ON RAMSEY-TYPE GAMES FOR GRAPHS

Martin KNOR

Slovak Technical University, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 81368 Bratislava, Slovakia

Abstract. By a Ramsey-type game is meant a game in which two players (the constructor and the destroyer) alternately pick previously unpicked edges of the complete graph on n vertices, and the constructor wins if and only if he has selected all edges of a prescribed k-vertex graph G. We prove that the constructor wins if G is an n-vertex path $(n \geq 5)$ or a cycle $(n \geq 15)$, or if G is an n-vertex tree having some special properties.

1. Introduction

The Ramsey game on pairs is a 2-player game where the players alternately pick previously unpicked edges of the complete graph on n vertices, and the first player wins if he has selected all edges of some complete subgraph on k vertices, see [2]. Let $N^{*}(k)$ be the least integer n so that the first player has a winning strategy, that is, the first player can always select all edges of some complete graph on k vertices. As proved by Erdös and Selfridge in [2] (the lower bound) and Beck in [1] (the upper bound), we have:

$$
2^{\frac{k}{2}}<N^{*}(k)<(2+\epsilon)^{k}
$$

Generalizing the Ramsey game on pairs, Hahn and Širán studied the following Ramsey-type game for graphs: Let G be a k-vertex graph, and let there be two players, the constructor and the destroyer. The players alternately pick previously unpicked edges of the complete graph on n vertices, and the constructor wins whenever he has selected all edges of some G, otherwise the destroyer is the winner, see [3].

Let G be a k-vertex star and let N_{G}^{*} be the least number of vertices on which the constructor has a winning strategy, that is, the constructor can always select all edges of some k-vertex star. In [3] it is proved:

$$
1.2936 k<N_{G}^{*}<2 k-\log _{2} k
$$

In this paper we consider Ramsey-type games for spanning subgraphs of the complete graph on n vertices. We show that if $n \geq 5$ the constructor can always
construct a path on n vertices, and if $n \geq 15$ he can even construct a cycle on n vertices. (We suppose that the destroyer begins.) This can be interpreted as follows: If n satisfies the conditions mentioned above, the constructor can construct a Hamiltonian path (or a Hamiltonian cycle) in a complete graph on n vertices. Moreover, the constructor can construct a path or a cycle even if the destroyer has picked some, but at most $(n-5) / 2$ or $(n-15) / 2$ edges, respectively, before the game starts. Actually, our proofs will yield a certain class of trees on n vertices that can be constructed by the constructor.

2. PATHS

In this section we consider a Ramsey-type game played on n vertices, where the constructor wins if and only if he has selected all edges of some path on n vertices. Let us denote this game by $P_{n}^{c}\left(P_{n}^{d}\right)$ if the constructor (the destroyer) begins. We remark that the moves of the constructor will always be denoted by c_{1}, c_{2}, \ldots, while for the moves of the destroyer we use d_{1}, d_{2}, \ldots.

It is easy to see that the constructor wins the games P_{2}^{c} and P_{3}^{c}, while in P_{4}^{c} the destroyer is a winner (choosing d_{1} nonadjacent to c_{1}, and d_{2} nonadjacent to c_{2}). We prove here that in $P_{n}^{d}, n \geq 5$, the constructor is the winner, i.e., the destroyer loses even if he starts.

For the sake of convenience, if X and Y are two disjoint subsets of vertices, by $\langle X\rangle$ and $\langle Y\rangle$ we denote the set of edges having both endvertices in X and Y, respectively, and by $X Y$ we denote the set of edges having one endpoint in X and the other in Y. If no confusion is likely, an edge is often identified with the set of its endvertices.

Lemma 1. The constructor wins both P_{5}^{d} and P_{6}^{d}.
Proof. We utilize the fact that the constructor wins the games P_{2}^{c} and P_{3}^{c}.
Let c_{1} be adjacent to d_{1}, and let d_{2} be an arbitrary (previously unpicked) edge.
It is easy to see that the vertex set can be partitioned into two sets, say X and Y, both of size at most 3 , such that $d_{1}, d_{2} \in X Y$, and $c_{1} \in\langle X\rangle$. Let us choose $c_{2} \in\langle Y\rangle$ such that c_{2} is adjacent to d_{1}.

For the moment consider the game P_{5}^{d}. We may assume that $|X|=2$ and $|Y|=3$. In what follows if $d_{i} \in\langle Y\rangle, i \geq 3$, then we choose $c_{i} \in\langle Y\rangle$, while if $d_{i} \in X Y$ we pick $c_{i} \in X Y$. Moreover, in the later case we choose c_{i} such that $c_{i} \cap Y \in\left\{\cup d_{j}: d_{j} \in X Y, j \leq i\right\} \cap Y$ (observe that such a choice is always possible). As $d_{1}, d_{2} \in X Y$ and $c_{1}, c_{2} \notin X Y$, this choice requires that, when the game is finished. the constructor has joined all but one vertex from Y to X. Since he has paths on both X and Y, he has constructed a path on five vertices.

