd, ged(i,m) = 2 and ¢ = 27i" with r > 1 and 1" odd,
then G is isomorphic to the cubic (m,n)-metacirculant graph G" = MC(m,n,a",
S8, 81, Sy) with o = o S =S == S = 0,58 = {s},54 ., =
=8 =0 and S = {k}.
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Lemma 3 [8]. (3) Let G = MC(m,n,a,5,51,...,5,) be a cubic (m,n)-
metacirculant graph such that m > 2 is even, Sy = 0,8 = {s},S; = = Sp—1 =
0 and S, = {k}. Then G is connected if and only if ged(p,n) = 1, where p is
k—s(l+a+a?+. -+ a* Y] reduced modulo n.

(1) Let G = MC(m,n,a, S, S1,...,5,) be a cubic (m,n)-metacirculant graph
such that m > 2 is even, p = [m/2] 4s odd, Sy = Sy = -+ = Sor_y = 0 with
121,50 ={s},Spr41=--=S5,1=0and S, = {k}. Then G is connected if and
only if ged(q,n) = 1, where q1s [k(1+a+a?+---+a? ") —s(1+ata?+-- atl)]

reduced modulo n.

Lemma 4 [9]. Let G = MC(m.n,«,5,51,...,5,) be a connected cubic
(m,n)-metacirculant graph such that m is even, greater than £ and not divisible by

4, S0 = S1 = o= Sy =0 withr > 1,8 = {s} with 0 < s < n,Spryq =
c= Sur = 0 oand S, = {k} with 0 < k < n. Let a = ged(a — 1,n) and
b=gecd(l-a+a®—---+a* ' n). Then G has o Hamilton cycle if any one of the

following conditions is met:
(1) Either ged(n/(ab), pa— 1) = 1: or
(iz) b = 1.

Now we recall the definition of a brick product of a cycle with a path de-
fined in [4] This product plays a role in the proof of Theorem 1 in the next
section. Let €, with n > 3 and P, with m > 1 be the graphs with vertex-
sets V(Cr) = {ur, ug, ... ,un}, V(Pm) = {v1,v2,... ,0mt1} and edge-sets B(Cy) =
{uiuz, uaus, ... upur }, B(P) = {vivp.vgvs, ... ,UmUm+1}, respectively. The
brick product CE"+Y of C, with P, is defined as follows [4]. The vertex-set of
™ s the cartesian product V(C,) x V(P,,). The edge-set of U consists
of all pairs of the form (u;, vy )(uip1,vs) and (v1,v)(Un,vh), wherei = 1,2, ...,
n-land h=1,2, ..., m+ 1, together with all pairs of the form {wi,vp s, vptr),
where i +h =0 (mod 2),i=1,2,...,nandh =1, 2, ..., m.

The following result has been proved in [4].

Lemma 5 [4]. Consider the brick product C,[,m] with n even. Let Cp 1 and
Chrm denote the two cycles in C,[lm] on the vertez-sets {(us,v1) : ¢ = 1,2,... ,n}
and {(ui,vm) i = 1,2,...,n}, respectively. Let F denote an arbitrary perfect
matching joining the wvertices of degree 2 in Ch1 with the vertices of degree £ in
Crm- If X is a graph obtained by adding the edges of F to C,[lm], then X has a
Hamilton cycle.
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3. MAIN RESULTS

In this section we will prove two sufficient conditions for connected cubic (m,n)-
metacirculant graphs to be hamiltonian. These conditions will be expected helpful
in further investigation of the problem of the existence of a Hamilton cycle in con-
nected cubic (m.n)-metacirculant graphs. As a corollary of one of these conditions
we obtain that every connected cubic (m,n)-metacirculant graph has a Hamilton
cycle if m and n are positive integers such that every odd prime divisor of m is not
a divisor of ¢(n) where ¢ is the Euler p-function. This is a partial solution of the

above mentioned problem.

Theorem 1. Let G = MC(m.n,a,Sy.51,....5,) be a connected cubic (m,n)-

metacirculant graph such that o* =1 (mod n). Then G possesses a Hamalton cycle.

Proof. Let G = MC(m,n,a, Sy, 51,....5,) be a connected cubic (m,n)-
metacirculant graph such that o = 1 (mod n). Suppose that G is isomorphic to
the Petersen graph. Then mn = 10 because the orders of G and the Petersen graph
are equal to mn and 10, respectively. Hence m is equal to one of the numbers 1,
9. 5or 10. If m = 1, then by definition G is a circulant graph. So G is a Cayley
graph. If m = 5 or 10, then n = 2 or 1, respectively. Therefore, & = 1. By |3,
Theorem 9], G is a Cayley graph. If m = 2, then the hypothesis ¢’ = 1 (mod n)
implies by (3, Theorem 9] again that G is also a Cayley graph. Thus, in all cases
G is Cayley. This contradicts the well-known fact that the Petersen graph is not a
Cayley graph. It follows that G cannot be isomorphic to the Petersen graph.

If mis odd or m = 2 or m is divisible by 4, then by the results obtained in [4,
6, 10] G has a Hamilton cycle. If Sy # 0, then by [6] G also possesses a Hamilton
cycle. Therefore, we may assume from now on that m is even, greater than 2 and
not divisible by 4 and Sy = 0. Since G is a cubic (m,n)-metacirculant graph, this
implies that only the following may happen:

(i) So = 0,5; = {s} with 0 < s < n forsome 1 € {1,2,... ,p—1},5; = { for

alli 45 e {1.2,...,u~1} and S, = {k} with 0 < k <m;
(11) S() = oee s = Su—l = @ and ‘Sﬂi = 3.

