A Local Neighbourhood Condition for n-extendable Graphs

Dingjun Lou
Department of Computer Sclence
Zhongshan University
Guangzhou 510275
People's Republic of China

ABSTRACT

Let G be a connected graph with even order. Let $v \in V(G)$. We define $V_{k}(u)=\{u \mid u \in V(G)$ and $d(u, v)=k\}$. It is proved that if for each vertex $\forall \in$ $V(G)$ and for each independent set $S \subseteq N_{2}(v),|N(v) \cap N(S)| \geq|S|+2 n$. then G is n-extendable. Several previously known suffient conditions for n-extendable graphs follow as corollaries.

All graphs in this paper are finite, undirected and simple.
Let G be a graph of order ν with a perfect matching and let n be a positive integer such that $n \leq(\nu-2) / 2$. G is said to be n -extendable if G has n independent edges and any n independent edges of G are contained in a perfect matching of G.

Let G be a connected graph and let u and v be a pair of vertices of G such that $d(u, v)=2$. We use $I(u, v)$ to denote $|N(u) \cap N(v)|$. We define the divergence $\alpha(u, v)$ as follows:
$n_{u, v}(w)=\max \{|S| \mid w \in N(u) \cap N(v), \mathrm{S}$ is an independent $\operatorname{set} \operatorname{in} G[\{w\} \cup$ $\left.N_{G}(w)\right]$ containing u and $\left.v\right\}$.

$$
\alpha^{*}(u, v)=\max _{v \in}\left\{n_{u, v}(w) \mid w \in N(u) \cap N(v)\right\} .
$$

Let ∇ be a vertex of G. We define $N_{k}(u)=\{u \mid u \in V(G)$ and $d(u, \nabla)=\mathrm{k}\}$. We denote $b y w(G)$ the number of components of G and by of G) the number of odd components of G.

All terminology and notation not defined in this paper are from [2].
Since Plummer [7] introduced the concept of n-extendable graphs in 1980 , much work has been done on this topic (for example, see [1], [3], [4] and [8]). In [5], Lou introduced a sufficient condition for n-extendable graphs in terms of the divergence and some other sufficient conditions for n-extendable graphs. However there are not many known general suffcient conditions for n-extendable
graphs at present. In this paper we introduce a new sufficient condition for a-extendable graphs, which implies the divergence condition and a degree condition set up by Plummer [7]. Lou [6] also gave this type of sufficient condition for hamiltonian graphs. The following is the main result of this paper.

Theonem 1. Let G be a connected graph and let $k \geq 0$ be an integer. If, for each vertex $v \in V(G)$ and for each independent set $R \subseteq N_{2}(v),|N(v) \cap N(R)| \geq$ $|R|+k+1$, then for each subse $S \subseteq V(G), \omega(G-S) \leq|S|-k$.
Proor: Let $S \subseteq V(G)$ and let $|S|=s$. Let $\omega(G-S)=t$ and let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{4}\right\}$ and let k_{i} be the number of components in $G-S$ which are adjacent to $v_{i}(i=1,2, \ldots, s)$. Without loss of generality, assume $k_{1} \leq k_{2} \leq \ldots \leq k_{s}$. Let $k_{m_{j}}=\max \left\{k_{i}\right\}$ v_{i} is adjacent to C_{j} and $\left.1 \leq i \leq s\right\}(j=1,2, \ldots, t)$. Without loss of generality, assume $k_{m_{1}} \leq k_{m_{2}} \leq \ldots \leq k_{m_{4}}$. We choose $S \subseteq V(G)$ such that $|S|-\omega(G-S)$ is as small as possible.
Claim 1: We have $k_{i} \geq 2$ for $1 \leq i \leq g$.
Suppose this is not the case. Then there is $k_{i}(1 \leq i \leq s)$ such that $k_{i} \leq 1$. We replace S by $S^{\prime}=S \backslash\left\{v_{i}\right\}$. Then $\omega\left(G-S^{\prime}\right) \geq \omega\left(G^{-}-S\right)$. However $\left|S^{\prime}\right|=|S|-1$. So $\left|S^{p}\right|-\omega\left(G-S^{p}\right)<|S|-\omega(G-S)$, contradicting the choice of S.

