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Abstract In this paper, we improve the existence results for holey self-orthogonal 
Latin squares with orthogonal mates (HSOLSSOMs), especially for 

6il. We able to construct three new SOLSSOMs of orders 
46, and existence of which is previously unknown. 

1. Introduction 

A is an ordered .), where Q is a set and ( . ) is a operation 

on Q such that the eqllatl,ons 

a . x = b and y' a = b 

are " .... ,;"n.",I" solvable for every of elements b in Q. It is well known (e.g., see [6]) 

that the mUllulPl1(;atLon table of a aWlSll'!rO'UD defines a Latin square; that is , a Latin 

square can be viewed as the mlllt1'pl1(:;at!lOn table of a qu:asl:grc>uo with the headline and 

sideline removed. For a finite set the order of the nl1~",arr\nn (Q, .) is IQI. A 

.) is called zaempoteint if the 

holds for all x in 
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Two quasigroups (Q, .) and (Q, *) defined on the same set Q are said to be orthogonal 

if the of x . y a and x * y = b, where and b any two elements 

of are satisfied ,HU'UL~U""'V"""J.L by unique pair elements from Q. We remark that 

when two quasigroups are orthogonal, then their ,",V'.LV"jJVU'-'C"'F', Latin squares are also 

orthogonal in the usual sense. 

Let S be a set and H = {S1, be a of subsets of S. A holey Latin square 

having hole set H is an lSI lSI array L, indexed by S, the following properties: 

(1) every cell of L either contains an element of S or is empty, 

(2) every element of S occurs at most once in any row or column of L, 

(3) the subarrays indexed by Si x Si are empty for i n (these <'l1h.<:>rr.,,,,, 

referred to as holes), 

(4) element s E occurs in row or column t if and if 

The order of L is lSI. Two holey Latin squares on set S and hole set H, say and 

L:2, are said to be orthogonal if their superposition yields every ordered pair in 

(SxS)\ul:<::j~n(SixSi)' We shall use the notation s1, ... , sn) to denote a pair of 

orthogonal holey Latin squares on symbol set and hole set H = {S1, Sn}, where 

s = lSI and si = lSi' for 1 sis n. If H = 0, we obtain a MOLS(s). If H = }, we simply 

write IMOLS(s, s1) for the orthogonal pair of holey Latin squares. 

If H = {S 1, S2, ... , Sn} is a partition of S, then a holey Latin square is called a 

partitioned incomplete Latin square, denoted by PILS. The type of the PILS is defined to 

be the multiset {ISil: lsi s n}. We shall use an "exponential" notation to describe types: 

so type tl UI ... tk Uk denotes ui occurrences of ti, 1 sis k, in the multiset. Two orthogonal 

PILS of type T will be denoted by HMOLS(T). 

A holey Latin square is called self-orthogonal if it is orthogonal to its transpose. For 

self-orthogonal holey Latin squares we use the notation SOLS(s), ISOLS(s, s1) and 

HSOLS(T) for the case of H = 0, {Stl and a partition {S1, S2, ... , Sn}, respectively. 
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If any two PILS a set of t PILS of type T are orthogonal, then we denote the set by 

Similarly, we may define t MOLS(s) and t IMOLS(s, 

A holey SOLSSOM having Pis 3 HMOLS (having partition P), A, B, C, 

where AT and C Here a SOLSSOM stands for a se~f-orthogonal Latin square 

with 

denoted by 

<'''''''>HotY,r urthogonal mate A holey SOLSSOM of type T will be 

HSOLSSOMs have been useful in the construction of resolvable orthogonal arrays 

invariant Klein [9], Steiner pentagon systems [11] and three-fold 

BIBDs with block size seven [18]. The existence of a HSOLSSOM(hn) has been 

....,..,~~A"~v ..... by several authors. It is easy to see that n 2 5 is a necessary condition for the 

existence of such The LVUV YVLU,,", existence results are known. 

Theorem 1.1 

n 2:: 5 is odd except possibly for h 

then a HSOLSSOM(hn) exists if and only if 

and n E {11, 15, 19,23, 27, 39, 1,59, 87}. 

Theorem 1.2 [2]) If h is an even then a HSOLSSOM(hn) exists 

for all n 2:: when 

(1) h == h 6, and n E {8, 14,15, 18,20,22,24,28, 32}, and 

h == 6 and n {u: u == 0, 2 4)} u {u: u == 3 (mod 4) and u ~ 267}. 