Since G is connected and m > 2 is even, (ii) cannot occur. So only (i)
may happen. By Lemma 2, without loss of generality we may assume that G =
MC(m,n,a, S, 51,... ,S5,) has one of the following forms:

1. SO:Q),S.Iz{5},52:~--x5uw1:@andS’p:{k};
2. SQ T e e mT Szr‘-l = w With r Z 1,52r = {S},52r+1 e EE Su-—l = @ and
S, = {k}.
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We consider these possibilities in turn. Below we will use the hypothesis o = 1
(mod n) frequently without mention. So the reader should keep it in mind.

Case 1: G = MC(m,n,a,S0,51,....5,) with S = 8,5, = {s},5, = - =
Sp—1="0and S, = {k}.

An edge in G of the type v; iy W

111 s called an S5 - -edge. and of the type vjv 70

—‘—Or 8
an S,-edge. A cycle Cin G is called an Sy-cycle if every edge in C is an 51 edge.

Consider Sy-cycles in G. Since every vertex in G is incident with just two S-edges,
it must be contained in exactly one Si-cycle. So two Sj-cycles either coincide or
are disjoint. Further, it is clear that any Si-cycle P; in G must contain a vertex 02

for some y € Z,, and therefore can be represented in the form
Py = P(vg)P(vgu{,z)P(ngﬁz) e

where 7 is ps + pas and

Oy 00 2 3 4 L 2n—2 2p-1
Plvy) = UhVht s Vit stasUhtzstasVhtzstzas " Vhi(uet)ss(p—1)as O hbpst(p—1)as"
It follows that two vertices v} and 1,: 2 of G are vertices at distance 2 apart in the

same Sy-cycle P; if and only if g = f + s+ asin Z,. It is also not difficult to see

that all Sy-cycles in G are isomorphic to each other and have an even length £.

If G has only one Sy-cycle, then this cycle is trivially a Hamilton cycle of G.
Therefore, we assume that G has at least two distinct Si-cycles. Let U} and v;J“
with 1 even be two vertices at distance 2 apart in the same S;-cycle P;. Then the
vertices of G adjacent to v} and vt? by §,-edges are v’f+“ bt
where f' = f + otk = f+k (mdg =g+a Tk =g+k Smceg :f+-3+(ys in
Zn,wehave g = g+k= fds+as+k=f+s+asin Z, Thus v ¥ and v’ o Fatu

are vertices at distance 2 apart in the same S;-cycle Pji. Moreover, since 4 is odd.
+u io+24p

and v, . respectively,

the superscripts 7 + p and 7 + 2 4 u of respectively vyt and v are odd.

Let C,{Z be the brick product of a cycle Cp with a path P._;, where Cy is
isomorphic to Sy-cycles of G and r is the number of distinct Sy-cycles in G. Denote
by Cy; and C , the two cycles in CET] on the vertex-sets {(u;,vy):7=1,2,... ¢}
and {(uj.vr) 1 1 = 1,2,... £}, respectively. Using the property of G proved in
the preceding paragraph and the fact that G is a connected cubic graph, it is not
difficult to see that G is isomorphic to a graph X obtained from Cgr] by adding the
edges of a perfect matching joining the vertices of degree 2 in Cy 1 with the vertices
of degree 2 in Cp,. By Lemma 5, X has a Hamilton cycle. Therefore, G has a
Hamilton cycle in Case 1.

Case 2.. G = MC(m,n,a,S,51,...,5,) with Sg = -+ = Syr_; = () for some
T2 1,5 = {5}, 841 = =S4y =0and 5, = {k}.
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An edge in G of the type v;v;ig,-s is called an Syr-edge, and of the type vj- U;-i;;ik

an S,-edge. A walk W in G is called an Sy--walk if every edge in W is an Spr-edge.
Since an S,--edge connects vertices with superscripts of the same parity. either all
superscripts of vertices of an Sp--walk are even or they are all odd modulo m. In
the former case, an Syr-walk is called of type A and in the latter case. it is called

of type B.
Since G is connected, by Lemma 3,
ged((k(1+ o+ +a® ) =s(l+a+ -+ n)=
ged([B(a + 1)1 +a® +a* + - + o T —s(1 4 at
o+ FatHn) =1 (3.1)

By the definition of (m,n)-metacirculant graphs, we have a#k = —k (mod n) <=
(a* + 1)k = 0 (mod n). Therefore, since o =1 (mod n) and p is odd,

Ela+1)=k(a* 4+ 1) =0 ( mod n). (3.2)
From (3.1) and (3.2) it follows that
ged(s,n) =1, and (3.3)
ged(l+a+a+-+a* ' n)=1 (3.4)
On the other hand, by «® = 1 (mod n), we have

p=l+a+ -+ =(1-at+a® -
— ot ot N1+ a+ o+ @) (mod n). (3.5)

Let b= ged(1 — a + a* — -+ a*7! n). Then by (3.4) and (3.5)
ged(p,n) = b. (3.6)

This implies in particular that b is odd because p is odd. Since o € Z7, we also

have
ged(a,n) = 1. (3.7)

Since o = 1 (mod n), (o + 1)(a —1) = 0(mod n). On the other hand,
ged(l — a4+ a? — -+ a1 a—1,n) = 1 because of (3.7). Therefore, b = ged(1 —
a+a?— - +at1 n)is a divisor of ged(a + 1,n). Thus, b = ged(l —a +a® -
<4 ot n) = ged(u,n) is odd, and & + 1 = b*z with u > 1.