Assume that v_{i} is adjacent to a vertex uin a component C of G-S. We define the set T to consist of the k_{i} vertices each of which is adjacent to v_{i} and is chosen respectively from one of the k_{i} components which are adjacent to v_{i}. Any two vertices in T belong to two different components of G-S. Then $T \cap V(C)=\{u\}$, $T \backslash\{u\} \subseteq N_{2}(u)$ and $T \backslash\{u\}$ is an independent set. So $\left.N(u) \cap N(T \backslash u\}\right) \subseteq S$. By the hypotheses of this theorem, $|N(u) \cap N(T \backslash\{u\})| \geq|T \backslash\{u\}|+k+1$. So u is adjacent to at least $|T \backslash\{u\}|+k+1=k_{i}+k$ vertices in S. For each component adjacent to v_{i}, the component is adjacent to at least $k_{i}+k$ vertices in S. Considering all vertices in S which are adjacent to component C_{S}, we know that C_{j} is adjacent to at least $k_{m_{j}}+k$ vertices in S. For the convenience of explanation, if a vertex in S is adjacent to p components of $G-S$, we say it sends p edges to the components of $\mathrm{G}-\mathrm{S}$; if a component C is adjacent to q vertices in S, we say C sends q edges to S. Then the vertices in S send totally $k_{1}+k_{2}+\ldots+k_{s}$ edges to the components of G-S, whereas the components of G-S send at least $\left(k_{m_{1}}+k\right)+\left(k_{m_{2}}+k\right)+\ldots+\left(k_{m_{4}}+k\right)$ edges to S. Hence we have

$$
\begin{equation*}
k_{1}+k_{2}+\ldots+k_{s} \geq\left(k_{m_{1}}+k\right)+\left(k_{m_{2}}+k\right)+\ldots+\left(k_{m_{*}}+k\right) \tag{1}
\end{equation*}
$$

So

$$
\begin{equation*}
\sum_{i=1}^{i} k_{i}+\sum_{j=i+1}^{s} k_{j} \geq \sum_{i=1}^{t} k_{m_{j}}+t k \tag{2}
\end{equation*}
$$

Claim 2: $\quad \sum_{i=1}^{t} k_{i} \leq \sum_{i=1}^{t} k_{m_{i}}$.
We shall prove $k_{m_{i}} \geq k_{i}(\mathrm{i}=1,2, \ldots, \mathrm{t})$ by induction, and then Claim 2 follows. By the definition of $k_{m_{i}}$, we have $k_{m_{1}} \geq k_{1}$.

Assume $k_{m_{i}} \geq k_{i}$ for all i such that $i<j$. Now assume $i=j$. If there is a component $C_{p} \in\left\{C_{1}, C_{2}, \ldots, C_{j}\right\}$ such that C_{p} is adjacent to v_{q} for $q \geq \dot{j}$, then $k_{m_{j}} \geq k_{m_{7}} \geq k_{q_{i}} \geq k_{j}$. Otherwise, $C_{1}, C_{2}, \ldots, C_{j}$ are adjacent only to $v_{2}, v_{2}, \ldots, v_{j-1}$. Then $k_{1}+k_{2}+\ldots+k_{j-1} \geq\left(k_{m_{1}}+k\right)+\left(k_{m_{3}}+k\right)+\ldots+\left(k_{m_{j}}+k\right)$. By the induction assumption, $k_{m_{i}} \geq k_{i}(i=1,2, \ldots, j-1)$, and $k_{m_{j}} \geq 1$. So $k_{m_{1}}+k_{m_{2}}+\ldots+k_{m_{j-1}}+k_{m_{j}}>k_{1}+k_{2}+\ldots+k_{j-1}$, which contradicts the above inequality. Hence $k_{m_{j}} \geq k_{j}$.

By (2) and Claim 2, we have

$$
\begin{equation*}
\sum_{j=i+1}^{s} k_{j} \geq t k \tag{3}
\end{equation*}
$$

But at most t components are adjacent to each of $v_{1}, v_{2}, \ldots, v_{g}$, then

$$
\begin{equation*}
k_{i} \leq t \quad(i=1,2, \ldots, s) \tag{4}
\end{equation*}
$$

By (3) and (4);

$$
\begin{equation*}
(s-t) t \geq \sum_{j=t+1}^{s} k_{i} \geq t k \tag{5}
\end{equation*}
$$

By (5). we have $s-t \geq k$ and then $t \leq s-k$. Hence

$$
w^{w}(G-S) \leq|S|-k
$$

Corollary 2. Let G be a comnected graph with even order. If for each vertex $V \in V(G)$ and for each independent set $S \subseteq N_{2}(v),|N(v) \cap N(S)| \geq|S|+2 n$, then G is n-extendable.

