Further results on the existence of HSOLSSOM(hr)

F. E. Bennett
Department of Mathematics
Mount Saint Vincent University
Halifax, Nova Scotia B3M 2J6, Canada

L. Zhu
Department of Mathematics
Suzhou University
Suzhou 215006, China

Abstract In this paper, we improve the existence results for holey self-orthogonal
Latin squares with symmetric orthogonal mates (HSOLSSOMEs), especially for

type 6" We are also able to construct three new unipotent SOLSSOMs of orders
46, 54 and 58, the existence of which is previously unknown.

1. Introduction

A quasigroup is an ordered pair (Q, *), where Q is a set and (*) is a binary operation
on (@ such that the equations

a*x=b and y-a=b
are uniquely solvable for every pair of elements a, b in Q. It is well known (e.g., see [61)
that the multiplication table of a quasigroup defines a Latin square; that is , a Latin
square can be viewed as the multiplication table of a quasigroup with the headline and
sideline removed. For a finite set Q, the order of the quasigroup (Q, <) is IQl. A
quasigroup (Q, -) is called idempotent if the identity
X2 = X

holds for all x in Q.
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Two quasigroups (Q, -) and (Q, %) defined on the same set Q are said to be orthogonal
if the pair of equations x -y =a and X =y =b, where a and b are any two given elements
of Q, are satisfied simultaneously by a unique pair of elements from Q. We remark that
when two quasigroups are orthogonal, then their corresponding Latin squares are also
orthogonal in the usual sense.

Let S be a setand H = {Sq, Sy, ..., S} be a set of subsets of S. A holey Latin square
having hole set H is an S| X IS| array L, indexed by S, satisfying the following properties:

(1) every cell of L either contains an element of S or is empty,

(2) every element of S occurs at most once in any row or column of L,

(3) the subarrays indexed by Sj X S; are empty for 1 <1< n (these subarrays are

referred to as holes),

(4) element s € S occurs in row or column t if and only if (s, e (SXSNU1<; <n(SixSy)-
The order of L is SI. Two holey Latin squares on symbol set S and hole set H, say L.; and
L,, are said to be orthogonal if their superposition yields every ordered pair in
(SXSM\W1<i<n(SXS;). We shall use the notation IMOLS(s; sq, ..., s,) to denote a pair of
orthogonal holey Latin squares on symbol set S and hole set H = {S{, Sy, ..., 8, }, where
s=ISlands; =1Sjl for 1 Si<n If H=(J, we obtain a MOLS(s). If H = {S;}, we simply
write IMOLS(s, sq) for the orthogonal pair of holey Latin squares.

If H = {Sq, Sp, ..., Sy} is a partition of S, then a holey Latin square is called a
partitioned incomplete Latin square, denoted by PILS. The rype of the PILS is defined to
be the multiset {ISjl: 1 £i<n}. We shall use an "exponential" notation to describe types:
so type t,Y1 ...t; "k denotes uj occurrences of t;, 1 <1<k, in the multiset. Two orthogonal
PILS of type T will be denoted by HMOLS(T).

A holey Latin square is called self-orthogonal if it is orthogonal to its transpose. For
self-orthogonal holey Latin squares we use the notation SOLS(s), ISOLS(s, s;) and

HSOLS(T) for the case of H =, {S1} and a partition {Sq, S, ..., S, }, respectively.
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If any two PILS in a set of t PILS of type T are orthogonal, then we denote the set by
t HMOLS(T). Similarly, we may define t MOLS(s) and t IMOLS(s, s;).

A holey SOLSSOM having partition P is 3 HMOLS (having partition P), say A, B, C,
where B = AT and C = CT. Here a SOLSSOM stands for a self-orthogonal Latin square
(SGLS) with a symmetric orthogonal mate (SOM). A holey SOLSSOM of type T will be
denoted by HSOLSSOM(T).

