Path Problems in Dynamically Orientable Graphs

William Klostermeyer
Department of Statistics and Computer Science
West Virginia University
Morgantown, West Virginia 26506-6330
e-mail: wik@cs.wvu.edu

Abstract
Motivated by a problem in railroad systems, a variant of the k-server problem
in graphs is studied in which edges are oriented as they are traversed. The offline
version of the problem is shown to be NP-complete, in sharp contrast to the
polynomial-time solvable offline k-server problem. Approximation algorithms and
algorithms for restricted classes of graphs are discussed.

1. Introduction

The k-server problem is concerned with constructing paths (walks) for each
of k mobile servers to request points in a metric space. Formally, the k-server problem
is as follows: a sequence c:-—{rz, T2 o T, } of requests are mmade at points in a metric
space M in which there are k servers l%c) satisfy these requests. Requests must be
served in the order they are made. To serve a request, at least one server must move
to the requested point. The cost incurred by an algorithm is the total distance moved
by its servers in serving o. A server problem is called offline if all requests in ¢ are
known in advance and online if the request are revealed one at a time. Results on
server problems, primarily the online version, can be found in {1-7].

In this paper we assume the servers are trains travelling in a railroad system.
Due to their weight, trains create a tremendous amount of friction as they move.
Essentially, the friction heats the track to the point where it is gradually pushed in
the direction of travel [8]. Consequently, it is desirable to have an equal number of
trains trave! in either direction along each piece of track, else the quality of the track
deteriorates.

Using a graph to model the rail system, an edge between vertices ¥ and v may
be in one of three states: neuiral, <u, v>, or <v, u>. That is, the edge may be
undirected, or directed in either direction. All edges are initially undirected. When
a train traverses an edge in one direction, say from u to v, the edge changes state: an
undirected edge becomes a directed edge <v, u>, meaning the edge may only be
traversed from v to « and a directed edge <u, v> becomes neutral, meaning it may
be traversed in either direction. An edge of the form <v, u> may not be traversed
from u to v until it is neutralized by a train travelling in the opposite direction. Such
graphs are called dynamically orientable graphs (dogs).

Let G=(V, E) be a dog with |V|=n, |E|=m. For simplicity let each edge
have weight equal to one, using weighted graphs does not affect the results. We are
interested in studying the k-server problem in dogs. We term this the k-train problem.
As usual, the objective is to construct a set of paths for the k trains so that the sum
of the lengths of the paths is minimum over all such path sets that serve the requests
in the given order.

Australasian Journal of Combinatorics 14 (1996), pp- 21-30

In this paper, we study the offline &-train problem. The problem is shown to
be NP-complete for k > 1, in sharp contrast to the offline k-server problem, which
can be optimally solved in polynomial time for any k using dynamic programming

techniques (1, 6]. Approximation algorithms and algorithms for some restricted classes
of graphs are discussed. :

2. NP-completeness of the Offline k-train Problem

The offline k-train problem is shown to be NP-complete for k=1. The decision
version of the 1-train problem is formulated as, follows:
Instance D_og G=(V, E){ request sequence o={ry, r5 .., rq}, vertex v; which is the
initial location of the train, and an integer d.
Question: Does there exist a path for the train:

(VJ' s Ty ey T ey g1 rq)

such that the total distance travelled is at most d and the train traverses edges only
in the proper direction? The length of the path is the number of edges traversed.

The decision version of the offline k-train problem can be formulated similarly.

Theorem 1. The 1-train problem is NP-complete.
Proof: The 1-train problem is easily seen to be in NP, since, given a initial vertex and
a request sequence, it is easy to "trace" a given path in polynomial time to verify if
it traverses the edges legally, if the total distance travelled it at most d, and if the
requests are served in order.