Proof: Suppose G is not n-extendable. Then there are n independent edges $e_{i}=u_{i} v_{i}(i=1,2, \ldots, n)$ such that $G-\left\{u_{i}, v_{i} \mid i=1,2, \ldots, n\right\}$ does not have any perfect matching. Let $G^{\prime}=G-\left\{u_{i}, v_{i} \mid i=1,2, \ldots, n\right\}$. By Tutte's Theorem. there is a set $S^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $o\left(G^{\prime}-S^{\prime}\right)>\left|S^{\prime}\right|$. By parity, o(G $\left.G^{\prime}-S^{\prime}\right) \geq$ $\left|S^{\prime}\right|+2$. Let $T=S^{\prime} \cup\left\{u_{\mathrm{i}}, v_{i} \mid i=1,2, \ldots, n\right\}$. Then $\omega(G-T)=w^{\prime}\left(G^{\prime}-S^{\prime}\right) \geq$ $o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{t}\right|+2=|S|-2 n+2$. But by Theorem $1, \omega(G-T) \leq|T|-(2 n-1)=$ $|T|-2 n+1$, contradicting the above inequality. \quad

The lower bound of $|N(v) \cap N(S)|$ in Corollary 2 is best possible. Let H $=K_{2 n}$ and let $u, F \in(H)$. We construct G by joining u and ∇ respectively to every vertex of H. Then G satisfies that for each vertex w and for each independent set $S \subseteq N_{2}(w),|N(w) \cap N(S)| \geq|S|+2 n-1$. However G is not n-extendable becanse there are n independent edges in H which are not contained in a perfect matching of G.

The following result in Corollary 3 was due to Lou [5]. We shall prove that Corollary 2 implies it. In [6], Lou gave counterexamples to show that it does not imply Corollary 2.

Corollary 3. Let G be a connected graph with even order. If for each pair of vertices u and v distance 2 apart, $I(u, v) \geq \alpha^{*}(u, v)+2 n-1$, then G is n-extendable.

Proof: Suppose G is a graph satisfying the hypotheses of this corollary. We shall prove that G also satisfies the hypotheses of Corollary 2.

Let v be a vertex of G and S be an independent set in $N_{2}(v)$. Let $\mathrm{S}=$ $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ and $\mathrm{T}=N(v) \cap N(S)=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. Let $k_{i}=\mid\left\{w_{j} \mid v_{i} w_{j} \in\right.$ $\left.E(G), w_{j} \in S\right\} \mid(i=1,2, \ldots, t)$. Without loss of generality, assume $k_{1} \leq k_{2} \leq$ $\ldots \leq k_{+}$. Let $k_{m_{j}}=\max \left\{k_{i} \mid v_{i} w_{j} \in E(G)\right.$ and $\left.v_{i} \in T\right\}(j=1,2, \ldots, s)$. Without loss of generality, assume $k_{m_{1}} \leq k_{m_{2}} \leq \ldots \leq k_{m_{2}}$.

If v_{j} is adjacent to w_{i}, as $d\left(v, w_{i}\right)=2$, by the hypotheses of this corollary, $\left|N\left(w_{i}\right) \cap N(v)\right| \geq k_{j}+1+2 n-1=k_{j}+2 n$ and $N\left(w_{i}\right) \cap N(v) \subseteq T$. Considering all vertices in T which are adjacent to w_{i}, w_{i} is adjacent to at least $k_{n_{i}}+1+2 n-1=$ $k_{m_{i}}+2 n$ vertices in T. The vertices in T send totally $k_{1}+k_{2}+\ldots+k_{+}$edges to S , and the vertices in S send at least $\left(k_{m_{1}}+2 n\right)+\left(k_{m_{2}}+2 n\right)+\ldots+\left(k_{m_{8}}+2 n\right)$ edges to T. So

$$
\begin{equation*}
k_{1}+k_{2}+\ldots+k_{i} \geq\left(k_{m_{1}}+2 n\right)+\left(k_{m_{2}}+2 n\right)+\ldots+\left(k_{m_{s}}+2 n\right) \tag{1}
\end{equation*}
$$