HSOLSSOMs have been useful in the construction of resolvable orthogonal arrays
invariant under the Klein 4-group [9], Steiner pentagon systems [11] and three-fold
BIBDs with block size seven [18]. The existence of a HSOLSSOM(h®) has been
investigated by several authors. It is easy to see that n = 5 is a necessary condition for the
existence of such a design. The following existence results are known.

Theorem 1.1 ([13], [5]) If h is an odd integer, then a HSOLSSOM(h®) exists if and only if
n =5 is odd except possibly forh=3 and n € {11, 15, 19, 23, 27, 39, 51, 59, 87}.
Theorem 1.2 ({121, {171, [5], [2]) If h is an even integer, then a HSOLSSOM(h?) exists
for all n 2 5 except possibly when

(I)h=2(mod 4), h=6,and n € {8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 28, 32}, and
(2)h=6andn e {u u =0, 2 (mod 4)} U {u: u=3 (mod 4) and u<267}.

In this paper, we improve the above known results and show the existence of

HSOLSSOM(h?) when
h=3andne {11, 15, 39, 51, 59, 87},
h=2 (mod 4), h#6, and n € {10, 15, 16, 20},
h=6andnef{u u=5}\{6,7,10,11, 12, 16, 18, 19, 20, 22, 23,
24,27, 32,38, 39).
We are also able to construct three new unipotent SOLSSOMs of orders 46, 54 and 58,

the existence of which is previously unknown.
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2. Constructions

Let K, be the complete undirected graph with n vertices. A pentagon system (PS) of
order n is a pair (K,,, B), where B is a collection of edge disjoint pentagons which partition
the edges of K. A Steiner pentagon system (SPS) of order n is a pentagon system (K, B)
with the additional property that every pair of vertices are joined by a path of length 2 in
exactly one pentagon of B.

Let Q be an n-set and let K, be based on Q. It is well known [10] that a quasigroup
(Q, -) satisfying the three identities x2 = x, (yx)x = vy and x(yx) = y(xy) is equivalent to a
SPS (K, B). Here a pentagon (%, y,2,u,v) € Bifandonly if xy =2z and yx=v forx
# y and x? = x for all x € Q. A quasigroup associated with a SPS is called a Steiner
pentagon quasigroup (briefly denoted by SPQ).

A partitioned incomplete guasigroup (PIQ) is a partial quasigroup whose
multiplication table with the headline and sideline removed is a PILS. The type of the PI(}
is the type of its associated PILS. A PIQ of type h® satisfying the identities (yx)x = y and
x(yx) = y(xy) is denoted by HSPQ(h®).

A holey Steiner pentagon system of type ht (HSPS(h")) is a SPS with n disjoint holes
of equal-size bh. A HSPS(h®) is essentially equivalent to a HSPQ(h?).

Theorem 2.1 ([2]) Suppose there exists a holey Steiner pentagon system of type h?. Then
there exists a HSOLSSOM(h®).

We need the following known constructions, which are Lemmas 2.1 and 2.2 in [17].
Theorem 2.2 Suppose q is an odd prime power, q = 7. Suppose there exist
SOLSSOM(m) and ISOLSSOM(m + ¢, ¢) where m is even, ¢, = O ore,0dd > 0,t = 1, 2,
- (@-5)/2, k = Zyg¢(q -5)2(2€y). Then there exists a HSOLSSOM of type m(@-D(m + k)L
Theorem 2.3 Suppose ¢ 2 5, q is an odd prime power or q = +1(mod 6). Suppose there
exist ISOLSSOM(m + e, ;) where m is even, e, = O ore;odd > 0, t =1, 2, ..., (g - 1)/2,
k = X14<(q - 1)/2(2¢p. Then there exists a HSOLSSOM of type mdk!.

We also need several other recursive constructions. The first one is simple but useful.
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Construction 2.4 (Filling in Holes)

(1) Suppose there exists a HSOLSSOM of type {si 1 £i<n}. Letaz0bean integer.
For eachi, | <i<n-1,if there exists a HSOLSSOM of type {Sij-' I <jsk(i)pufal,
where  s; = Zigjei( i ) Sij» then there is a HSOLSSOM of type {sjj: I £j<k(i), IS i<
n-1}ufa+s,).

