The number of digraphs with small diameter *

Ioan Tomescu
Faculty of Mathematics, University of Bucharest,
Str. Academiei, 14, R-70109 Bucharest, Romania

Abstract

Let $D(n ; d=k)$ denote the number of digraphs of order n and diameter equal to k. In this paper it is proved that:

i) for every fixed $k \geq 3$,

$$
D(n ; d=k)=4^{\binom{n}{2}}\left(3 \cdot 2^{-k+1}+o(1)\right)^{n} ;
$$

ii) for every fixed $k \geq 1$,

$$
n!2^{\binom{n}{2}} S_{k-1}(n) \leq D(n ; d=n-k) \leq n!2^{\binom{n}{2}} R_{k-1}(n),
$$

where $R_{k-1}(n)$ and $S_{k-1}(n)$ are polynomials of degree $k-1$ in n with positive leading coefficients depending only on k.
This extends the corresponding results for undirected graphs given in [2].

1 Notation and preliminary results

For a digraph G the outdegree $d^{+}(x)$ of a vertex x is the number of vertices of G that are adjacent from x and the indegree $d^{-}(x)$ is the number of vertices of G adjacent to x. For a strongly connected digraph G the distance $d(x, y)$ from vertex x to vertex y is the length of a shortest path of the form (x, \ldots, y). The eccentricity of a vertex x is $\operatorname{ecc}(x)=\max _{y \in V(G)} d(x, y)$. The diameter of G, denoted $d(G)$ is equal to $\max _{x, y \in V(G)} d(x, y)$ if G is strongly connected and ∞ otherwise.

[^0]Now suppose that $V(G)=\{1, \ldots, n\}$ and denote by $A_{i j}^{(k)}$ the set of digraphs with vertex set $\{1, \ldots, n\}$ such that $d(i, j) \geq k$. By $D(n ; d=k)$ and $D(n ; d \geq k)$ we denote the number of digraphs G of order n and diameter $d(G)=k$ and $d(G) \geq k$, respectively.

Using the material given in Chapter VII, p. 131 of the book by Bollobás [1], it is routine to show that almost all digraphs have diameter two.

Let

$$
f\left(n ; n_{1}, \ldots, n_{k}\right)=\binom{n}{n_{1}, \ldots, n_{k}} 2^{\sum_{i=1}^{k}\binom{n_{i}}{2} \prod_{i=1}^{k-1}\left(2^{n_{i}}-1\right)^{n_{i+1}}}
$$

where $n_{1}+\ldots+n_{k}=n$ and $n_{i} \geq 1$ for every $1 \leq i \leq k$ and

$$
f(n, k)=\max _{\substack{n_{1}+\ldots+n_{k}=n \\ n_{1}, \ldots, n_{k} \geq 1}} f\left(n ; n_{1}, \ldots, n_{k}\right) .
$$

This arithmetical function is the key for obtaining an asymptotic formula for the number of digraphs of diameter k and order n as k is fixed and $n \rightarrow \infty$. Its asymptotic behavior was deduced in [2] and is stated in Lemma 1.1.

Lemma 1.1 For every $k \geq 3$ we have

$$
f(n, k)=2^{\binom{n}{2}}\left(3 \cdot 2^{-k+2}+o(1)\right)^{n}
$$

The following lemmas will be useful in the proofs of the theorems given in the next section.

Lemma 1.2 The number of bipartite digraphs G whose partite sets are A, B $(A \cap B=\emptyset,|A|=p,|B|=q)$ such that $d^{-}(x) \geq 1$ for every $x \in B$ and all edges are directed from A towards B is equal to $\left(2^{p}-1\right)^{q}$.

Proof: Since each vertex in B must have at least one incoming edge from some vertex in A, there are $2^{p}-1$ choices for the set of incoming edges to any vertex in B. Thus there are $\left(2^{p}-1\right)^{q}$ choices for the incoming edges to the set of q vertices in B.