Now consider P_{6}^{d}. As $|X|=|Y|=3$, we may assume that $d_{3} \notin\langle Y\rangle$. Let us choose $c_{3} \in\langle X\rangle$ such that (if possible) c_{3} is adjacent to d_{1} (if $d_{3} \in X Y$ then c_{3} can surely be adjacent to d_{1}). Since the constructor has a path on X, in what follows only its endpoints are important. Let us denote the endpoints by X^{\prime}. Now, in $\langle Y\rangle$ there is only one edge picked by the constructor, and in $X^{\prime} Y$ there are at most two edges picked by the destroyer. (In the case $d_{3} \in X Y$ we have $d_{1} \notin X^{\prime} Y$ as all c_{1},
c_{2} and c_{3} are adjacent to d_{1}.) Hence, the constructor can proceed on X^{\prime} and Y analogously as in the case of P_{5}^{d}.

When the game is finished the constructor has paths on both X and Y, and all but one vertex from Y he joined to X^{\prime}. Hence, he constructed a path on six vertices.

In the preceding proof, if the destroyer has picked d_{i} adjacent to the vertex from $X-X^{\prime}$ (or made any useless move), then the constructor can make an arbitrary move. For this reason, in what follows we do not consider useless moves of the destroyer.
Theorem 2. The constructor wins the game P_{n}^{d} if $n \geq 5$.
Proof. By Lemma 1, we may assume $n>6$.
Let us choose c_{1} adjacent to d_{1}, and denote by X the vertices of c_{1} and by Y the remaining $n-2$ vertices. By induction, the constructor has a winning strategy in P_{n-2}^{d}. Thus, if $d_{i} \in\langle Y\rangle$ then choose $c_{i} \in\langle Y\rangle$ according to this strategy, while if $d_{i} \in X Y$ then pick $c_{i} \in X Y$ such that d_{i} and c_{i} have a common vertex in Y whenever possible.

When the game is finished the constructor has a path on Y, and all but one vertex from Y he joined to X, i.e., he constructed a path on n vertices, as required.

One can see that the constructor's strategy is not as tight in the case $n>6$ as in the case $5 \leq n \leq 6$. Namely, he can pause in the first occurrence of d_{i} in $X Y$, $i \geq 2$. His first choice of $c_{i} \in X Y$ is necessary when the destroyer has three edges in XY. Moreover, the constructor can avoid getting stuck at some disadvantageous vertices during the game analogously as in P_{6}^{d}.

Consider the following generalization of P_{n}^{d} : On an n-vertex set there is a subset B of k prescribed vertices, and the destroyer had picked l edges before the game started. In the game, the players alternately pick previously unpicked edges, the destroyer begins, and the constructor wins whenever he has selected all edges of some n-vertex path that does not have endpoints in B. Let us denote this game by $P_{n}^{d}(k, l)$.
Lemma 3. If $n \geq 5+3 k$ then the constructor wins the game $P_{n}^{d}(k, 0)$.
Proof. If $k=0$ then the constructor has a winning strategy in $P_{n}^{d}(0,0)$ as $n \geq 5$, by Theorem 2. Suppose that $k \geq 1$ and let $b \in B$. We may assume that the destroyer had picked all edges from $\langle B\rangle$ before the game started.

Let us choose c_{1} and c_{2} both incident with b, and moreover, we choose c_{1} adjacent to d_{1} and, if d_{2} is not adjacent to c_{1}, choose c_{2} adjacent to d_{2}. (Observe that this is always possible.) Now let X be the set of endvertices of c_{1} and c_{2}, and let Y be the set of remaining $n-3$ vertices (i.e., Y contains $k-1$ vertices from B). The constructor has a path on $X, d_{1}, d_{2} \in X Y$, and there are no picked edges in Y (except those in $\langle B-\{b\}\rangle)$. Denote $X^{\prime}=X-\{b\}$.

Clearly, $n-3 \geq 5+3(k-1)$. By induction, the constructor has a winning strategy in $P_{n-3}^{d}(k-1,0)$ on Y. Thus, if $d_{i} \in\langle Y\rangle$ then choose $c_{i} \in\langle Y\rangle$ according to this winning strategy, while if $d_{i} \in X^{\prime} Y$ then choose $c_{i} \in X^{\prime} Y$ such that $c_{i} \cap Y \in$
$\left\{\cup d_{j}: d_{j} \in X Y, j \leq i\right\} \cap Y$ whenever possible. The final condition requires that, when the game is finished, the constructor has constructed an n-vertex path that does not have endpoints in B.