(2) Suppose there exists a HSOLSSOM of type {si: 1 £i<n}. Suppose there exists also a
HSOLSSOM of type {: 1 <j= k}, where s, = Ziqex b Then there is a HSOLSSOM
of type {sy 1 €i<n-1 }w{tj: 1 <3<k}

The next recursive construction for HSOLSSOM uses group divisible designs. A
group divisible design (or GDD), is a triple ( X, G, B ) which satisfies the following
properties:

(1) G is a partition of a set X (of points) into subsets called groups,

(2) B is a set of subsets of X (called blocks) such that a group and a block contain at
most one common poing,

(3) every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset { IG: Ge G }. A GDD (X, G, B ) will be
referred to as a K-GDD if [Bl e K for every block B in B. A TD(k, n) is a GDD of group
type nK and block size k. An RTD(k, n) is a TD(k, n) where the blocks can be partitioned
into parallel classes. It is well known that the existence of an RTD(k, n) is equivalent to
the existence of a TD(k + 1, n) or equivalently k - 1 MOLS(n). We wish to remark that a
special GDD with all groups of size one is essentially a pairwise balanced design (PBD),
denoted by ( X, B ). We use [3] as our standard design theory reference .

The following PBD construction is essentially {13, Lemma 3.1].

Construction 2.5 Suppose there exists a PBD ( X, B ) and for each block B € B there

exists a HSOLSSOM(h/B! ). Then there exists 2 HSOLSSOM(hX!).

More generally, we can apply Wilson's fundamental construction for GDDs [15] to

obtain a similar construction for HSOLSSOM.

211



Construction 2.6 (Weighting) Suppose (X, G, B) is a GDD and let w : X — Z¥U{0}.
Suppose there exists a HSOLSSOM of type {w(x): x € B} for every B € B. Then there
exists a HSOLSSOM of type { £, . g w(x) : G e G }.

The following product construction is essentially Lemma 3.4 in [12].
Construction 2,7 Suppose there exists a HSOLSSOM of type h®. Letm 24 and m # 6,
10. Then there exists a HSOLSSOM of type (mh)®,

To apply the above constructions the following known results are useful.

Theorem 2.8 ([6]) For any prime power p, there exists a TD(k, p), where 3 <k <p+ 1.
Theorem 2.9 ([4]) (1) N(g)z4ifg=5and q ¢ E4 = {6, 10, 14, 1§, 22}
(2)N(@)=z5ifg=7and q € Bs = B4 W{15, 20, 26, 30, 34, 38, 39, 46, 54, 60, 62}.

3. New results for HSOLSSOM(h")

In this section, we shall improve the known results in Theorems 1.1 and 1.2.

Lemma 3.1 There exists a HSOLSSOM of type 3" forn e {11, 15, 39, 51, 59, 87}.
Proof: A HSPS(3!!) is shown in [1]. Then a HSOLSSOM of type 31! follows. A 7-GDD
of type 315 is known (see [4] for example). Apply Weighting Construction and give
weight one to each point of the GDD. This takes care of the case n = 15.

Start with an RTD(9, 9) and delete 8§ points in the last three groups. We get a {6, 7,
9}-GDD of type 6891, Give weight two to each point and use HSOLSSOMs of types 26,
27, and 29 as input designs. We get a HSOLSSOM of type 128181, Add three new points
and fill in holes with HSOLSSOM s of types 35 and 37 to get a HSOLSSOM of type 339.

Start with a HSOLSSOM of type 30°. Add three new points and fill in holes with a
HSOLSSOM of type 311 to get a HSOLSSOM of type 35L.