To show 1-train is NP-hard, we reduce 3-SAT to 1-train. Recall that a 3-SAT
instance consists of a set of boolean variables U={u Uy e U } and a set of clauses
C={c P €y e € } over those variables [9]. The 3-§AT problem is to determine if
there exists a tru‘%h assignment which satisfies C. The reduction is as follows. For each
variable u; construct the following subgraph, called a variable subgraph:

Variable Subgraph for ui

edge from bi-1
ui

g vertices

edge to ai+l

Figure 1. Variable Subgraph

22

Connect the variable subgraphs by adding edges (b; _ p ;) foralli > 1.
For each clause ¢; = (u; OR u; OR u3) construct the following clause
subgraph, noting its connection to the u, u,, and u3 variable subgraphs:

Clause Subgraph for ci
path from wi-1 Erp

Variable Subgraph forul T Yariable Subgraph for u3

ul not u3

~ =i, the ith veriex in-chein of g vertices

ithin chain

Mote: Assumes vl appears in ¢i as non-negated lteral and 43 is negated literal in ¢i

u? connection not shown in Figure

Figure 2. Clause Subgraph

We also add edges (be, bgy), (byy, bfz), (bj? bﬁ)’ (bsy bf4), (bgy bf5), (bgs
¢) to connect the Jast variable subgraph to the first clause subgraph and edges of the
form (wy wip), (Wig Wio), (Win Wig), (Wi3 Wig), (Wig €4 1), for all i < g to connect
consecutive clause subgraphs.

Define o = {ap bpayby . a bscpwp ey Wo oy Cp W }, let a; be the
initial vertex for the train, and set d ="{g+3)% + 17*z. The reduction can be seen
o take only polynomial time. We now claim C is satisfiable if and only if there exists
a path of length d or less that serves all the requests in the given order.
" Suppose C is satisfiable. Then there is a legal truth assignment (i.e. each variable
in 17 is assigned either "true” or "false™) that satisfies C. Consider the variables that
are assigned true. Suppose u; is such a variable. Then a request at by can be served
by passing from a,; (the initial location of the train) to b, via vertex u;. Likewise, if
we had assigned u; the value "false," we would serve the request at by by passing
from a; to b; via vertex ~wy. The rest of the first 2f requests are served in a similar
manner, based on the truth assignment of the corresponding variable. That is, if u;
is "true," we serve request b; by passing through vertex i; and through vertex —w;
otherwise. The total cost of serving these requests is (g+3)*f — 1, since each variable
subgraph is of length g+2 (i.e. the distance from a; to b;) and there are f—1 (b;_p,
a;) edges connecting variable subgraphs to one another,

We then move from bf 1o vertex ¢y at a cost of six. Since C is satisfiable, each

23

clause contains a literal which is a witness, i.e. negated variable which is assigned
“false" or a non-negated variable which is assigned "true". Suppose u; is a witness for
clause ¢;. The request at wy is served by travelling from ¢y to u-[}j and then via a
path of length five into the variable subgraph associated with variable .. Supposing
variable u; appears in clause ¢; as a non-negated literal, this path leads us to the
right»«hand’ column of vertices in the variable subgraph. In order to proceed to request
site w; at minimum cost, we need to traverse exactly one edge on this right-hand
column of vertices in a top-to-bottom direction (else the train must take a more
circuitous path, clearly spoiling any attempt at finding a complete path of length at
most d--this is detailed in the "only if" part below). Note that the edges on this right-
hand column can only be traversed by the train if the train previously went down the
left-hand column on its way to serving b - In other words, if 1; appears in clause c;
as a non-negated literal, it can only satisfy the clause if it is assigned "true.” Once the
train traverses the edge in the variable subgraph, it may move unhindered to wy at
a cost of five. We proceed in a likewise fashion with if u. is a witness for clause ¢
and appears in clause ¢; as a negated literal--we shall pass through an edge in the
left-hand column of vertices in the variable subgraph instead on our way 1o request
w;. The cost of moving from ¢ l[to w; is twelve. The train then moves at a cost of
five to the request at vertex ¢5. The request at w5 Is served in a similar way, by using
a witness for clause ¢, and passing through an edge in the variable subgraph
associated with that witness. Summing the costs for serving the requests in this way
gives a cost of at most d since the first 2f+7 requests cost (g+3)f + 5 to serve and
the remaining request cost seventeen each, except the last which costs twelve (as the
train stops when it reaches w,).