Let G' = MC(m,n,a',84,51,...,5),) be a cubic (m,n)-metacirculant graph
such that o = a, Sp = {1}, 5), = {0} and S} =0 for all j 5 27 and p. Further,
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let V(G') = {w; © 1€ Zyy ] € Zy}. Since ged(s,n) = 1 by (3.3), it is not difficult
to verify that the mapping

wh — vl if 1 is even,

V(G V(G): ! ’?
4 (&) = V(©) {w]r—-év]Hk if 1 is odd

is an isomorphism of G' and G. Therefore, without loss of generality we may assume

that G is a cubic (m,n)-metacirculant graph MC(m,n, «, Sy, S1,. .. ,.5,) such that
b=ged(l—a+a®>—--+a*" ! n) = ged(p,n)is odd, (3.8)
a+1="0b"zwithu>1, (3.9)
Sor = {1}, Sy ={0} and S; = 0 for all j # 2" and p.

Now we prove the following claim which is needed to determine when two

vertices ’U; and v;} of G belong to the same Syr-cycle.

Claim 1. Two vertices v; and v} of G belong to the same Sor-cycle if and only
of f =7 (mod b).

Proof. Since every vertex of G is incident with just two Sy--edges, the Sor-

cycle Q containing v;« can be represented in the form

Q Q( ])Q( +Z)Q(v +2z) crt e (310)
where = = a' + a2 +@it22" 4.4 ot (=227 4 Gt (p-D27 = yai (mod n), and
2" z+2 27 o i(p—1)27
Qv) = vhv(h+a') (htai+ai+?y 7 Yippzogitu=127)
— 27 22 iR (e—1)27
vhvh+a‘vh+2a‘ : vh+(u'1)o{"'
Thus, the vertices of Q with superscript i are vJ, ;~+Z, v;'~+23, -+ because 1, 1 +

27 44227, -+ | 14 (pu — 1)27are distinct from each other modulo m. It follows that
v} belongs to Q if and only if f = j + ¢z (mod n) for some integer t.

Since (3.7) holds,
ged(z,n) = ged(pu,n) = b. (3.11)

Therefore, if f = j + ¢tz (mod n), then (3.8) and (3.11) imply that f = j (mod b).
Conversely, if f = j (mod b), then f = j + u;b for some integer u;. Since (3.11)
holds, there exist integers u, and ujz such that b = ugz + ugn. So f = j + ujusz +
uqugn. This means that f = j + ¢tz (mod n) for some integer t. Thus, v} belongs
to Q if and only if f =7 (mod b). [
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Consider Syr-cycles in G. Since every vertex of G is incident with just two Syr-
edges, it must be contained in exactly one Sy--cycle. So any two Sy--cycles either co-
incide or are disjoint. Further, since 4 is odd, the numbers 0, 27,2-27,3-27, ... (u—

1)2" are all even numbers modulo m. Hence every Sy--cycle O of type A must
contain a vertex v]O and every Syr-cycle 3 of type B must contain a vertex ‘U;L
for some j € Z, because  can be represented in the form (3.10). Hence, by
Claim 1, the Syr-cycles A% Al 4% ... A% At=1 B B! B% ... B ?%and B*!
containing vg,v)_;.v)_y,... vy, v), vh vf, vy, ... vl and vf_ |, respectively, are
all disjoint Spr-cycles of G. So each vertex of G must be contained in exactly
one of these Sp--cycles. The cycles A% A' A% ... A1 are of type A and the
cycles B®, B, B? ... B! are of type B. We also note that each edge of each

A% ¢ =10,1,...,b~ 1, has the form v;v;'ﬁ with 1 even, whereas each edge of each
Bt r=0,1,... ,b — 1, has the form U;v;ii{ with i odd.

Claim 1 is very useful in determining which Syr-cycle A® or Bf a given vertex be-
longs to. For example, to determine which Syr-cycles A¢ or Bf the vertices w2

and vzb D2 belong to, we note that w8 and Zb (:)2 M

Sy pd,th& U(b —3)2" (1;44)2r ib Zs)y v?,_(bﬁg) and Ugial)z +p (b 2)2" +uugb_ﬂz)z +u

(2+a)~(b_1)a, respectively. Since (3.9) holds, a +1 =0 (mod b) and (—a) =1
(mod b). Soa—(b—3)=(a+1)~b+2 =2 (modb) and (2 + a) — (b - 1o =
L+ (14+a)+(b—1)(-a) =1+ (b~1) = 0 (mod b). By Claim 1, v)_, 5, is
contained in the Sy--cycle containing v, i.e.. A*~2 and v (24 o) —(b—1)x is contained

b—3)2" b—1)2"+
in the Syr-cycle containing v, i.e., B%. Therefore, v((, 2" and vg+a) # are con-

are contained in the

tained in A*~% and B, respectively. Similar applications of Claim 1 will be used
frequently without mention.

We introduce now the following definition similar to that of Bannai’s work [5].
An alternating cycle C of G is defined to be a cycle the sequence of adjacent edges
of which are ey, f1,€s, fa,... , €, for, where e;,4 = 1,2,... ,2t, are Sy--edges and
fist=1,2,...,2t, are S,-edges. For convenience, we will consider an alternating cy-

cle C as a sequence of adjacent edges and will simply write C = e, fieafa ... €2y far.