In this paper, we ImnrrtVe the above known results and show the existence of 

when 

h == 3 and n E {11, 39,51,59, 87}, 

h == 2 (mod 4), h :f:. 6, and n E {10, 15, 16, 

h==6andnE u2::5}\{6,7,10, 11, 12, 18,19, 22,23, 

27,32,38,39}. 

We are also able to construct three new unipotent SOLSSOMs of orders 46, 54 and 58, 

the existence of which is previously unknown. 
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pentagon system 

order !,~'Ha,sv'l') which n'l14rn"r,1', 

the 

with 

three Identl1tles 

SPS 

A 

is the type 

is denoted 

A Steiner pentagon system of type 

of P'H'!·,"_''''''P h. A 

Theorem 

there 

~upp()se there exists a 

with 

of 

We the following known constructions, which Lemmas 2.1 and 2.2 in 

2 

Theorem q is an odd power, q ;:::: 7, Suppose there exist 

llU'I.';A-JI-'\,_"JH,l\lU + et , where m is even, et 0 or et odd> 0, t :::: 

"., (q-5)/2, k == -5)!2(2et). Then there exists HSOLSSOM of type m(q + 

Theorem 2.3 q ;:::: 5, q is an odd prime power or q == 6). Suppose there 

exist + et, et) where m is even, et == 0 or et odd 0, t == 1,2, ... , (q -

k = Ll~~(q _ 1)!2(2et). Then there exists a HSOLSSOM of type mqk1. 

We also need several other recursive constructions. The first one is simple but useful. 
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Construction Holes) 

HSOLSSOM of type (1) 

For 

where 

n 

(2) 

of type 

"The 

into 

there 1 ::;; in}. Let a ~ 0 be an integer. 

HSOLSSOM of type { 

a HSOLSSOM of type { 

k( i )}u{a}, 

k( i ), 1 ::;; i ::;; 

L~U''-''--'k''.''U'~H of type i ::;; n}. ~ ~OJ V'JuV there exists also a 

where sn tj- Then there is HSOLSSOM 

j::;; k}. 

1"pr'l1rCHJP construction for HSOLSSOM uses group divisible designs. A 

is a G, B ) which satisfies the following 

into subsets called groups, 

that group and a block contain at 

oecursin block. of 

type of is the multiset { 101: 0 E G, B) will be 

ODD of group a K-GDD if E K 

block size k. An 

classes. It is well 

every block in B. A 

that the existence of an 

can be .""rT1t1,r'\t'",-rI 

n) is to 

eXlstelllce of a We wish to remark that a 

ODD with aU groups of one is e.sSlenUlllil) balanced 

B). We as our standard reference. denoted 

The PBD construction is """'V"'C>£U1.'1 [13, Lemma 3. 

Construction 2.5 there exists a PBD ( X, B ) and for each block B E B there 

exists a ). Then there exists a HSOLSSOM(h IX1 ). 

More we can apply Wilson's fundamental construction for ODDs [15] to 

obtain a similar construction for HSOLSSOM. 
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of 

GOD and 

for Then there 

10. Then 

To 

3. 

In this 

Lemma 

the 

7 26, 

shall HY'I''''','''''' known 

exists a HSOLSSOM of type 3fl 

is shown in Then 

m m;;t: 

+L 

22}. 

60, 

87 

Proof: A 

of type known for example clgJt1tlnlg Construction and 

case n 15. one to each 

Start with an 

of type 

of the GOD. This takes care of 

9) and delete 8 in the last three groups. We a 

two to each and use HSOLSSOMs types 

27, and as input '"'"" .. "'."". We get a HSOLSSOM of type Add three new 

and fill in holes with HSOLSSOMs of types and 37 to get a HSOLSSOM of type 

7, 

Start with a HSOLSSOM of type Add three new and fill in holes with a 

HSOLSSOM of type 311 to get a HSOLSSOM of type 351 . 

Delete three points from a group of a TD(6, 15) and give weight two to each to 

get a HSOLSSOM of type 305241, Add three new points and fill in holes with 

HSOLSSOMs of types 39 and 311 to get a HSOLSSOM of type 
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Delete four from a group of We get a 7 of type 

619 1 Give two to each point and use HSOLSSOMs of types 26 and 27 as input 

uv.:us"" .. We a HSOLSSOM of type Add three new points and fill in holes 

with HSOLSSOMs of 311 to get a HSOLSSOM of type 0 

Lemma There for h 4), h and n E {1O, 15, 16, 

20}. 