Lemma 1.3 The following equality holds:

$$
\lim _{n \rightarrow \infty} \frac{D(n ; d=3)}{D(n ; d \geq 4)}=\infty
$$

Proof: A straightforward computation leads to

$$
\left|A_{i j}^{(3)}\right|=2 \cdot 12^{n-2} \cdot 4^{\binom{n-2}{2}}=3^{n-2} \cdot 2^{\binom{n}{2}+\binom{n-2}{2}}
$$

for every $1 \leq i, j \leq n$ and $i \neq j$. Indeed, since $d(i, j) \geq 3$ we deduce that $(i, j) \notin$ $E(G)$ and for every vertex $k \neq i, j$, if $(i, k) \in E(G)$ then $(k, j) \notin E(G)$. This implies that for every fixed choice of the subdigraph induced by $\{i, j\}$ (and this can be done in exactly two ways), then for every $k \neq i, j$ the subdigraph induced by $\{i, j, k\}$ can
be chosen in 12 ways. Since the subdigraph induced by $n-2$ vertices different from i and j can be chosen in $4\left(\begin{array}{c}(-2) \\ 2\end{array}\right.$ ways, the formula follows.

The number of digraphs in $A_{i j}^{(4)}$ such that $d^{+}(i)=n_{1}$ and $d^{-}(j)=n_{2}$ is equal to

$$
\begin{aligned}
& 4\binom{n_{1}}{2}+\binom{n_{2}}{2}+\binom{n-2-n_{1}-n_{2}}{2}+\left(n_{1}+n_{2}\right)\left(n-2-n_{1}-n_{2}\right) \\
& =2^{n_{1}+n_{2}+n_{1} n_{2}+1+2\left(n-2-n_{1}-n_{2}\right)+n_{1}+n_{2}} \\
& \left.\begin{array}{c}
n \\
2
\end{array}\right)+\binom{n-2}{2}-n_{2} n_{2} .
\end{aligned}
$$

To justify this formula let $X=\{x \mid(i, x) \in E(G)\}$ and $Y=\{y \mid(y, j) \in E(G)\}$; it follows that $|X|=n_{1}$ and $|Y|=n_{2}$. Now $d(i, j) \geq 4$ implies that $X \cap Y=\emptyset$ and the directed edges between: a) vertices in X; b) vertices in Y; c) vertices in $\{1, \ldots, n\} \backslash(X \cup Y \cup\{i, j\}) ;$ d) vertices in $X \cup Y$ in a part and vertices in $\{1, \ldots, n\} \backslash(X \cup Y \cup\{i, j\})$ in another part, can be chosen in

$$
4\binom{n_{1}}{2}+\binom{n_{2}}{2}+\binom{n-2-n_{1}-n_{2}}{2}+\left(n_{1}+n_{2}\right)\left(n-2-n_{1}-n_{2}\right)
$$

ways. Also the directed edges from: e) X to i; f) j to Y; g) Y to X; h) j to i; i) $\{1, \ldots, n\} \backslash(X \cup Y \cup\{i, j\})$ to $i ;$ j) j to $\{1, \ldots, n\} \backslash(X \cup Y \cup\{i, j\}) ;$ k) j to X and 1) Y to i, can be chosen in $2^{n_{1}+n_{2}+n_{1} n_{2}+1+2\left(n-2-n_{1}-n_{2}\right)+n_{1}+n_{2}}$ ways.

It follows that for every $1 \leq i<j \leq n$ we have

$$
\begin{aligned}
\left|A_{i j}^{(4)}\right| / 2^{\binom{n-2}{2}+\binom{n}{2}} & =\sum_{\substack{n_{1}+n_{2}+n_{3}=n-2 \\
n_{1}, n_{2}, n_{3} \geq 0}}\binom{n-2}{n_{1}, n_{2}, n_{3}} 2^{-n_{1} n_{2}} \\
& =\sum_{k=0}^{n-2} \sum_{\substack{n_{2}+n_{3}=n-2-k \\
n_{2}, n_{3} \geq 0}}\binom{n-2}{k, n_{2}, n_{3}} 2^{-k n_{2}} \\
& =\sum_{k=0}^{n-2}\binom{n-2}{k} \sum_{n_{2}=0}^{n-2-k}\binom{n-2-k}{n_{2}} 2^{-k n_{2}} \\
& =\sum_{k=0}^{n-2}\binom{n-2}{k}\left(1+2^{-k}\right)^{n-2-k}
\end{aligned}
$$