By (1),

$$
\begin{equation*}
\sum_{i=1}^{s} k_{i}+\sum_{j=s+1}^{i} k_{j} \geq \sum_{j=1}^{s} k_{m_{j}}+2 n s \tag{2}
\end{equation*}
$$

In the following, we shall prove by induction that

$$
\begin{equation*}
k_{i} \leq k_{m_{i}} \quad(i=1,2, \ldots, s) \tag{3}
\end{equation*}
$$

By the definition of $k_{m_{i}}$, we have $k_{m_{1}} \geq k_{1}$. Assume $k_{m_{i}} \geq k_{i}$ for all i such that $i<j$. Now assume $i=j$. If there is a vertex $w_{p} \in\left\{w_{1}, w_{2}, \ldots, w_{j}\right\}$ such that $w_{p} v_{q} \in E(G)$ for $q \geq j$, then $k_{m_{j}} \geq k_{m_{q}} \geq k_{q} \geq k_{j}$. Otherwise $N\left(\left\{\ddot{u}_{1}, \ddot{w}_{2}, \ldots, w_{j}\right\}\right) \cap T \subseteq\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. Then $h_{1}+k_{2}+\ldots+k_{j-1} \geq\left(k_{m_{1}}+\right.$ $2 n)+\left(k_{m_{2}}+2 n\right)+\ldots+\left(k_{m_{j}}+2 n\right)$. However, by the induction hypothesis, $k_{m_{i}} \geq k_{i}(\mathbf{i}=1,2, \ldots . . j-1)$, and $k_{m_{j}} \geq 1$, hence $k_{m_{1}}+k_{m_{2}}+\ldots+k_{m_{j-1}}+k_{m_{;}}>$ $k_{1}+k_{2}+\ldots+k_{j-1}$, contradicting the above inequality.

By (2) and (3), we have

$$
\begin{equation*}
\sum_{j=s+1}^{t} k_{j} \geq 2 n s \tag{4}
\end{equation*}
$$

But by the definition of $k_{\text {; }}$,

$$
\begin{equation*}
k_{i} \leq s \quad(i=1,2, \ldots, t) \tag{5}
\end{equation*}
$$

So

$$
\begin{equation*}
(t-s) s \geq \sum_{j=s+1}^{b} k_{j} \geq 2 n s \tag{6}
\end{equation*}
$$

$B y(6), t-s \geq 2 n$. So $t \geq s+2 n$. And hence

$$
|N(v) \cap v(S)| \geq|S|+2 n . \quad 0
$$

In the following we shall prove that Corollary 2 also implies a sufficient condition set up by Plummer [7].

Corollary 4. Let G be a connected graph with even order. If $\delta(G) \geq v / 2+n$, then G is n-extendable.

Proof: By [5], we know that Corollary 3 implies Corollary 4. \diamond

References.

[1] R. E. L. Aldred. D. A. Holton and Dingjun Lou, N-extendability of symmetric graphs, J. Graph Theory 17(1993), 253-261.
[2] J. A. Bondy and U.S.R. Murty. Graph theory with applications. Macmillan Press, London (1976).
[3] D. A. Holton, Dingjun Lon and M. D. Plummer. On the z-extendability of planar graphs, Discrete Math. 96(1991), 81-99.
[4] Dingiun Lou and D. A. Holton. Lower bound of cyclic edge connectivity for n-extendability of regular graphs, Discrete Math. 112(1993), 139-150.
[5] Dingjun Lou. Some conditions for n-extendable graphs. Australas. J. Combin. $9(1994), 123-136$.
[6] Dingjun Lou. A local neighbourhood condition for cycles. Ars Combinatoria. (to appear).
[7] M. D. Plummer, On n-extendable graphs, Discrete Math. 31(1980). 201210.
[8] M. D. Plummer, Degree sums, neighbourhood unions and matching extension in graphs, in: R. Bodewdiek, ed. Contemporary Methods in Graph Theory (B. I. Wissenschaftsverlag, Maunheim. 1990), 489-502.