"~" Suppose there exists a pzﬁh of length d or less that serves all the requests. We
derive a truth assignment as follows. If the train served request b; by passing through
vertex u;, we assign u; "true," otherwise assign u; "false." As claimed above, any path
that satisfies all the requests must do so by traversing exactly one edge in a variable
subgraph each time it is going from a ¢; vertex to the request at vertex w;. Otherwise,
the path would have to move through one or more edges in this variable subgraph
in a bottom-to-top direction (rather than the desired top-to-bottom direction). Doing
so would force the train to visit vertices in another clause subgraph, say ¢, in addition
to ¢;, before serving the request at w;. But this means the path travelléd from ¢ to
w; has either length greater than twelve or was not traversable, as is the case with
certain instances when j < /. By traversable, we mean the edges are oriented (or
neutral) so that the path can be legally traversed. Since there are consecutive
requests at ¢; and wy, for 7 </ < g, in order to achieve a cost of at most d, we must
travel from ¢; to wy, for I <i <g, at a cost of at most twelve. Since twelve is the
length of the shortest path between ¢; and wy, it must be that the path contains no
¢; to w; traversals of cost more than twelve.

Continuing with the argument, we claim that the first vertex encountered on
the train’s path from ¢; to w;, say u,fi], is the "witness" for clause ¢;. Because of the
length of the path and the fact that it serves all the requests, the train must have
passed through exactly one edge in the variable subgraph corresponding to variable
u; on its path from ¢; to w;. Then u; is assigned "true" (assuming it is a non-negated

literal) by our assignment, since the train traversed the U subgraph by going from a;

24

to b. via vertex ~u. Therefore C has a legal, satisfying assignment.0
Theorem 1 also implies the NP-completeness for all k > 7 as the same
reduction can be used by initially locating k—1 of the trains on isolated vertices.

3. Approximation Algorithms

As the offline k-train problems are NP-complete for any k, it is believed that
no polynomial time algorithm can find the optimal solution for all instances.
Therefore, it is of interest to develop an approximation algorithm. Recall from [9]
that an approximation algorithm is a polynomial time algorithm whose goal is to find
a near-optimal solution. The performance ratio of an approximation algorithm is
essentially the maximum, over all problem instances, of the ratio of the value of the
approximate solution to that of the optimal.

We shall describe a 2-competitive algorithm for the online version of the I-
train problem. Some terminology is needed first, however. An online algorithm A is
said 1o be c-competitive If C 4(0) < c*C, (o) + a for some constant @ for all request
sequences o, where C 4(o) is the cost incurred by A for request sequence o, and
Coplo)is the optimal cost for any algorithm, including one that knows o in advance.
The quantity ¢ is called the competitive ratio of algorithm A. Thus competitive
analysis compares the cost incurred by an online algorithm to that incurred by an
optimal off-line adversary. Therefore, assuming a=0, a c-competitive online algorithm
also serves as an approximation algorithm with performance ratio ¢ provided the
algorithm runs in polynomial time. If 2 > 0, we must adjust the performance ratio
somewhat. The competitive algorithm we give has a=0.

The online algorithm is as follows. Let v, be the initial location of the train
and v its current location. Observe that it is possible for a I-train algorithm to behave
so that, at any step, the directed edges in G form a directed path P from v w0 vy
That is, the only directed edges in G are those on path P. A l-train algorithm can
raintain this invariant by prudent use of backtracking: instead of neutralizing an edge
(1, v) which would create disconnected directed paths, the train can backtrack along
P until either (i} it reaches u again and then traverse (i, v) safely or (ii) it reaches
a vertex w on P from which it can traverse an undirected/neutral path to v.

Our algorithm behaves as follows, under the constraint that the train always
maintains a directed path P from its current location to its initial vertex and no other
edges in G are direcied except those on P. Upon receiving a request r, let w be the
vertex in P having the shortest traversable path to r among all the vertices in P. By
traversable, we mean the edges are oriented (or neutral) so that the path can be
legally traversed. We use the term "sequence of edges” when discussing a path that
may or may not be traversable. If more than one such w exists, choose the nearest
to v. To serve the request, backrack (if necessary, as w may equal v) along P to w
and proceed to r.

We claim the path length from w to r is no greater than the length of the
shortest sequence of edges from v to . Suppose otherwise. Then there is a sequence
of edges S=(¥, .., Vp Vp , - F) which is shorter than (w, .., r) where the edge
between v, and vy is oriented as <vp, v, >. Then P is the directed path (v, ..., vy,
Vg s = V). Consider the proper subsequence of §, (vp , -, 7). Since vy, is on P, we
may set w equal to v, and have therefore constructed a shorter path than S.