Proof: HSPS of type 2n comes from [1]. Then HSOLSSOM of the same type also 

exist\). The conclusion follows from Construction 2.7. 0 

In what follows, shall deal with the type 6n. We need some lemmas. 

Lemma 3.3 .... " ..... ~""~ there exists a + 2, d, a and b integers, d 

E 1} and a, b m. there HSOLSSOMs of types 2k+ 1 and 2k+2. 

there exist LhJ" ... n-'~h;J'-'1VJl\ 

n km+a+b+ 

for u m, a and b, then there exists for 

Proof: Delete some from the 

two to each 

exist, we 

two groups of TO, and 3b points 

",,,,,m,,.-,,., Construction. Since 

the 

new 

This 

a+ b. 

Proof: 

and the 

a HSOLSSOM of type Add 6d 

holes with known HSOLSSOMs of types 

the desired HSOLSSOM. 0 

u m, a and b. 

;:'UIUVlJ:st; t, a and b are ",e".,,"""', 2 or t 4, a, b ~ 4t + 1. If there exist 

for n :::: a and b, then there exists a JlJh.J.'-..n ...... n-"'--'HA\ for n == + 1) + 

with m :::: 4t + 1, k:::: 5 and d =::: O. From Theorem we have a 

+ The re(IUll~ed '-J!.U,-,L,UUV'H'R.\ comes from Theorem 1.2. 0 

Lemma 3.5 :SUIDD()Se there exists a + 1, Suppose d and a are integers, d E {O, 

I} and a ~ m. there exist HSOLSSOMs of types 2k and 2k+l. If there exist 

for U == m and a, then there exists a "'<W''V'A..J'-'', .. "",,· .... A\ for n:::: km + a + 

d. 
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Proof: 

two to 

exist, 

Proof: 

then there is 

Proof: 

0 

HSOLSSOMs of 

one from a 

from 

the 

of 

a 

group of 3a 

all 

and fill the holes 

This 

::;; 4t + l. a 

for n:::: + 1) + 

d :::: O. From Theorem we have a 

comes from Theorem 1.2. 0 

99, 108, 112, 116, 100, 

and n ~ no' 

the parameters shown in Table 3. L The rpn.l1r,'rI 

8, 14 15 can be done as fol1ows. JLJv~IvUIU;:;:' 

7 -GDD of type Give each This 

solves the first case. with known 7··GDD type a 

{6,7 of Give two to each of the two GDDs. We get the last 

two cases. 0 

Lemma 3.8 There exists a JL1U'-'L,UU"-'l".1\ for n 2 (mod n ~ 5 and n ~ 18, 

22,38}. 

Proof: From Lemma we need only deal with the cases n 42, 58, 62 and 82. For 

n:::: 34, we add three new points to three classes of a 9-RGDD of type 

for its existence) to get a {9, of type 334. Giving weight two to each point 

solves this case. For the 

parameters shown in Table 3.2. 0 

cases, apply Lemma 3.3 with d :::: 0 and other 
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b n 5(4t+l)+a+b n Authority 

0 n == 6 (mod 20) 26 Lemma 3.6 

0 n 10 (mod 20) 30 Lemma 3.6 

0 n 14 20) 54 Lemma 3.6 

3 1 0 78 Lemma 3.6 

4 17 0 102 Lemma 3.6 

4 87 Lemma 3.4 

4 n 11 (mod 20) 91 Lemma 3.4 
n 15 95 Lemma 3.4 

9 n 19 (mod 20) 99 Lemma 3.4 
4 9 n 3 103 Lemma 3.4 
4 8 108 Lemma 3.4 
4 112 Lemma 3.4 
4 17 14 116 Lemma 3.4 
4 100 Lemma 3.4 
4 n 4 104 Lemma 3.4 

- - --------- - - -- -- -------_.---------- ~ -----------_ ... - ----------------- - ------ - ---- -------

m 

8 
9 
9 
9 

a 

1 
8 
9 
9 

Table 

b n km+a+b 

1 
5 
8 
1 

42 
58 
62 
82 

Table 3.2 

Lemma 3.9 There exists a HSOLSSOM(65n) for n 2:: 5. 