We have $\left|A_{i j}^{(4)}\right|<2^{\binom{n}{2}+\binom{n-2}{2}}\left(2^{n-2}+\left(\frac{5}{2}\right)^{n-2}\right)$ because $2^{-k} \leq \frac{1}{2}$ for every $k \geq 1$. We can write

$$
\begin{aligned}
D(n ; d=3) & =D(n ; d \geq 3)-D(n ; d \geq 4) ; \\
D(n ; d \geq 3) & =\left|\bigcup_{\substack{1 \leq i, j \leq n \\
i \neq j}} A_{i j}^{(3)}\right|>3^{n-2} \cdot 2^{\binom{n}{2}+\binom{n-2}{2}} ; \\
D(n ; d \geq 4) & =\left|\bigcup_{\substack{1 \leq i, j \leq n \\
i \neq j}} A_{i j}^{(4)}\right|<\sum_{\substack{1 \leq i, j \leq n \\
i \neq j}}\left|A_{i j}^{(4)}\right| \\
& <\left(n^{2}-n\right) 2^{\binom{n}{2}+\binom{n-2}{2}\left(2^{n-2}+\left(\frac{5}{2}\right)^{n-2}\right)}
\end{aligned}
$$

and the proof follows.

2 Main results

Theorem 2.1 For every fixed $k \geq 3$ we have

$$
D(n ; d=k)=4^{\binom{n}{2}}\left(3 \cdot 2^{-k+1}+o(1)\right)^{n} .
$$

Proof: If $k=3$ we have $D(n ; d=3) \sim D(n ; d \geq 3)$ by Lemma 1.3 and also $D(n ; d \geq 3)=\left|\bigcup_{\substack{\leq i, j \leq n \\ i \neq j}} A_{i, j}^{(3)}\right|=4^{\binom{n}{2}}\left(\frac{3}{4}+o(1)\right)^{n}$ since $\left|A_{i j}^{(3)}\right|=3^{n-2} \cdot 2^{\binom{n}{2}+\binom{n-2}{2}}$ for every $i \neq j$ and $\left|A_{i j}^{(3)}\right| \leq\left|\bigcup_{\substack{\leq i j, j \leq n \\ i \neq j}} A_{i j}^{(3)}\right| \leq\left(n^{2}-n\right)\left|A_{i j}^{(3)}\right|$.

Let $k \geq 4$. If $x \in V(G)$ has $\operatorname{ecc}(x)=k$, then

$$
V_{1}(x) \cup \ldots \cup V_{k}(x)
$$

is a partition of $V(G) \backslash\{x\}$, where $V_{i}(x)=\{y \mid y \in V(G)$ and $d(x, y)=i\}$ for $0 \leq i \leq k$. It follows that there are directed edges from x towards all vertices of $V_{1}(x)$. Furthermore, for every $2 \leq i \leq k$ and any vertex $z \in V_{i}(x)$ there exists a directed edge (t, z), where $t \in V_{i-1}(x)$. Let n_{i} be the number of vertices in $V_{i}(x), 1 \leq i \leq k$. By Lemma 1.2 we get

$$
\begin{aligned}
& \mid\{G \mid V(G)=\{1, \ldots, n\} \text { and } \operatorname{ecc}(x)=k\} \mid \\
& =\sum_{\substack{n_{1}+\ldots+n_{k}=n-1 \\
n_{1}, \ldots, n_{k} \geq 1}}\binom{n-1}{n_{1}, \ldots, n_{k}} 4 \sum_{i=1}^{k}\binom{n_{i}}{2} \prod_{i=1}^{k-1}\left(2^{n_{i}}-1\right)^{n_{i+1}} \prod_{i=1}^{k} 2^{n_{i}\left(n_{i-1}+\ldots+1\right)} \\
& =2^{\binom{n}{2}} \sum_{\substack{n_{1}+\ldots+n_{k}=n-1 \\
n_{1}, \ldots, n_{k} \geq 1}} f\left(n-1 ; n_{1}, \ldots, n_{k}\right)
\end{aligned}
$$

because

$$
2^{\sum_{i=1}^{k}\binom{n_{i}}{2}} \prod_{i=1}^{k} 2^{n_{i}\left(n_{i-1}+\ldots+1\right)}=2^{\binom{n}{2}}
$$