25

Furthermore, this path from w to r consists entirely of neutral edges. This latter is
true because P is a path and not, for example, a directed tree. In this manner, the 1-
train algorithm maintains its path P by traversing only neutral edges as "shortest path"
edges and traversing directed edges only for purposes of backtracking.

Fact. The online algorithm has a competitive ratio of two.

Proof: Follows since the algorithm only traverses edges in a path no longer than the
shortest path to each request and that each such edge is traversed at most twice.O

It is easy to show that no online 1-train algorithm can have a competitive ratio
better than 2 {7]. Another algorithm for the 1-train problem is as follows: traverse the
path to the request that minimizes the length of the path plus the change in the
number of oriented edges in the graph. This may be proved 2-competitive by using
a potential argument wherein the number of oriented edges is defined to be the
potential function. The details are omitted. However, simulations indicate that this
algorithm is somewhat better in practice than the directed path algorithm [113.

It is a simple matter to convert the online algorithm into an algorithm which
takes o as input and runs in time O((n + m)*g). Hence the following result.
Theorem 2. A solution to the offline 1-train problem can computed in polynomial
time with performance ratio two.

Proof: Follows from the fact that the online 1-train algorithm has competitive ratio
two.0l

We note that a 4-competitive online algorithm for the 2-train problem in
complete graphs is given in [7], implying the existence of an approximation algorithm
with performance ratio four. However, as we shall see in the next section, we do not
know if complete graphs simplify the problem to the point of being polynomial-time
solvable or not.

4. Restricted Graph Classes

A common technique for coping with NP-complete problems is to construct
polynomial time algorithms that behave optimally on restricted classes of inputs. For
example, the reader will observe that the naive algorithm is optimal for the offline
I-train algorithm when the input graph is a tree. In this case each request is served
by traversing the unique path between the two vertices. It is not possible to encounter
an edge oriented in the "wrong" direction, as trees are acyclic.

In this section we give an optimal algorithm for the 2-train problem in trees,
I-train problem in rings, and discuss the surprising difficulty of the 1-train problem
in complete graphs.

4.1 Two Trains in a Tree

We show how to construct a dynamic programming algorithm to optimally
solve the 2-train problem in a tree. Let T=(V, E) be_a tree with |V|=n and let
o:{rl, Iy e T, }. Construct a table of dimension g X n“ for use with the algorithm.
The offline 2-server algorithm of [1, 6] computes the optimal manner of serving the
first m requests so that the servers reside on vertices vp v; after serving request m.
A key step in the optimal offline 2-server algorithm is coniputing the cost of moving
from a previous pair of vertices (called a configuration) to configuration vy Vi A
modification of that algorithm is needed since the distance between "two

26

configurations rmay be complicated by the existence of oriented edges.

Suppose v, and vy, are the train’s initial locations. tablefm, i, j] holds the
optimal cost of serving the first m request so that the servers reside on vertices v, v;
after serving request m. Initially, tablefa, b, 0] = 0 and all other entries are infinite.
The algorithm iterates from one to g, computing each row of #n“ entries for each
request. Assume row m has been computed. Then tablefm+1, i, j] is computed as
follows for request r,, , 5. if Tm+] € {, j}.then zable_[n_¢+], I, j] = e Otherwise,
tablefm+1, i, j] = MIN{lable[m, x y] + dist((x, y), (i, j))), overall 1 <x vy <n.
dist({x, y), (i, j)) is computed in O(n) time by constructing the tree that results from
having train; at v, and train, at v, initially and moving the trains to vertices x and
y respectively. This may require that we first send train; to x and then send train, to
y or vice versa. Once this is done, we attempt to send train; to vertex v;. If train; has
a traversable path to v, we count the distance it travelled and then send train2 to v..
If train; does not have a traversable path to v, we first move train, across the
oriented edges so that train; may pass on 1o v;. Train, then moves to v;, if possible.
The distance travelled by the two trains in moving to configuration v; v, is the dist
value returned. An example is shown in Figure 3 and Figure 4 shows Jm example
when dist{(x y), (; j)) = =

