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Abstract

Let D(n;d = k) denote the number of digraphs of order n and diam-
eter equal to k. In this paper it is proved that:
i) for every fixed k > 3,

D(nyd = k) = 4B)(3 - 271 1 o(1))™;
ii) for every fixed k > 1,
n!Z(g)S}C*l(n) < Dlnyd=n—k) < n!Q(g) Ry_1(n),

where Ri..1(n) and Sg-1(n) are polynomials of degree k — 1 in n
with positive leading coeflicients depending only on k.
This extends the corresponding results for undirected graphs given in [2].

1 Notation and preliminary results

For a digraph G the outdegree d*(z) of a vertex z is the number of vertices of G that
are adjacent from z and the indegree d~(z) is the number of vertices of (¢ adjacent
to z. For a strongly connected digraph G the distance d(z,y) from vertex z to
vertex y is the length of a shortest path of the form (z,...,y). The eccentricity of a
vertex « is ecc(x) = mazyey(qd(z,y). The diameter of G, denoted d() is equal to
mazy yev(c)d(z, y) if G is strongly connected and oo otherwise.

*This work was partially done while the author visited the Computer Science Department,
University of Auckland, New Zealand
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Now suppose that V(G) = {1,...,n} and denote by AE;-C) the set of digraphs with
vertex set {1,...,n} such that d(i,5) > k. By D(n;d = k) and D(n;d > k) we
denote the number of digraphs (& of order n and diameter d(G) = k and d(C) > k,
respectively.

Using the material given in Chapter VII, p. 131 of the book by Bollobés [1], it is
routine to show that almost all digraphs have diameter two.
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where ny + ...+ ni = n and n; > 1 for every 1 <1 < k and

F(n, k) = maza s gmenf(nina, ... ng).
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This arithmetical function is the key for obtaining an asymptotic formula for the
number of digraphs of diameter k and order n as k is fixed and 7 — oco. Its asymptotic
behavior was deduced in [2] and is stated in Lemma 1.1.

Lemma 1.1 For every k > 3 we have
Fln, k) = 26) (3. 9752 4 o(1))".

The following lemmas will be useful in the proofs of the theorems given in the next
section.

Lemma 1.2 The number of bipartite digraphs G whose partite sets are A, B
(ANB =0, |A] = p, |B| = q) such that d~(z) > 1 for every z € B and all
edges are directed from A towards B is equal to (2P — 1),

Proof: Since each vertex in B must have at least one incoming edge from some
vertex in A, there are 2 — 1 choices for the set of incoming edges to any vertex in
B. Thus there are (27 — 1)? choices for the incoming edges to the set of ¢ vertices in
B. o

Lemma 1.3 The following equality holds:

Proof: A straightforward computation leads to

A9 = 2. 12772 . 4("3) = 322 9(D)+(77)
for every 1 < 4,5 < n and i # j. Indeed, since d(4,7) > 3 we deduce that (1,7) ¢
E(G) and for every vertex k # 4, 7, if (i,k) € E(G) then (k,j) ¢ E(@). This implies

that for every fixed choice of the subdigraph induced by {i,} (and this can be done
in exactly two ways), then for every k % 1, j the subdigraph induced by {3, j, k} can
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be chosen in 12 ways. Smu the subdigraph induced by n — 2 vertices different from
¢ and J can be chosen in 4("7) wa s, the formula follows.
The number of digraphs in A such that d* (i) = ny and d7(j) = n, is equal to

4(”21 )+(’?)+("42—;1 —n2)+(n1 +n2)(n—2-n1—nz) 9m +ngtning+1+2(n—2—n1 —nz)+ni+ny

_ ),

To justify this formula let X = {z | (i,2) € B(G)} and Y = {y | (y,5) € E(G)};
it follows that |X| = n, and |Y]| = ny. Now d(1,7) > 4 implies that X NY = 0
and the directed edges between: a) vertices in X; b) vertices in Y; c) vertices
in {1,...,n}\(X UY U{i,j}); d) vertices in X UY in a part and vertices in
{1,...,n}\(X UY U{s,7}) in another part, can be chosen in

OO b k) (2 =)

ways. Also the directed edges from: e) X to i; f) j to Y75 g) Y to X; h) j to 4

A1, \(XUY Ui} to e §) jto {L,...,n]\(XUY U{z,7}); k) j to X and
nYy to i, can be chosen in 7"‘+"2+"1"2+]+2(” 2y =iz 5z ways.
It follows that for every 1 < < j < n we have

s (e

ny4ngtng=n—2 n17n27n3
7y mpng 20

-5y ()

i

1A§;.‘>;/2(”;2)+(2)

k=0 ngtng=n-—2—k k,ny,ms
ng,m3 >0
k=0 k np:=0 Ng
n—-2 2
= Z(n >(1+2 )n-Zk
k=0 k

We have |A,(;)| < 2(3)+(n;2)(2””2 +(£)"7?) because 2~ ~k < 1 for every k > 1. We can
write