Proof: From Theorem 1.2 and Lemma we have a HSOLSSOM(30n) for n 2:: 5 and n 

~ {8, 14, 24, 28, in holes with a .LAU''J'--'l.J>\.J''J.!.'U\ 

Lemmas 3.7 and 3.8 take of the remaining C(L<;es except n == and 

12. Construction 2.7 with h == 6, n == 8 and m == 5, we get HSOLSSOM(308). 

in holes with a Lh-l''-JL.l0u''-JJ..''.L\ a HSOLSSOM(640). Finally, delete one 
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TD(ll 1), have II-GDD to 

::: 12. 0 

Lemma n 

27, 

3.7 3.9, 51,7 , 

we the 

shown in where is with 5. 

d m b n 

0 1 1 
9 5 1 

0 9 9 5 
0 9 9 9 
0 15 8 0 

From we hav(~ a 5,·GDD of to the 

n::: 1. to with 

This the n::: 

4210 and lead to HSOLSSOMs of types 

Theorem 2.2 with q ::: 7, m :::: 4 and el :::: 1. We get Add 

one new and fin in the size holes. We have an "U'-;LA'-'U' .• '~VA\ 

Theorem 2.3 with q :::: a HSOLSSOM 

six new and in holes with a A JlIJ''lJLJ\JIJ'lJH'.l\ and 

HSOLSSOM(615) solves the case n:::: 67. 0 
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Lemma 3.11 There for n 0 (mod n 5 and n rt:.{12, 16, 

24, 

Proof: From Lemmas 3.7 and we need only deal with the eases n 28,48, 68, 88; 52, 

72, 36,56,76, 44, 64 and 84. First, we Lemma 3.3 with k :.:: 5 and other 

parameters shown in Table J.4. leaves the cases n 28, 36, 64 and 84. 

d m 

7 
8 
8 
8 
12 
12 

16 

From we have BID 

7-GDD of 

a 

4 
7 
7 
7 
7 
7 
7 
7 

8 

Table 

b n 5m+a+b+d 

4 
o 
4 
8 
o 
4 
8 
o 
7 
7 

44 
48 
52 
56 
68 
72 
76 
88 

96 

and block size 7. Deleting one point 

one to each point solves the case n :.:: 28. Add 

and fill in holes with a HSOLSSOM(68). 'Ibis 

solves the case n 36. Start with a and fill in holes with a 

This solves the case n 64. In a similar way, start with a HSOLSSOM 

and fill in holes with This solves the case n :.:: 84. 0 

"--,\J'HU/CUlllU",, the results in Theorem 1.2 Lemmas 3.10 and 3.11, we have the 

theorem. 

Theorem 3.12 There exists a .LAIJ'-'JL,IJU'V'~".L\ for n ~ 5 and n rt:. {6,7, 10, 11, 12, 16, 

19,20,22,23,24,27,32, 39}. 

We can now the existence results in Theorems 1.1 and 1.2 as follows. 

217 



Theorem h then if and n 5 

odd then a 

(1) h n 

hand n 

Note added: Since this paper wa,~ submitted for PUI.JUI.,aUUU, 

DOSSllJle e)(Cer>tlOlrlS n 10, found 

111eorem above now been .. "nn",,,,,, 

Three new SOLSSOMs 

for 

this section, we shall the "''''''Utl'nH' tectlmqU(~s to construct 

SOLSSOMs. It is known that a 

which exists if and 

is called urupot.ent if the syrnm.etrlc Onh()gonal 

[2]) that a um[wtent U''-JJL.."JU'.-"U'',.H if n 

except :::: 6 and n 66, 70. 

Le,mma 4.1 There exist SOLSSOMs of orders n and 58. 

Proof: From Lemma 3.1 there is a Add a to 

holes with a nn,nr.t",,,,t 1J'..J'LIJUl'-"H'l1\ solves the first case. 

in the 

known 

fill in 

Delete four in group of of type 

Give to 

This 

construction works for the third case. In this case, we need a 

and a 0 

We can now update the existence results of SOLSSOMs in 
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Theorem 4.2 for all positive integers n, with the exception of n 

10, 14, 66, 70, where the SOLSSOM is 2, 3, 6 and the possible exceptlOn of n 

idempotent if n odd and is umpot:ent if n is even. 

The first author would like to thank Suzhou University for the kind hospitality 

accorded him during his visit in June, while engaged in this research. 
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