For any vertex v;- of G, we have the following alternating cycle AC(v}) =

e (v;»)fl(v;»)ez ('U;-)fz(’l}j-)eg(Uj)f3(U;>€4(D})f4(U;), where

ex(v}) = it
i+2" 274
fi(v}) = vl it En

iy, (27 ) (i42:27+p)
€2(V]) = Ve Viranpartr )

(142" ) (i+2:2"+u)
(+ea')  T(Hai(14a)
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ST T TG tat (14 a)) T (ot (14 e))

iy (i+2-27) (i+27)
e3(vj) = Y+l (1) V(jtai(14a)—ai+27)
(i+2-27) (i+27)

= Ytai(ia) V(gHait) -
' (:+2" (i4+27+u)
Ja(05) = 0ty Vit
: +27 k) (i
ea(v}) = v ot v b ey

(2T it
T VGraity Vs

FACHES I

For simplicity of notation we will write e, fi,... ,e4, f4 instead of el(v;-),fl(v;),
cea(v)), f4(v}), respectively. In the context it will be clear which vertex vl we
deal with. An alternating cycle AC(U;) plays an important role in the proof of

Theorem 1 in Case 2.

A construction of a Hamilton cycle in G in Case 2 will be based on the following
property of AC’(v;).

Claim 2. If b > 3, then for any vertez v; of G, the edges e1,¢e5,¢e3 and ey of
the alternating cycle AC(U;) = e1fiesfaez faeq fy belong to distinct Sy--cycles.

Proof. If e; is an edge of an Sp--cycle of type A (resp. type B), then e; is also
an edge of an Sy--cycle of type A (resp. type B) and e, and ey are edges of Syr-cycles
of type B (resp. type A). This is clear from the definition of an alternating cycle
AC(v}). Since any Sy--cycle of type A and any Sy--cycle of type B are disjoint, to
prove Claim 2, it is sufficient to show that the Sy--cycle containing e; is different
from the Sy--cycle containing e; and the Syr-cycle containing e, is different from
the Sy--cycle containing eq.

Suppose that e; and e3 are edges of the same Sy--cycle Q. Then vit? and

J+ai
u;ii"_,_l are vertices of Q. By Claim 1, j+a'*! = j+a' (mod b) <= o'(a—1)=0
(mod b). This implies by (3.7) and (3.8) that « —1 =0 (mod b) <= a+1=2
(mod b) which is impossible because b > 3 and o + 1 = b*z with u > 1 by (3.9).
The obtained contradiction shows that the Sy--cycle containing e; is different from
the Sy--cycle containing es. Similarly, we can prove that the Sy--cycle containing

eo is different from the Spr-cycle containing eq. [

Now we consider separately three subcases.
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Subcase 2.1: b = 1. In this subcase, G has a Hamilton cycle by Lemma 4(ii).

Subcase 2.2: b = 3. First assume that the vertices vf, vgaz T and U';zrﬂ' of B°

are pairwise distinct (Fig. 1). This implies that the vertices v2, v$?" and vi 2} of A

are also pairwise distinct. Further, the edge v 2 +“v;az *# s an edge of the subpath
P of BO not containing vy and connecting vi T with v; 2Hn Moreover, 174(3 ta
2" p

and U5 o are not the endvertices of P. Such a graph G possesses a Hamilton cycle

shown in Figure 1.
Next assume that vi2 T = v3’ A put o2 2T £ ok (Fig. 2). If of # i
then since 3a = 3 (mod n),4a = 3a +a= 3 + a (mod n) and da + 1 = 4+«

2" 527
(mod n). Thuefore, WiE = U;jaﬂl and v}, Z_J” = vy ., "*. Further, the edge
pE2 AR 2T ¢ an edge of the subpath P of BY not contamm v4 and connecting
4o 50 & p g Yo g
6 627 2" A
v with o8 F T = 082 T Moreover, v T* and vl 2 +# are not the endvertices

of P. Such a graph G possesses a Hamilton cycle bhown in Figure 2. If v} = vg e

then 6-2" 4+ = u (mod m) and 6 = 0 (mod n). So p = 3 andn = 3 or 6. Therefore,
13;; *h 3 < 3. This implies that 3o # 0 (mod n) <= 3 # 0 (mod n). So
n # 3. Thus, this possibility happens only if 4 = 3 and n = 6. We leave to the
reader to verify that for these values of u and n the graph G also has a Hamilton

cycle.

Finally assume that v} = 1;}; = vﬁj"zr%“. From vf = v;s 2HE it follows that
32"+ p =g (mod m) and 3 =0 (mod n). So u =3 and n = 3. We again leave to
the reader to verify that for these values of i and n the graph G also has a Hamilton
cycle. This completes the proof for Subcase 2.2.

Subcase 2.9: b > 5. Let ¢ be an Sy--edge and C be the Syr-cycle contain-
ing e. From C by deleting the edge e we obtain a path which is called the Sy--
complementing path of e and is denoted by CP(e). Let AC(U;«) = ej fregfaes faea fa
be the alternating cycle for v} defined earlier. From AC(v}) by deleting the edge
ey we obtain a path which is called the alternating path for v} and is denoted by
AP(v}), e, AP(v}) = fieafaes faeq fa. Inits turn, from AP(v}) by replacing each
eyt = 2.3, 4, by its Syr-complementing path C'P(e;) we can get another path in G
which we denote by AP(‘U]-).