One obtains

$$
\sum_{\substack{n_{1}+\ldots+n_{k} \\ n_{1}, \ldots, n_{k} \geq 1}} f\left(n-1 ; n_{1}, \ldots, n_{k}\right) \leq\binom{ n-2}{k-1} f(n-1, k)
$$

since the number of compositions $n-1=n_{1}+\ldots+n_{k}$ having k positive terms equals $\binom{n-2}{k-1}$. This implies that

$$
|\{G \mid V(G)=\{1, \ldots, n\}, e c c(x)=k\}| \leq 2^{\binom{n}{2}}\binom{n-2}{k-1} f(n-1, k)
$$

Hence

$$
\begin{aligned}
D(n ; d=k) & \leq \mid \bigcup_{x \in\{1, \ldots, n\}}\{G \mid V(G)=\{1, \ldots, n\} \text { and } e c c(x)=k\} \mid \\
& \leq n 2^{\binom{n}{2}}\binom{n-2}{k-1} f(n-1, k)=4^{\binom{n}{2}}\left(3 \cdot 2^{-k+1}+o(1)\right)^{n}
\end{aligned}
$$

by Lemma 1.1.
In order to show the opposite inequality we shall generate a large class of digraphs of order n and diameter equal to k as follows:
Let $x \in\{1, \ldots, n\}$ be a fixed vertex. We consider the class of digraphs G such that:
i) $\operatorname{ecc}(x)=k$;
ii) $\left|V_{1}(x)\right|=\left|V_{2}(x)\right|=\ldots=\left|V_{r-1}(x)\right|=1 ;\left|V_{r}(x)\right|=\alpha(n, k)=\lfloor(n-k+$ 1) $/ 3\rfloor ;\left|V_{r+1}(x)\right|=\beta(n, k)=\lceil 2(n-k+1) / 3\rceil ;\left|V_{r+2}(x)\right|=\left|V_{r+3}(x)\right|=\ldots=$ $\left|V_{k}(x)\right|=1$ for odd k, where $r=(k-1) / 2$, and $|1(x)|=\left|V_{2}(x)\right| \ldots=\left|V_{r}(x)\right|=$ $1 ;\left|V_{r+1}(x)\right|=\alpha(n, k) ;\left|V_{r+2}(x)\right|=\beta(n, k) ;\left|V_{r+3}(x)\right|=\left|V_{r+4}(x)\right|=\ldots=$ $\left|V_{k}(x)\right|=1$ for even k, where $r=k / 2-1$, respectively;
iii) classes $V_{r}(x)$ and $V_{r+1}(x)$ for odd k and $V_{r+1}(x)$ and $V_{r+2}(x)$ for even k, respectively induce digraphs of diameter equal to 2 ;
iv) $(c, x),(c, a),(c, b) \in E(G)$, where $V_{1}(x)=\{a\}, V_{2}(x)=\{b\}$ and $V_{k}(x)=\{c\}$.

If G denotes a digraph produced by this procedure it is easy to see that $|V(G)|=$ $n, \operatorname{ecc}(x)=k$ and $d(G)=k$.

Since almost all digraphs of order n have diameter equal to two as $n \rightarrow \infty$, it follows that the number of digraphs generated in this way is asymptotically equal to

$$
\frac{1}{8} 2^{\binom{n}{2}} f(n-1 ; 1, \ldots, 1, \alpha(n, k), \beta(n, k), 1, \ldots, 1) .
$$