Delete three points from a group of a TD(6, 15) and give weight two to each point to
get a HSOLSSOM of type 309241, Add three new points and fill in holes with
HSOLSSOM s of types 32 and 311 to get a HSOLSSOM of type 39.
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Delete four points from a group of an RTD(7, 19). We get a {6, 7}-GDD of type
619151, Give weight two to each point and use HSOLSSOMs of types 26 and 27 as input
designs. We get a HSOLSSOM of type 1219301, Add three new points and fill in holes
with HSOLSSOM s of types 35 and 311 to get a HSOLSSOM of type 387. O
Lemma 3.2 There exists a HSOLSSOM(h®) for h=2 (mod 4), h # 6, and n € {10, 15, 16,
201}

Proof: A HSPS of type 20 comes from [1]. Then 2 HSOLSSOM of the same type also
exists. The conclusion follows from Construction 2.7. O

In what follows, we shall deal with the type 6%. We need some working lemmas.
Lemma 3.3 Suppose there exists a TD(k + 2, 3m). Suppose d, a and b are integers, d
{0, 1} and a, b < m. Suppose there exist HSOLSSOMs of types 2k, 2k+1 and 2k+2. If
there exist HSOLSSOM(6"+4) for u = m, a and b, then there exists 2 HSOLSSOM(6") for
n=km+a+b+d
Proof: Delete some points from the last two groups of the TD, leaving 3a and 3b points
respectively. Give weight two to each point and apply the Weighting Construction. Since
the input HSOLSSOMs all exist, we get a HSOLSSOM of type (6m)k(6a)1(6b)t. Add 6d
new points and fill in the holes with known HSOLSSOM:s of types 6u+d g =m, a and b.
This gives the desired HSOLSSOM. O
Lemma 3.4 Suppose t, a and b are integers, t = 2 or t 2 4, a, b <4t + L. If there exist
HSOLSSOM(6M) for n = a and b, then there exists a HSOLSSOM(6") for n = S5(4t+ 1) +
a-+b.

Proof: Apply Lemma 3.3 withm =4t + I, k =5 and d = 0. From Theorem 2.9, we have a
TD(7, 3(4t + 1)). The required HSOLSSOM(64++1) comes from Theorem 1.2. O
Lemma 3.5 Suppose there exists a TD(k + 1, 3m). Suppose d and a are integers, d € {0,
1} and a < m. Suppose there exist HSOLSSOMs of types 2k and 2k+1. If there exist
HSOLSSOM(6Y+4) for u = m and a, then there exists a HSOLSSOM(6®) for n =km +a +
d.
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Proof: Delete some points from the last group of the TD, leaving 3a points. Give weight
two to each point and apply the Weighting Construction. Since the input HSOLSSOMis all
exist, we get a HSOLSSOM of type (6m)K(6a)l. Add 6d new points and fill in the holes
with known HSOLSSOMs of types 694 u = m and a. This gives the desired
HSOLSSOM. O

Lemma 3.6 Suppose t and a arc integers, t = 1, a £ 4t + 1. If there exists a
HSOLSSOM(63), then there exists 2 HSOLSSOM(6) for n = 5(4t + 1) + a.

Proof: Apply Lemma 3.5 withm =4t + 1, k=5 and d = 0. From Theorem 2.9, we have a
TD(6, 3(4t + 1)). The required HSOLSSOM(64+1) comes from Theorem 1.2. 0
Lemma 3.7 If n, € {26, 30, 54, 78, 102; 87, 91, 95, 99, 103; 108, 112, 116, 100, 104},
then there is a HSOLSSOM(6") whenever n = n, (mod 20) and n > n,,

Proof: Apply Lemmas 3.4 and 3.6 with the parameters shown in Table 3.1. The required
input HSOLSSOMs of types 6" for n =8, 14 and 15 can be done as follows. Deleting
one point from a TD(7, 7) gives a 7-GDD of type 68. Give each point weight one. This
solves the first case. Start with a known 7-GDD of type 315, Deleting one group gives a
{6.7}-GDD of type 314 Give weight two to each point of the two GDDs. We get the last
two cases. O

Lemma 3.8 There exists a HSOLSSOM(6™) for n =2 (mod 4), n = 5 and n ¢ {6, 10, 18,
22,38}