The idea for a construction of a Hamilton cycle of G in this subcase is as follows.
Let a cycle C in G containing all vertices of some Syr-cycles and only these vertices
have been constructed. We choose an appropriafe vertex v; of C such that the

Syr-edge vz ’+2 ; is an edge of C and the vertices U and 0;12: are the only common
vertices of C and AP(v]-). Then by replacing the edge ’U; ;ii, by AP(v ) we get

from C a longer cycle C' containing all vertices of a larger number of S--cycles
and only these vertices. By appropriate choices of vertices v} we can continue this
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procedure until very few Ssor-cycles having their vertices not contained in the last
obtained cycle D remain. Then from D we construct a Hamilton cycle for G by an

appropriate way. We give now the detail of this construction.

By induction, we will construct a sequence Cy,Cy,C2, Cs, ... of cycles of G
with the following properties:

Property (1): For an even index i, C; contains all vertices of each of Si--cycles
AP A2 A% 4% 4%F2 BY B? Bt ... B% and B**? and only these vertices.
(All superscripts of A® and B* are always reduced modulo b.) Moreover. the edge

3e-+3)27 (32 2r
v§ +3)2 L)g31+4)

of A*+? is an edge of C;.

Property (ii): For an odd index i, C; contains all vertices of each of S;»-
cycles A%, A%, A%, ... JA3GHD -2 po g2 opd o R30HN=2 gpnd B3GHD and only
these vertices. (All superscripts of A® and B? are always reduced modulo b.) More-

over, the edge
(314+3)2"+n (3:i44)27+pu
Yo Va

of B¥*+1 is an edge of C;.

The sequence of cycles Cy,Cy,Cy, Cs, ... is constructed as follows. First we
take the alternating cycle AC(v)) = e1fiesfoes fseafs. Using Claim 1 and (3.9)
it is not difficult to verify that eq, ey, e3 and e, are edges of Sy--cycles BY, A% B?
and A°. respectively. So from AC(vy) by replacing each e;,¢ = 1.2.3,4. by its
Sor-complementing path CP(e;) we can obtain a cycle of G containing all vertices
of each of A%, 4%, B® and B* and only them. Since b > 5 and b = ged(p.n) by (3.8).
p > 5. So the edge v} vi?" of A% is different from ey = v2 v2?]. It follows that
this edge is an edge of the obtained cycle. Thus, if we take this cycle as the cycle
Co of the sequence, then it is clear that Cy satisfies Property (i).

Let for an even index i the cycle C; satisfying Property (1) have been con-
structed. Take the alternating cycle AC'(v§3i+3)2r') = ey fieqfoes freafs. By the
definition of AC(U;) (3.9) and Claim 1 it is not difficult to verify that ¢;, 3, e3 and
eq are edges of A%T2 B3+6 A3+ and B34 respectively. By Property (i), e; is
an edge of C;. So if all vertices of each of B*1¢ A%+ and B3 * are not contained
in C;, then from C; by replacing the edge e; by the path —A—F(vgs‘ﬁg)y) we can get a
cycle containing all vertices of each of A, A%, A%, ..., A%+4 B® B? p* ... B+t
and B3*¢ and only these vertices. Since b > 5 and ged(p,n) = b by (3.8), we have
u > 5. Hence it is not difficult to see that the edge v "2 THyFHNZHr of paite

is different from ey = v§3i+4)2r+”véf:5)2r+”. So this edge is an edge of the obtained
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cycle. We take this cycle as the cycle Ciqy of the sequence. Then it is clear that
Ci4+1 satisfies Property (ii).

Now let for an odd index i the cycle C; satisfying Property (ii) have been con-
structed. Take the alternating cycle AC(v33i+3)2r+u) = ey fies foesfzeq fa. Then as
before it is not difficult to verify that e, eq, 5 and ey are edges of B3GF1 | 43(+1+2
B30+ ynd A3GHD | respectively. By Property (ii), e; is an edge of C,. So if all
vertices of each of 4301+ B3HU+2 ynd A3G+D are not contained in C;, then
from C; by replacing the edge ey by the path Z-P_(v((,ai+3)2r+”) we can get a cvcle
containing all vertices of each of A%, A2, A% .. A1 A30+0+2 B0 B2 gt
B3+ 5nd B0+ and only these vertices. Since b > 5, as before, it is not
difficult to see that the edge v§3i+e)2r v§3i+7)2r of A*G+D+2 is different from ey. So
this edge is an edge of the obtained cycle. Take this cycle as the cycle Ciyy of the
sequence. Then O, satisfies Property (1).

Note that the number of Sy--cycles all vertices of which are contained in a cycle
C, of the constructed sequence is 4 + 3i. Therefore, we have the following three
possibilities to consider.

(2.3.1) 2b = (4 + 3t) + 2 for some positive integer t.

Since b > 5is odd and t = (26—6)/3, ¢ > 4 is even and b must be divisible by 3.
Tt is not difficult to see that we can construct the cycle Cy—;. Sincet—1 = (26-9)/3
is odd, by Property (ii) all vertices of each of A% A% A%, ...  AP~1 Al A% .
AP-10 gb-8 po g2 p4 gb=1 gl p3  pb-10 pb=8 and B are contai-
ned in C;_;. The remaining vertices of G not contained in C,_; are vertices of
Ab=6 b=t gb=2 pb—t .54 Bb-2.

To facilitate understanding what follows the reader is advised to make himselfa
drawing of a cycle C; and a path XI—:’_(U;) (with all three Syr-complementing paths
contained in it) when a cycle Ci is obtained from C; by replacing the edge vy v;ji;
of C; by the path AP(v]).