D(njd=3) = D(n;d >3)— D(n;d > 4);
D(?’I,,d 2 3) fond t U A(3)i > 3n—2 2( ) (" 2),

1<z ]<ﬂ
D(n;d >4) = U A(4)] < ¥ }A(4)

1<y <n 1<i,5<n

g2 T#]
< (n*- n)2(§)+("§2)<2n—2 + (g)n~z)
and the proof follows. .
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2 Main results
Theorem 2.1 For every fized k > 3 we have
D(n;d = k) = 4G)(3 . 2751 4 o(1))".

Proof: If k = 3 we have D(n;d = 3) ~ D(n;d > 3) by Lemma 1.3 and also
D(n;d > 3) = [Usziyen AL = 4G)(E 4 o(1))* since |40)] = 372 . 2G)+("3) for
] '
every i # j and [AD] < |Uneyyn A < (0 —n)|AD).
i#j
Let k> 4. If ¢ € V({) has ece(z) = k, then
Vi(z)U .. U Vi(x)
is a partition of V(G)\{z}, where Vi(z) = {y | y € V(@) and d(z,y) = 7} for
0 << k. It follows that there are directed edges from z towards all vertices of Vi (z).
Furthermore, for every 2 < 4 < k and any vertex z € Vi(z) there exists a directed

edge (¢, ), where t € Vi_i(z). Let n; be the number of vertices in Vi(z),1 < i < k.
By Lemma 1.2 we get

HG I V(G) ={1,...,n} and ecc(x) = k}|

X k—1 k
. Z < n—1 )42:‘;1 (7;‘) H(2m . 1)n,»+1 H g (nimittl)
ntebrgmne1 AT e Tk i=1 i=1

= 920) S fn=TLng, . n)

ni4otngEn—1
N1y Ng 21

because .
22:‘___1 ("2*) H 2n.(ni—1+.“+1) — 2(;‘)
=1
One obtains

Z f(n—Lnlw7nk)§(z:?)f(n«1’k)

nidotng
Niyenyng 21

since the number of compositions n—1 = n;+...4n, having k positive terms equals
l:f) This implies that

HG I V(G) ={1,...,n},ecc(z) = k}| < 92(3) (Z : ?)f(n —1,k).
Hence

D(nyd=k) < | [J {G|V(G)={l,...,n} and ecc(z) = k}|

z€{1,..,n}

n2(®) (Z -

IA

f)f(n ~1,k) =403 271 (1))



by Lemuma 1.1.

In order to show the opposite inequality we shall generate a large class of digraphs
of order n and diameter equal to k as follows:
Let z € {I,...,n} be a fixed vertex. We consider the class of digraphs G such that:

i) ecc(z) = k;

0 V)] = Vel = . = V()] = 1 V()] = aln k) = [(n— K+
/3 Ve (2)] = Bln k) = [2(n — k + 1)/3]; Vouo(w)] = lVMS o)==
IVk(m)l =1 for odd k, where r = (k—1)/2, and [L(z)| = |Vo(z)]... = |V, (x)[ =
 Vesa(@)] = alnk); [Vega(@)| = Bln,k); Vis(a)] = Vera@)| = ... =

ka( )| = 1 for even k, where r = k/2 — 1, respectively;

iii) classes V,(z) and V41 (z) for odd k and V41 (z) and Vi yo(z) for even k, respec-
tively induce digraphs of diameter equal to 2;

iv) (¢, z),(c,a),(e,b) € E(G), where Vi(z) = {a}, Vo(z) = {b} and Vi(z) = {c}.

If (@ denotes a digraph produced by this procedure it is easy to see that |V(G)| =
n,ece(z) = k and d(G) = k.