By denoting $\alpha=\alpha(n, k)=\frac{n-k+1}{3}-\epsilon ; \beta=\beta(n, k)=\frac{2 n-2 k+2}{3}+\epsilon$, we get

$$
\begin{aligned}
f(n-1 ; 1, \ldots, 1, \alpha, \beta, 1, \ldots, 1) & =\frac{(n-1)!}{\alpha!\beta!} 2^{\binom{\alpha}{2}+\binom{\beta}{2}}\left(2^{\alpha}-1\right)^{\beta}\left(2^{\beta}-1\right) \\
& \sim \frac{(n-1)!}{\alpha!\beta!} 2^{\frac{1}{2}\left((\alpha+\beta)^{2}-\alpha+\beta\right)} .
\end{aligned}
$$

By Stirling's formula we find that $\frac{(n-1)!}{\alpha!\beta!} \sim P_{k}(n) n^{1 / 2} 3^{n} \cdot 2^{-2 n / 3}$, where $P_{k}(n)$ is a polynomial in n of fixed degree (depending only on k) and

$$
2^{\frac{1}{2}\left((\alpha+\beta)^{2}-\alpha+\beta\right)}=C \cdot 2^{n^{2} / 2-k n+7 n / 6}
$$

where $C>0$ is a constant. Hence this number of digraphs is asymptotically equal to

$$
C \cdot 2^{\binom{n}{2}-3} P_{k}(n) n^{1 / 2} 3^{n} \cdot 2^{\binom{n}{2}-k n+n} \sim 4^{\binom{n}{2}}\left(3 \cdot 2^{-k+1}+o(1)\right)^{n} .
$$

Theorem 2.2 The following inequalities

$$
n!2^{\binom{n}{2}} S_{k-1}(n) \leq D(n ; d=n-k) \leq n!2^{\binom{n}{2}} R_{k-1}(n)
$$

hold for every fixed $k \geq 1$, where $R_{k-1}(n)$ and $S_{k-1}(n)$ are polynomials of degree $k-1$ in n with positive leading coefficients depending only on k.

Proof: If $n_{1}+\ldots+n_{n-k}=n-1, k$ is fixed and as $n \rightarrow \infty$ almost all n_{1}, \ldots, n_{n-k} are equal to 1 then the corresponding factors $\left(2^{n_{i}}-1\right)^{n_{i+1}}=1$ for $n_{i}=1$ in the expression
 $D(n ; d=n-k) \leq n!2^{\binom{n}{z}}\binom{n-2}{k-1} C_{1}(k)$, where $C_{1}(k)$ is a constant depending only on k. Indeed, in the composition $n-1=n_{1}+\ldots+n_{n-k}$ where $n_{i} \geq 1$ at most k terms are greater than 1 and any of them is less than or equal to $k+1$. Hence $f(n-1, n-k) \leq$ $(n-1)!2^{k\binom{k+1}{2}}\left(2^{k+1}-1\right)^{k(k+1)}$. Therefore $D(n ; d=n-k) \leq n!2^{\binom{n}{2}} R_{k-1}(n)$, where $R_{k-1}(n)$ is a polynomial of degree $k-1$ in n with positive leading coefficient depending only on k.

In order to prove the other inequality we shall generate a large class C of digraphs of order n and diameter $n-k$ as follows:
For every subset $X \subset\{1, \ldots, n\}$ of cardinality $|X|=n-k+1$ we consider a Hamiltonian directed path $\left(x_{1}, \ldots, x_{n-k+1}\right)$ on vertex set X. The remaining $k-1$ vertices y will be joined each by directed edges in both directions (y, x) and (x, y) with the vertices x in the set $\left\{x_{3}, x_{4}, \ldots, x_{n-k-1}\right\}$ in $(n-k-3)^{k-1}$ ways.

All digraphs in \mathcal{C} contain directed edges $\left(x_{n-k+1}, x_{1}\right)$ and $\left(x_{n-k+1}, x_{2}\right)$. Any two vertices in $\{1, \ldots, n\} \backslash X$ are not adjacent in any direction and now the backward directed edges (u, v) where $u \in V_{j}\left(x_{1}\right)$ and $v \in V_{i}\left(x_{1}\right)$ such that $0 \leq i<j \leq n-k$ can be drawn in