Take the vertex Uébjla"ﬂ)z’

ACWUTET™2Y = o fres faesfaeafs (Fig. 3). By Claim 1 and the definition of

=1

of AP=? and consider the alternating cycle

an alternating cycle AC(v;»), it is not difficult to verify that eq, ez, e3 and eq are
edges of A2 Bb~% A° and B®7% respectively, and both e; and ey are edges of

C,..1. We determine in what order the vertices v(bta'"z)zr and 8TV incident
N 2a0~-1 R Za
with e3 and the vertices Uégb:&;;%)z 4 and v((:(,?j_ogz)z +#) incident with e4 lie in

C,_y. For this we follow each cycle Cj,7 = 0,1,2,..., by starting at v] and then
going in the direction from v to v(‘f . Tt is clear from the constructions of C; that if
a vertex vy appears before a vertex v}, in C; and ¢ < j, then vy also appears before

.
vy, in Cj.
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Since v;?a'”zr # vl it is not difficult to verify that vél;ic';_z)zr appears before

vg?:a“l)w in Cp (Fig. 3). By the remark at the end of the preceding paragraph,

(b+a—2)2"
v

bta—1)2" .
Dol also appears before v( Fer ) Oy

For any even index 1 < t consider the edge v(3’+3)2 (31+4)Zr of A%*2. By

Property (i) this edge is an edge of C;. We prove now by mducmon on i that the

(334427 4 cident with this edge appears before U(31+3)2 in C;. In Cy, it is
3.27

vertex v,

. (These vertices are vertices of A%.)
(Bi4a)2” p

easy to verify that vi?" appears before v}

Suppose that for an even index 1 < t such that 1+ 2 < t, the vertex v,
been proved to appear before vg 92 in C;. Since the cycle C41 is obtained from
C; by replacing the edge v(BIH)? WH)Z of C; by the path AP(v!*"*?") con-
((31+5)2 +u) d ((3l+7)2r+#)

taining the vertices vg
p{BHN27 ) appears before vém%ﬂ +”) in Ciyy. Inits turn, C,4, is obtained from
((3i+6)27 )

C;+; by replacing the edge “((‘(3z+¢>)2 ) ,{Y(D’H"T)Z +w) by the path AP(v,
containing the vertices v{**"**" and vézwm)z of A**8, Therefore, it is also easily
(3u-+10)2" appears before 1){31+9)2 in C12. The assertion has been proved.

of B¥+6 we can easily see that

seen that v,

Since 2b = (4+3t)+2, we have t—2 = (2b—12)/3 is even. So 3(t—2)+2 = b~10
(mod b) and the cycle C';_, contains all vertices of each of A%, A%, A%, .. .. AP AL
A3 .. AP0 B0 B2 Bt . BY-' B! B* ... B'1° By the assertion proved
in the preceding paragraph the vertex v(g(t Dy = vgbws)zr appears before

(3“”)“"3)” = 5" 9" in Cy_y. Since C¢_; is obtained from Ci—; by replac-
ing the edge v(b 0 (b —8)2 by the path ;ﬁg(vgbggﬂr) containing the vertices

Uggff‘ DA and z)i(bfa"3)2r+”) f B~ it is easily checked (Fig. 3) that the

vertex 1J§g+f”2)2r+“) appears before v((wa DT i Ci—1. Thus, the order in
which the vertices U(b+a D27y fhe 1),3’ p{GFa=3)2740) h g vg(a”f" DA fie in

yVsq Vot

Cy_; are as shown in Figure 4.

By the definition of the alternating cycle AC(D(HG 2’ ) = e1f1eafaea faeq fa,

the edge f5 connects the vertex vgifci 22" with the vertex v(gb+°;;2 21 On the

other hand, for the vertex v(b D of AP0 et AC(vgb—s)y) = el fiehfiek fiel fa

Fig. 3). Then ¢/, ¢, ¢, and e} are edges of A*=% B*~% Ab~* and B*~*, respec-
1,¢2,¢3 4 g

tively. Form the path

Q = f2Q1 fLCP(e}) f{CP(ey) f5CP(e5)f3Q2 frC Pler) fus

where @, and @, are the subpaths of B®~* not containing both e; and e and
connecting the vertices incident with f; and f; and with fj and f,, respectively
(Fig. 3). Then Q connects the vertex v(Ma D% with the vertex ”Ez(zb+10; D)
It is not difficult to verify that every vertex of Q except its endvertices is a vertex

of one of A2 Ab~% Ab—8 B»=2 or B’ and conversely, every vertex of each of

o N 4]



Ab2 Ab—4 446 Bb=2 and BP~* is contained in Q. Therefore, G has the following
Hamilton cycle C (Fig. 4). Start C at the vertex v(Ha D27 and go around Ci—q
in the chosen direction until reaching v ((b+a=2)27 "H‘). Now take the edge f3 to

(2a—1)
;’;*"1 D% and again go around C;.; but in the direction opposite to the chosen
direction until reaching v(l(lHS D244 Finally go along the path Q to return to
(b+a—1)2”
Voo

(2.3.2) 2b = (4 + 3t) + 1 for some positive integer t.