Train2's :‘lcsunauon i\ Train2's location
< N

\ vb T vb

Train2's location
o :

. e

N T e
va K Train}'s destination va Trainl’s location

‘\

3 Resulant Graph
Trainl’s location

dist=11
Figure 3. dist Computation Example

27

vb

Train2’s location

vE " - - . -
M Train!’s destination
«

.

| Train2’s destination
Train!’s location

Not possible to move to desired configuration

Figure 4. Another dist Computation Example

The naive implementation of the algorithm runs in O(qn5) time and is easily
modified to produce the optimal paths, rather than just the optimal cost. The reader
may also observe that the algorithm can be significantly optimized by only considering
those configurations which contain the requested vertex at each step. In this case, the
number of different configurations that need to be considered at each step is O(n),
rather than O(n2)- Similar dynamic programming algorithms can be conceived for the
k-train problem, but the number of states is exponential in k, leading to impractical
algorithms.

4.2 One Train in a Ring

Rings (or simple cycles) are a common restricted graph class for routing and
transportation problems, see for example [10]. We give a linear time algorithm to find
the optimal sclution to the I-trajin problem in a ring. This particular result is of
interest because of lower bound of two on the competitive ratio for the online
problem in rings [7]. Thus rings are a class of graphs for which the offline version of
the problem is in some sense "easier" than the corresponding online version.

Let vy, be the initial location of the train. Assume the n vertices in the ring are
numbered from vy to v, _; in a clockwise order. The algorithm is based on the
observation that at any time there is a directed path from the current location of the
train to vy. At request r;, we compute the optimal manner of serving the first
requests so that this directed path is directed in a clockwise direction or a
counterclockwise direction. This is done as follows. Let cost 7[1] give the optimal cost
of serving the first i requests so that there is a clockwise directed path from r;tov,
and costyli] give the optimal cost of serving the first i requests so that there is a
counterclockwise directed path from r; to vy Compute costyfi+1] := MIN(cost;[i]
+ dif‘cc(ri’ Tiv1h costz[i]'-l— dist .(r; riy+ 7)), and computf: costyfi+1] := MIN(cost 1 [i]
+ dist o (ry riy) costyfi] + dist (ry r;, 7)), where dist.(r; r; ;) is the clockwise
distance from r; to r;, ; and dist;(ry r;, 1) is the counterclockwise distance from ri
tor;, 7. The dist(v, vy) values are computed as follows for cost;:

dist,(vp vp) = la — b
dist, (v vp) =a —bita b dist, (v, vy) =a +n—bifa <b
The dist. (v, vp) value is as such because the train must first go to v, and then
proceed to vy, due to edge orientations. The dist(v,, vp) values are computed as
follows for cost,:
dist..(vjp vp) = la — b
dist (v, vp) =b —aifa <b dist. (Vg vp) =a +n —bifa>b
This algorithm requires O(g) time to compute the optimal path for a sequence
of length g. The algorithm’s optimality is easily proved.

4.3 One Train in a Complete Graph

Complete graphs are a particularly interesting case of the problem, due in part
to the following fact.
Fact 3. In the k-train problem in a complete graph, suppose there is a train at vertex
u and no train at vertex v. Then there exists a {traversable) path of length at most
two from u to v.
Proof: Suppose otherwise. Then (i, v) is oriented as <v, u>. The outdegree of u plus
the number of undirected edges incident to u is at least as large as the indegree of
u, since there is a train at u. Likewise, the indegree of v plus the number of
undirected edges incident to v is at least as large as the outdegree of v, since there
is no train at v. Vertex u must have a path of length one to at least [(n—1)/2] other
vertices. If there is no path of length two from u to v, it must be that each vertex w
which can be reached from u by a path of length one has an edge of the form <v,
w>. This implies v has outdegree at least [(n~1)/2] + 1. Suppose » is even. Then
v has outdegree at least n/2 + 1. Since v has degree n—I, it must be that the
indegree of v plus the number of undirected edges incident to v is at most n/2 — 2.
But this cannot be, since any vertex’s indegree and outdegree can differ by a most
one. The case when 7 is odd follows in a similar fashion.O