Proof: From Lemma 3.7, we need only deal with the cases n = 34, 42, 58, 62 and 82. For
n =34, we add three new points to three parallel classes of a 9-RGDD of type 333 (see [4]
for its existence) to get a {9, 10}-GDD of type 334, Giving weight two to each point
solves this case. For the remaining cases, apply Lemma 3.3 with d = 0 and other

parameters shown in Table 3.2. O
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Lt a b n = 5(dt+1)+a+b nz= Authority
i 1 0 n=6 (mod 20) 26 Lemma 3.6
1 5 0 n = 10 (mod 20} 30 Lemma 3.6
2 9 0 n = 14 (mod 20) 54 Lemma 3.6
3 13 0 n= 18 (mod 20) 78 Lemma 3.6
4 17 0 n=2 (mod 20) 102 Lemma 3.6
4 1 1 n =7 (mod 20) 87 Lemma 3.4
4 5 1 n= 11 (mod 20) 91 Lemma 3.4
4 5 5 n= 15 (mod 20) 95 Lemma 3.4
4 9 5 n =19 (mod 20) 99 Lemma 3.4
4 9 9 n =3 (mod 20) 103 Lemma3.4
4 15 8 n =8 (mod 20) 108 Lemma34
4 14 13 n= 12 (mod 20) 112  Lemma3.4
4 17 i4 n=16 (mod 20) 116 Lemma3.4
4 14 1 n =0 (mod 20) 100 Lemma34
4 14 5 n=4 (mod 20) 104 Lemma34
Table 3.1

k m a b n=km+a+b

5 8 1 1 42

5 9 8 5 58

3 9 9 8 62

8 9 9 1 82

Table 3.2

Lemma 3.9 There exists a HSOLSSOM(659) forn 2 5.
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Proof: From Theorem 1.2 and Lemma 3.2, we have a HSOLSSOM(30®) forn 2 5 and n
¢ {8, 12, 14, 18, 22, 24, 28, 32}. Filling in holes with a HSOLSSOM(6%) gives
HSOLSSOM(651). Lemmas 3.7 and 3.8 take care of the remaining cases exceptn = 8§ and
12. Applying Construction 2.7 withh =6, n =8 and m = 5, we get a HSOLSSOM(308).
Filling in holes with a HSOLSSOM(6%) gives a HSOLSSOM(640). Finally, deletc one



point from a TD(LL, 11). We have an 11-GDD of type 1012, Giving weight 3 to each
point we get a HSOLSSOM(3012). This takes care of the last case n = 12, O

Lemma 3.10 There exists a HSOLSSOM(6M) forn=3 (mod 4), n > 5 and n ¢ {7, 11, 19,
23,27, 39}

Proof: From Lemmas 3.7 and 3.9, we need only deal with the cases n = 47, 67; 31, 51, 71:
59,79; 43, 63 and 83, First, we apply Lemma 3.3 with k = 5 and the other parameters

shown in Table 3.3, where the case n = 83 is done by Lemma 3.5 with k = 5.

d m a b n=kmt+a+b+d
0 9 1 1 47
0 9 5 1 51
0 9 9 5 59
0 9 9 9 63
0 15 8 0 83
Table 3.3

From [4] we have a 5-GDD of type 231 Giving weight three to each point solves the
case n = 31. Add six new points to a HSOLSSOM(426) and fill in holes with a
HSOLSSOM(68). This solves the case n = 43. In a similar fashion, HSOLSSOMs of types
4210 and 786 lead to HSOLSSOMs of types 671 and 679 respectively.