Since b > 5is odd and ¢ = (26— 5)/3, t > 3 and it is odd. Also, the cycle Ty
can be constructed. Since t — 1 = 2(b—4)/3 is even, by Property (i), the cycle (¢
contains all vertices of each of Sy--cycles A% A%, A% ... Ab~1 AY A% ... APE
Ab-6 BY B2 B4 ... B! B! B3 ..., B"®and B®%. The remaining vertices of
G not contained in Cy_; are vertices of A= Ab=2 B¥—* and B*~2,

Take the vertices v(()b~4)2’ and véb_”zr of A** and conmsider the alternat-
ing cycles AC(U(()b%)ZP) = e1fiezfres fyeq fy and AC(“gb%)T) = e fiesfres fiel fy
(Fig. 5). By definition, we see that ), es,e3 and ¢4 are edges of Ab~% Bb—2 Ab~2
and B%™% respectively. Similarly, ¢/, ¢}, e; and e} are edges of Ab=4 B2 Ab-?
and BY, respectively. Now we form paths P; and P, of G as follows. Start P
with the subpath f4(v(b“2)2r (bug)zr)f Then take the S,--complementing path
CP(ey). The last subpath of Py is fo(v' "2 o7 % ) f4. Start Py with the sub-
path fl(v(b nz vh?" flb 15)2 (b=4)2" )f4. Then take the Sy--complementing path
CP(eq). The last subpath of P, is f3(v(b -3 ((lb 14),4 (b_;)z vfﬁ:)zr g%;g)fq

By the constructions of P; and P, it is clear that Py and P, are disjoint, all
vertices of each of A4, A*~% B®~* and B*~? are contained in either P, or P; and
only vertices of P, and P, contained in C,_; are their endvertices. Further, the
endvertices of P; are the vertices incident with ¢, and the endvertices of P, are the
vertices incident with e}. It is also not difficult to show that e} and e/, are edges of
C¢—1. Therefore, from C;—; by replacing e} by P, and e} by P, we get a Hamilton
cycle of G.

(2.3.3) 2b = 4 + 3t for some positive integer t.

Recall that b > 5 is odd. Since t = (2b —4)/3, t > 2 and it is even. By
Properties (i) and (ii) of C;, it is not difficult to see that we can construct the
cycle C; which contains all vertices of all Syr-cycles of G. This means that C; is a
Hamilton cycle of G.

The proof of Theorem 1 is complete. [J
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As an application of Theorem 1, we prove now the following result which is
a partial affirmative answer to the question whether all connected cubic (m,n)-
metacirculant graphs, other than the Petersen graph, have a Hamilton cycle.

Theorem 2. Let m and n be positive integers such that every odd prime divisor
of m us not a divisor of ¢(n) where  is the Euler -function. Then every connected

cubic (m,n)-metacirculant graph possesses a Hamilton cycle.

Proof. Let m and n satisfy the hypotheses of Theorem 2 and let G =
MC(m,n,a, Sy, S1,...,5,) be a connected cubic (m,n)-metacirculant graph. If
m is odd or m = 2 or m is divisible by 4, then by the results obtained in [4, 6, 10]
G possesses a Hamilton cycle. Therefore, we may assume from now on that m > 2
is even and not divisible by 4. Suppose that G is isomorphic to the Petersen graph.
Then mn = 10 because the orders of G and the Petersen graph are equal to mn and
10, respectively. Since m > 2 is even, this implies that m = 10, n = 1. It is clear
that for these values of m and n G is a Cayley graph, contradicting the fact that the
Petersen graph is not a Cayley graph. Thus, G is not isomorphic to the Petersen
graph. So if Sy # 0, then G again has a Hamilton cycle by [6]. Therefore, we
also may assume from now on that Sy = @ Since G is a cubic (m,n)-metacirculant
graph, this implies that only the following may happen:

(1) So = 0,5; = {s} with 0 < s < n for some : € {1,2,... ,u~1},5; = 0 for
alle#7€{1,2,... ,u—1} and S, = {k} with 0 < k < n;

(i) So == S,-1 =0 and |S,]| = 3.

Since G is connected and m > 2 is even, (ii) cannot occur. So only (i) may
happen. By Lemma 2, without loss of generality, we may assume that such a graph
G has one of the following forms:

L. So=0,81={s},S2==85,_1=0and S, = {k};
2.5 =5 =-=8;_y=0forsomer > 1,5 = {s},Sprp; =+ =S, =
0 and S, = {k}.

In both cases 1 and 2, by Lemma 3,
ged(k,s(1+a+a®+ - +a* ) n) =1 (3.12)

On the other hand, by the definition of (m,n)-metacirculant graphs, we have

I a*s = s (mod n)

= (@ +1)a-1)(1l+a+a®+ - +a*)s=0( mod n), and (3.13)
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= (a* + 1)k =0 ( mod n), (3.14)

Let z = n/gcd(a® + 1,n). Then z is a divisor of both k and (o — 1)(1 + o +
-+ 4 a# s, Therefore, by (3.12) z is a divisor of & — 1. Thus,

(" +e—-D=(a+D)(l-at+a®— -+ o N(a—1)=0( modn). (3.15)

It follows that (o™ — 1) = (e + 1) ~ )(1 + a+a® + - + a1y = 0 (mod n),
i.e.. the order of o in Z7 is a divisor of m. But it is well-known that |Z7] = o(n).
So by the hypotheses of our theorem, it follows that «* = 1 (mod n). By Theorem
1, G possesses a Hamilton cycle. This completes the proof of Theorem 2. [

The hypotheses of Theorem 2 become simple when m has only one odd prime
divisor. For such values of m, it seems that the problem of the existence of a
Hamilton cycle in connected cubic (m.n)-metacirculant graphs would be easier to
solve than for other values of m. Because of this we reformulate Theorem 2 for

these values of m in the following corollary.