At first glance, an optimal 1-train algorithm would simply behave in a greedy
fashion: serving requests at cost one if possible and cost two otherwise. This approach
is doomed, however. For example, suppose we have a four vertex complete graph
where the train is initially at v;. Now consider o={v,, v3 v, v; v,}. Using the
greedy method, we must clearly serve the last request (at v,) at cost two. Suppose
we extend o o be ""’{VZ V3 Ve Vp Vo v3}. Notice there are two possible ways to
serve the second v, request: either via v or v. In this case, it is obvious that moving
from v; to vy and then to v, enables us to serve the final request at v at a cost of
one. Whereas if we had moved from v; to vy and then to v,, the final request at vy
would cost two. This example is rather simple, but in general it is not so obvious
which path has the most beneficial effect on future requests, even though we know
the future! That is to say, there is a combinatorial explosion of possible ways to serve
each request: each time we traverse edge (i, v), we affect future requests at 4 and
v, as well as future paths that may wish to use edge (1, v) en route to a request.

Finding a polynomial time optimal algorithm for the 1-train problem in a
complete graph is further complicated by the following, non-intuitive result.
Fact 4. There exists a request sequence where the optirnal solution, Opt, serves

29

certain individual requests at costs greater than two, and every solution that serves
each request at cost at most two has total cost greater than Opt.
Proof: The following example demonstrates this fact. Consider a complete graph on
six vertices: 4, b, ¢, d, ¢, f. Let the train initially be a vertex a and let o={qg, d, f ¢
d b oecadebdecal Opr=(adfcdbecacedebde.:c a).
The underlined requests indicated where Opt has served request d by traversing a
path of length three. The reason this path of length three is useful is that the
subsequent requests can each be served at cost one. The last requests, such as the
final request at g, cannot be served at cost one by any algorithm unless that algorithm
has neutralized edge (¢, a) previously; which is necessitated by the eighth and ninth
requests in o, which are at ¢ and . An examination of all possible alternate solutions
that do not use paths of length three confirms that none are better Opt. Some of
these solutions incur the exact same cost as Opt on this sequence, but leave their
graph in a different configuration (i.e. a different set of edge orientations) than Opr.
It is then easy to extend o to create a sequence ¢’ which exploits the differences in
configurations so as to require the other solution to incur a greater cost than Opt on
o’.0

The reason Fact 4 makes a polynomial-time solution harder to obtain is that
we cannot bound the search at any step to, say, explore paths of length two only. In
conclusion, we leave open the complexity of the 1-train problem in complete graphs,
as well as the k-train problem in complete graphs. Finding polynomial-time algorithms
or proving NP-completeness seems quite difficult.

References

1. M. Chrobak, H. Karloff, T. Payne,and S. Vishwanathan, "New Results on Serevr
Problems," SI4M J. Disc. Math, 11 (1991), pp. 172-181

2. M. Chrobak and L. Larmore, "Generosity Helps, or an 11-Competitive Algorithms
for Three Servers," Proc. Third ACM-SIAM Symp. on Disc. Alg., 1992, pp. 196-202
3. A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young, "Competitive
Paging Algorithms," Journal of Algorithms, 12 (1991), pp. 685-699

4. A. Fiat, Y. Rabani, and Y. Ravid, "Competitive k-Server Algorithms," Proc. 31st
Symp. on Foundations of Computer Science, 1990, pp. 452-469

5. E. Koutsoupias and C. Papadimitriou, "On the k-server Conjecture,” Proc. 26th
ACM Symp. on Theory of Computing, 1994, pp. 507-511

6. M. Manasse, L. McGeoch, and D. Sleator, "Competitive Algorithms for Server
Problems," Journal of Algorithms, 11 (1990), pp. 208-230

7. W. Klostermeyer, "The k-server Problem in Dynamically Orientable Graphs,"
Technical Report 95-1, Dept. Stat. and Computer Science, West Virginia University
8. C. Brad Boyse, CSX Corporation, Jacksonville, Florida, personal communication,
1992

9. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979 ;

10. G. Frederickson, "A Note on the Complexity of a Simple Transportation
Problem," SIAM. J. Compuu., vol. 22 (1993), pp. 57-61

11. B. Schneider, "Approximation Algorithms for the k-train Problem," Masters
Report, Dept. Stat. and Computer Science, West Virginia University, May 1995

(Received 28/3/95)

-

