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In this paper, we study the offline k-train The problem is shown to 
be NP-complete for k ~ 1, in sharp contrast to the offline k-server problem, which 
can be optimally solved in polynomial time for any k using programming 
techniques [1,6]. Approximation algorithms and algorithms for some restricted classes 
of graphs are discussed. 

2. P-<::OIIIDI4eten~;s of the Offline k-train Problem 
The offline k-train problem is shown to be NP-complete for k=l. The decision 

version of the I-train problem is formulated as, follows: 
Instance: G=(V, request sequence ... , 'q}, vertex vI which is the 
initial location of the train, and an integer d. 
VtICS'UOI[l: Does there exist a for the train: 

(VI' .. " '1' .. " '2 "'J 'q-I' 'q) 

s.uch that the total distance travelled is at most d and the train traverses only 
in the direction? The of the path is the number of traversed. 

decision version of the offline k-train problem can be formulated similarly. 
Theorem 1. The I-train problem is 

The I-train is seen to be in initial vertex and 
sequence, it is easy to Iltracetl in time to if 

traverses the legally, if the total distance travelled it at most d, and if the 
re(lue:sts are served in order. 

To show I-train is we reduce 3-SAT to I-train. Recall that a 3-SAT 
instance consists of a set of boolean variables uf} and a set of clauses 
C= over those variables [9]. The probrem to determine if 

a which satisfies C. The reduction is as foHows. For each 
variable construct the subgraph, caned variable SUJ1{Tr,(JnI'1: 

Variable Subgraph for ui 

ui 

g vertices 

1. Variable "" .... u M ., ....... '« 
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tnllnUllno clause 
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witness, 
m-negaltea variable which is ""c'" • ..,.""" 

The request at w 1 
five into the 

as 
train traverses the 
a cost of We n"('('p·pn 

and appears in clause 
left-hand column of "PT'h£',,,,,, 

The of 

seventeen 

w,R')' 
path of d or less that 

ass:lgrlm(~nt as followso If the train served 
vertex 
that <,,,,i'.,<'t-,,,,,, 

to traversals of cost more than 
Lo,ntInumg with the argument, we claim that the first 

the train's from ci to Wi' say u;fij, is the "witness" for clause 
length of the path and the fact that it serves all the reOlue:sts, 
passed through one in the variable subgraph cmTe~mcmdin!Z 
Uj on its path from ci to Wi' Then Uj is assigned "true" 
lIteral) our since the train traversed the Uj SUIJgIoap'n 
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This latter is 

that minimizes the 
in the This may be 

a wherein the number of oriented 
potential function. The details are omitted. simulations indicate that this 
algorithm is somewhat better in than the directed 

I t is a matter to convert the online 
takes (J and runs time + 
Theorem 2. A solution to the offline I-train nrr'\I",IPr'n 

time with ratio two. 
Follows from the fact that online I-train cmnpletnIVe ratio 

two.O 
We note online ,;!"",.,.;th ..... 

'Tn1r.IU'YH-' the existence of an appn)xtma:tioln U'F,U'J. Hj,UU 

know if cOlmpllete 
solvable or not. 

4. Restricted Classes 
A common technique for 

,,In'n .. ,J-h.....-.''' that behave -..,VHH.' ...... 

an 

I-train "' ... ''' .... ,0....-> 

in COlmpllete/:">,. ~"I""~'~' 

4. Two Trains in a Tree 
We show how to construct 

solve the 2-train in a tree, Let 

the 

-COlm{Jlel:e n.-"I"I"'., .... '" is to construct 
of For 

for the offline 
is served 

a={rl' r2' "" rq }. Construct a table of dimension q X 
The offline 2-server algorithm of 6] computes the manner of 
first m requests so that the servers reside on vertices vi: Vj after request m. 
A key step in the optimal offline 2-server algorithm is computing the cost of rnr .. " ... "" 

from previous pair of vertices (called a configuration) to configuration Vi' 
modification of that algorithm is needed since the distance between 
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to 

... "" 
Trainl's destination 

Train2's destination 
Trainl's location 

Not possible to move to desired configuration 

4. Another db;t COlffilJu1:atllon i-v'::IlTInip 

from rj to vo' ....... U'AUIJ ... ·.V 

'i+1))' and cost2[i+l]:= 
'i+1))' where distc('p 'i+1) is the 
rj + 1) is the counterclockwise distance from 'i 

values are computed as follows for 



distce(v Q' 

The distee(v Q' 

proceed to 
follows for 

diste(va, vb) la b I 
a -' b if a b distee(va, vb) a + n b if a < b 

value is as such because the train must first go to Vo and then 
to orientations. The vb) values are computed as 

dis tee (v a' vb) la b I 
a if a ~ b distc(va, b if a > b 

""'F,"'A;'UAJ'U requires O(q) time to COlTIOute for a sequence 
of all1:or:tthlffi'S optimality is 

odd follows in a similar fashion.O 

the problem, due in part 

outdegree of u plus 
as the indegree of 

the number of 

optimal 1-train would behave in a greedy 
recme:sts at and cost two otherwise. This approach 

aO~Jmea, hO'.lVe,rer. For suppose have a four vertex complete graph 
is at Vj' Now consider {v2' vj> Vj' v2}' Using the 

method, we must clearly serve the last request (at v2) cost two. Suppose 
we extend (] be v 3' v 4' v l' v 2' v 3}' N otke there are two possible ways to 
serve the second either via v 3 or v 4' In this case, it obvious that moving 
from to to enables us to serve the final request at v3 at a cost of 
one. moved from vIto v 4 and then to v 2' final request at v 3 
would cost two. example is rather simple, but in general it is not so obvious 
which has the most beneficial effect on future even though we know 
the future! That is there is a combinatorial of possible ways to serve 

each time we traverse edge (u, v), we affect future requests at u and 
v, as well as future paths that may wish to use edge (u, v) en route to a request. 

a polynomial time optimal algorithm for the l-train problem in a 
complete graph is further complicated by the following, non-intuitive result. 
Fact 4. There exists a request sequence where the solution, Opt, serves 
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certain individual at than two, and solution that 
rt=>rI11PCT at cost at most two has total cost greater than 

"",'''UVA'-' demonstrates this fact. Consider a F'nrnnl",t"" 

f. Let the train 
~~~~~~ ~~ ~ ~ 
The underlined requests indicated where 

of The reason this path 
'"" "L.~ ..... can each be served at cost one. 

final request at a, cannot be at cost one by any 
neutralized a) which is necessitated 

reClUe:sts in a, which are at c and examination of all alternate solutions 
that do not use of three confirms that none Opt. Some of 

cost on this sequence, but leave their 
different set of than 

to extend a to create sequence a' which exrHOlts 
COlltU!Ur,atU)llS so to other solution to incur 

The reason Fact 4 makes 
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