Apply Theorem 2.2 with q =7, m =4 and e = 1. We get 2 HSOLSSOM(4%61). Add
one new point and fill in the size 4 holes. We have an ISOLSSOM(31, 7). Further apply
Theorem 2.3 with g = 13, m = 24 and e; = ... = eg = 7. This gives a HSOLSSOM
(2413841). Adding six new points and filling in holes with a HSOLSSOM(6%) and a
HSOLSSOM(615) solves the case n = 67. O
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Lemma 3.11 There exists a HSOLSSOM(6M) forn =0 (mod 4), n =5 and n ¢ {12, 16,
20, 24, 32}. |

Proof: From Lemmas 3.7 and 3.9, we need only deal with the cases n = 28, 48, 68, 88; 52,
72, 92; 36, 36, 76, 96: 44, 64 and 84. First, we apply Lemma 3.3 with k = 5 and other

parameters shown in Table 3.4. This leaves the cases n = 28, 36, 64 and 84.

d m a b n=Sm+at+b+d
1 7 4 4 44
1 8 7 0 48
1 8 7 4 52
1 8 7 8 56
1 12 7 0 68
1 12 7 4 72
1 12 7 8 76
1 16 7 0 88
i 16 4 7 92
1 16 8 7 96
Table 3.4

From [4] we have a BIB design with 169 points and block size 7. Deleting one point
gives a 7-GDD of type 628. Giving weight one to each point solves the case n = 28. Add
six new points to a HSOLSSOM(42%) and fill in holes with a HSOLSSOM(68). This
solves the case n = 36. Start with a HSOLSSOM(488) and fill in holes with a
HSOLSSOM(68). This solves the case n = 64. In a similar way, start with a HSOLSSOM
(846) and fill in holes with a HSOLSSOM(64). This solves the case n =84. O

Combining the results in Theorem 1.2 (2), Lemmas 3.8, 3.10 and 3.11, we have the
following theorem.

Theorem 3.12 There exists a HSOLSSOM(6") forn 2 5 and n ¢ (6, 7, 10, 11, 12, 16,
18, 19, 20, 22, 23, 24, 27, 32, 38, 39}.

We can now update the existence results in Theorems 1.1 and 1.2 as follows.
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Main Theorem If h is an odd integer, then a HSOLSSOM(h?) exists if and only if n> 5 is
odd except possibly when h = 3 and n € {19, 23, 27}. If h is an even integer, then a
HSOLSSOM(hD) exists for all n 2 5 except possibly when

(I)h=2(mod 4), h=6,andn e {8, 12, 14, 18,22, 24,28, 32}, and

(ZYh=6andne {6,710, 11, 12, 16, 18, 19, 20, 22, 23, 24, 27, 32, 38, 39}.

Note added: Since this paper was submitted for publication, four new HSOLSSOM(6")
have been found (see [1]). The possible exceptions n = 10, 11, 16, and 20 for h = 6 in the

Main Theorem above have now been removed.

4. Three new SOLSSOMs

In this section, we shall use the previous results and technigues to construct three new
SOLSSOMs. It is known that a HSOLSSOM(I®) is equivalent to an idempotent
SOLSSOM(n), which exists if and only if n = 5 is odd (see [9], [14], [16]). A SOLSSOM
is called unipotent if the symmetric orthogonal mate has a constant diagonal. It is known
([9]. [14], [7], [2)) that a unipotént SOLSSOM(n) exists if and only if n = 4 is even,
except n = 6 and possibly excepting n = 10, 14, 46, 54, 58, 66, 70.

Lemma 4.1 There exist unipotent SOLSSOMs of orders n = 46, 54 and 58.
Proof: From Lemma 3.1 there is 2 HSOLSSOM(31%). Add a new point to it and fill in
holes with a unipotent SOLSSOM(4). This solves the first case.

Delete four points in a group of a TD(6, 5). We have a {5, 6}-GDD of type 5511
Give weight two to each point to get a HSOLSSOM(10521). Fill in holes with an
ISOLSSOM(12, 2) (see [8]) and a SOLSSOM(4). This gives the second case. Similar
construction works for the third case. In this case, we need a {5, 6}-GDD of type 5931, a
HSOLSSOM(10%61) and a SOLSSOM(8). O

We can now update the existence results of SOLSSOMs in [2, Theorem 5.1].

218



Theorem 4.2 A SOLSSOM(n) exists for all positive integers n, with the exception of n =
2, 3, 6 and the possible exception of n = 10, 14, 66, 70, where the SOLSSOM is

idempotent if n is odd and is unipotent if n is even.
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