$$
2^{\binom{n}{2}-\binom{k-1}{2}-(k-1)-2}
$$

ways. It is easy to see that each digraph produced in this way has diameter $n-k$. We shall prove that all digraphs generated by this procedure are pairwise distinct. Indeed, for a fixed Hamiltonian path $\left(x_{1}, \ldots, x_{n-k+1}\right)$ all digraphs produced are pairwise distinct since all partitions $V_{1}\left(x_{1}\right) \cup \ldots \cup V_{n-k}\left(x_{1}\right)$ of $\{1, \ldots, n\} \backslash\left\{x_{1}\right\}$ generated by this algorithm are pairwise distinct. Note that if a vertex $y \in\{1, \ldots, n\} \backslash X$ and a vertex $x_{i} \in X$ appear in the same class $V_{j}\left(x_{1}\right)$ they do not have a symmetric role since $\left(x_{i}, x_{i+1}\right) \in E(G)$ but $\left(y, x_{i+1}\right) \notin E(G)$ for any digraph $G \in \mathcal{C}$.

Now suppose that a digraph G_{1} built by starting from a Hamiltonian path $\left(x_{1}, \ldots\right.$, $\left.x_{n-k+1}\right)$ coincides with a digraph G_{2} built from a Hamiltonian path $\left(z_{1}, \ldots, z_{n-k+1}\right)$, where $\left(z_{1}, \ldots, z_{n-k+1}\right) \neq\left(x_{1}, \ldots, x_{n-k+1}\right)$ are distinct permutations of the set $\left\{x_{1}, \ldots\right.$, $\left.x_{n-k+1}\right\}$. We shall consider separately two subcases: the first for $x_{1} \neq z_{1}$ and the second for $x_{1}=z_{1}$.

Case 1: Since $x_{1} \neq z_{1}$ there exists $i \geq 2$ such that $x_{1}=z_{i}$. Because $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{n-k}, x_{n-k+1}\right),\left(x_{n-k+1}, x_{1}\right),\left(x_{n-k+1}, x_{2}\right) \in E\left(G_{1}\right)$ and $\left(z_{i}, z_{j}\right) \notin$ $E\left(G_{1}\right)$, where $1 \leq i<j \leq n-k+1$ and $j \geq i+2$, it follows that $z_{i+1}=$ $x_{2}, z_{i+2}=x_{3}, \ldots, z_{n-k+1}=x_{n-k-i+2}, \ldots, z_{s}=x_{n-k+1}$, where $s<i$. We deduce that $\left(x_{n-k+1}, x_{2}\right)=\left(z_{s}, z_{i+1}\right) \in E\left(G_{2}\right)$ where $s \leq i-1$, a contradiction.

Case 2: If $x_{1}=z_{1}$ it follows that $z_{2}=x_{2}, \ldots, z_{n-k+1}=x_{n-k+1}$ which contradicts the hypothesis.

Since all digraphs generated in this way are pairwise distinct it follows that

$$
|\mathcal{C}|=\binom{n}{k-1}(n-k+1)!(n-k-3)^{k-1} 2^{\binom{n}{2}-\binom{k-1}{2}-k-1}=2^{\binom{n}{2}} n!S_{k-1}(n)
$$

therefore $D(n ; d=n-k) \geq n!2 \begin{gathered}\binom{n}{2} \\ S_{k-1}(n) \text {, where } S_{k-1}(n) \text { is a polynomial of degree }\end{gathered}$ $k-1$ in n with positive leading coefficient depending only on k.

Corollary 2.3 For every fixed $k \geq 2$ the following equalities hold:

$$
\lim _{n \rightarrow \infty} \frac{D(n ; d=k)}{D(n ; d=k+1)}=\lim _{n \rightarrow \infty} \frac{D(n ; d=n-k)}{D(n ; d=n-k+1)}=\infty
$$

Acknowledgement

The author is indebted to the referee for some constructive remarks about the first version of this paper.

References

[1] B. Bollobás. Graph Theory. An introductory course, Springer-Verlag, New York Heidelberg Berlin, 1979.
[2] I. Tomescu. An asymptotic formula for the number of graphs having small diameter, Discrete Mathematics (to be published).

[^0]: *This work was partially done while the author visited the Computer Science Department, University of Auckland, New Zealand