Corollary 3. Let m = 2°p® with p an odd prime and n be such that ¢(n)
is not divisible by p. Then every connected cubic (m,n)-metacirculant graph has a

Hamilton cycle.

The following result also might be useful in considering the problem of the
existence of a Hamilton cycle in connected cubic (m.n)-metacirculant graphs. Since
connected cubic (m,n)-metacirculant graphs have been proved to be hamiltonian for
m odd [6], m = 2 [4, 6] and m divisible by 4 [10], we may assume in the following

theorem that m is even, greater than 2 and not divisible by 4.

Theorem 4. Let m be even, greater than 2 and not divisible by 4 and G =
MC(m,n, o, So,S1,...,5,) be a connected cubic (m,n)-metacirculant graph. Then
G possesses o Hamilton cycle if one of the numbers (o + 1) or (1 —a + @t -

ak? ot 4s relatively prime to n.
yp

Proof. Let the hypotheses of Theorem 4 be satisfied. Suppose that G is
isomorphic to the Petersen graph. Then mn = 10 because the orders of G and the
Petersen graph are equal to mn and 10, respectively. Since m is even and greater
than 2, this implies that m = 10, n = 1. It is clear that for these values of m and
n the graph G is a Cayley graph, contradicting the fact that the Petersen graph is
not a Cayley graph. Thus, G is not isomorphic to the Petersen graph. So if Sy # B,
then G has a Hamilton cycle by [6]. Therefore, we assume from now on that Sy = 0.
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Since G is a cubic (m,n)-metacirculant graph, this implies that only the following
may happen:

(i) So = 0,5: = {s} with 0 < s < n for some 7 € {1,2,...,p—1},5; = 0 for
alli#7€{1,2,...,p—1}and S, ={k} with 0 <k < n;

(i) S == S,-1 =0and |S,|=3.

Since G is connected and m > 2 is even, (ii) cannot occur. So only (i) may
happen. By Lemma 2, without loss of generality we may assume that G has one of

the following forms:

L Sy=0,8={s},==5,1=0and S, = {k};

2. 8y == 8p_y =0 for somer > 1,5, = {s},50rp; = = o1 =10
and S, = {k}.

We consider these possibilities in turn.

Case 1. Sy =0,5 = {s},S2 =+ =S,_1 =0 and S, = {k}.

Let p be the automorphism of G defined by p(v}) = vi,,. Then p is semireg-
ular. Therefore, p*~! is also semiregular and we can construct the quotient graph
G/p>~1. 1t is not difficult to verify that G/p*~! is isomorphic to the cubic (m,a)-
metacirculant graph G' = MC(m, a,d, 5y, 51, . .. ,S),), wherea = ged(a—1,n),1 =
o = a(mod a),S; = 0,5 = {s'} with s' =5 (mod a), 5} = -+ = S)—1 = 0 and
Sy, = {k'} with k' = k (mod a). Therefore, we can identify these two graphs.

First assume that a + 1 is relatively prime to n. If n is even, then G has a
Hamilton cycle [9, Lemma 6]. If n is odd, then we can construct a Hamilton cycle
C of G' as in the proof of the main theorem in [10]. The path P of coil(C), which
starts at vJ, terminates at v‘} with f = (o — 1)d (mod n), where

d:—[k-3(1+a+~-+a“_l)}(1+a+~-~+a").

(The reader is referred to [10] for all these details.) Let ¢ = ged(a* + 1,n). By [10,
Lemma 4], n = ac. Therefore, the order t of p*~! is nfa = c = ged(a* + 1,n) =
ged((a+1)(1 — o+ a® — -+ + a#~1),n). Since ged(a + 1, n) = 1, it follows that
c=ged(l — o+ a? — 4ot ln).

We have (1 + a4+ o + -+ + a#) = (1 4+ a)(1 +a? +at + - Fath) I
p is an (odd) divisor of g = ged(l + a + -+ + a*,c), then p is a divisor of both
(I+a’+a*+-- +a* N and (1—a+a? -+ a*1) because ged(a+1,n) = 1.
Therefore, p is a divisor of a+a®+a® -+ +a#~? = a(1+a?+a*+---+a#3). Since
ged(a,n) = 1, it follows that p is a divisor of (1 + a? +at + --- + ab=3). Sopisa
divisor of a#~!, contradicting ged(a#*~!,n) = 1. Thus, ged(l+a+--+akc) = 1.
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On the other hand, by Lemma 3, ged([k —s(1+a+--- +a* )], n)= 1. So ged(d.c)
= ged(d,t) = 1. By Lemma 1, G has a Hamilton cycle in this subcase.

Now assume that ged(1 — a + o — -+ a#~1.n) = 1. This implies by (3.15)
that a? = 1 (mod n). By Theorem 1, G again possesses & Hamilton cycle in this
subcase.

Case 2. So =+ = Syrq = 0 for some r > 1,80 = {s}, Sorq1 =+ = Su1 =
§ and S, = {k}.

Let a = ged(a — 1,n),b = ged(1l —a +a® —-- + at~t n). By (3.15), n/(ab)
is a divisor of ged(a + 1,n). Therefore, if ged(a + 1,n) = 1, then n/(ab) = 1 and
ged(n/(ab), pa — 1) = 1. By Lemma 4(1), G has a Hamilton cycle in this subcase.
Ifb=ged(l —a+a®— - +a* ! n) =1, then by Lemma 4(ii), G again has a
Hamilton cycle.

The proof of Theorem 4 is complete. [
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