Since almost all digraphs of order n have diameter equal to two as n —+ oo, it
follows that the number of digraphs generated in this way is asymptotically equal to

}é?(g)f(n S ), B ) 1, 1),

By denoting a = a(n, k) = 24+ — ¢ B = f(n,k) = n=2ht? 4 ¢ we get

fln—1;1,... La,B,1,...,1) = (n = 1‘)!2(3)+(§)(2“ —1)P(2° — 1)

alf!
(n—1)! 93 ((0+B)?—a+p)
alg!
By Stirling’s formula we find that m—?ﬁ% ~ Pi(n)nt/23n . 2703 where Py(n) is a

polynomial in n of fixed degree (depending only on k) and
2%((0‘?‘3)2—0-%-[3) =C - 2n2/2—k'n.+7n/6
where C' > 0 is a constant. Hence this number of digraphs is asymptotically equal

to

¢ - 2G)=2 P (n)ntf2gn . o)kt o 4()(3. 27541 4 o(1))",

Theorem 2.2 The following inequalities

n12() 8,1 (n) < D(nyd =n — k) < n! 2G) Ry (n)

hold for every fired k > 1, where Rg—1(n) and Sy_1(n) are polynomials of degree k—1
i n with positive leading coefficients depending only on k.
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Proof: fn;+...4+n,_; =n—1, kis fixed and as n — oo almost all iy Ny f ATE
equal to 1 then the corresponding factors (2% —1)™+1 = [ for n; = 1 in the expression

f(n—= 1m0 nacy). Since D(n;d = k) < n2(3) (Z:f)f(n — 1,k) it follows that

D(n:d =n—k) <n! 2(3) (Z:f) Ci(k), where Cy (k) is a constant depending only on k.
Indeed, in the composition n —1 = n; +...+ n,_; where n; > 1 at most k terms are
greater than 1 and any of them is less than or equal to k+ 1. Hence fln—=1,n—k) <
(n — 1)!2k(k;!)(2’““*1 — 1)FE4D | Therefore D(n;d =n—k) < nl 2(3)12;%1(71'), where
Ry—1(n) is a polynomial of degree k—1 in n with positive leading coefficient depending
only on k.

In order to prove the other inequality we shall generate a large class C of digraphs
of order n and diameter n — k as follows:
For every subset X C {1,...,n} of cardinality |X| = n — k + 1 we consider a
Harmiltonian directed path (z1,...,24.541) on vertex set X. The remaining k — 1
vertices y will be joined each by directed edges in both directions (y,z) and (z,y)

with the vertices z in the set {rs,z4,..., Tpopor} I (n =k — 3)5~1 ways,
All digraphs in C contain directed edges (x,—_gq1,21) and (2,_g41,25). Any two
vertices in {1,...,n}\X are not adjacent in any direction and now the backward

directed edges (u,v) where u € Vj(z1) and v € Vi(z;) such that 0 < i < 1< n—k

can be drawn in s
o(3)~(*7")-(k-1)-2

ways. It is easy to see that each digraph produced in this way has diameter n — k.
We shall prove that all digraphs generated by this procedure are pairwise distinct.
Indeed, for a fixed Hamiltonian path (1, ..., 2, 441) all digraphs produced are pair-
wise distinct since all partitions Vi(z1)U...UV,_g(zy) of {1,..., n}\{z.} generated
by this algorithm are pairwise distinct. Note that if a vertex y € {1,...,7n}\X and
a vertex x; € X appear in the same class V;(z1) they do not have a symmetric role
since (i, 441) € E(G) but (y, 2i41) € E(G) for any digraph G € C.

Now suppose that a digraph G built by starting from a Harniltonian path (z1,...,
Zn_js1) coincides with a digraph Gy built from a Hamiltonian path (z1,. .., Zuekr),
where (21, .., zn_pq1) # (21, .., Tnoky1) are distinct permutations of the set {z1,...,
Tn—ki1}. We shall consider separately two subcases: the first for # z; and the
second for z; = zy.

Case 1: Since z; # 2 there exists ¢ > 2 such that z; = z;. Because
(-'L'la xz), (J«'z, l’;;); ceey (xn—k, $7x-—k+l)) (xnmlﬁ-l 5 371), (x1l—~k+17 332) S E(Gl) and (Z«', Zj) €
E(Gy), where 1 < ¢ < j < n—k+1and j > i+ 2, it follows that Zig1 =
Ly Ziga = X3y...yZnfky1 = Tnheit2y v ooy B = Ly kb1 y where s < 1. We deduce
that (2, ry1,22) = (25, 2:41) € E(G,) where s < i — 1, a contradiction.

Case 2: If 2y = z it follows that z, = x, ... s Zn—k+1 = Tp—g4+1 wWhich contra-
dicts the hypothesis.

Since all digraphs generated in this way are pairwise distinct it follows that

c] = (k . 1) (n =k + o — k= 3y 2000 < 9Bt 5y (),
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therefore D(n;d = n — k) > n! Z(Q)Sk_l(n), where Si_1(n) is a polynomial of degree
k —1 in n with positive leading coeflicient depending only on k. O

Corollary 2.3 For cvery fized k > 2 the following equalities hold:

i D(n;d = k) 5 D(n;d=n~k)
e pd=k+1) T Dnd =n-k 1)
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