Theorem 4. If $n \geq 5+3 k+2 l$ then the constructor wins the game $P_{n}^{d}(k, l)$.
Proof. By Lemma 3, we may assume $l \geq 1$. We consider five cases 1. - 5., and in each of them we reduce the game $P_{n}^{d}(k, l)$ to $P_{n^{\prime}}^{d}\left(k^{\prime}, l^{\prime}\right)$ such that $n^{\prime}<n$ and $n^{\prime} \leq 5+3 k^{\prime}+2 l^{\prime}$. More precisely, after the first $j-1$ moves of both players we split the n vertices into two sets X and $Y,|X|=j$ and $|Y|=n-j=n^{\prime}$. The constructor will have a path on X (its endpoints we denote by X^{\prime}), and the destroyer will have at most two edges in $X^{\prime} Y$. In Y there will remain k^{\prime} vertices from B and l^{\prime} destroyer's edges, and the numbers n^{\prime}, k^{\prime} and l^{\prime} will satisfy the inequality mentioned above. By induction, the constructor has a winning strategy in $P_{n^{\prime}}^{d}\left(k^{\prime}, l^{\prime}\right)$ on Y, and hence, next we pick $c_{i} \in\langle Y\rangle$ according to this strategy if $d_{i} \in\langle Y\rangle$, while if $d_{i} \in X^{\prime} Y$ we pick $c_{i} \in X^{\prime} Y$ such that $c_{i} \cap Y \in\left\{\cup d_{j}: d_{j} \in X Y, j \leq i\right\} \cap Y$ whenever possible. This will result in the required n-vertex path.

Let D be the graph consisting of d_{1} and the destroyer's l edges. Since $n \geq$ $5+3 k+2 l$, there is a set $F=\left\{f_{1}, f_{2}, \ldots\right\}$ of at least $3+2 k$ vertices that are neither in B nor in D.

1. Suppose that there are two vertices of degree one in D, say u and v, such that $u v$ is not in D.

Choose $c_{1}=u v$. If $u, v \notin B$ then $X=X^{\prime}=\{u, v\}, n^{\prime}=n-2, k^{\prime}=k, l^{\prime}=l-1$, and $n-2 \geq 5+3 k+2(l-1)$.

If $u, v \in B$ then choose $c_{2}=f_{1} u, c_{3}=v f_{2}$. (It is not important if $d_{2}=f_{1} u$ as the set F is large enough, so that the constructor can choose another of its vertices. In what follows this fact will not be specifically mentioned.) Put $X=\left\{f_{1}, u, v, f_{2}\right\}$ and $X^{\prime}=\left\{f_{1}, f_{2}\right\}$. Clearly, the destroyer has at most two edges in $X^{\prime} Y, n^{\prime}=n-4$, $k^{\prime}=k-2, l^{\prime} \leq l+1$, and $n-4 \geq 5+3(k-2)+2(l+1)$.

Finally, if $u \in B$ and $v \notin B$ choose $c_{2}=f_{1} u$, and put $X=\left\{f_{1}, u, v\right\}, X^{\prime}=$ $\left\{f_{1}, v\right\}$. (The case $u \notin B$ and $v \in B$ can be proved similarly.) We have $n^{\prime}=n-3$, $k^{\prime}=k-1, l^{\prime} \leq l$, and $n-3 \geq 5+3(k-1)+2 l$.
2. Suppose that there is a vertex, say u, of degree two in D.

Choose $c_{1}=u f_{1}$. If $u \notin B$ then $X=\left\{u, f_{1}\right\}$ and $n-2 \geq 5+3 k+2(l-1)$. If $u \in B$ choose $c_{2}=f_{2} u, X=\left\{f_{2}, u, f_{1}\right\}$, and $n-3 \geq 5+3(k-1)+2 l$.
3. Suppose that there is a vertex, say u, of degree one in D. Since there are at least two edges in D, we may assume that there is a vertex, say v, of degree at least three in D such that $u v$ is not in D, by 1 . and 2 .

Let $c_{1}=u v$ and $c_{2}=v f_{1}$. If $u \notin B$ we choose $X=\left\{u, v, f_{1}\right\}$ and $X^{\prime}=\left\{u f_{1}\right\}$. The destroyer has at most two edges in $X^{\prime} Y$, and $n-3>5+3 k+2(l-2)$. If $u \in B$ choose $c_{3}=f_{2} u, X=\left\{f_{2}, u, v, f_{1}\right\}$, and $n-4>5+3(k-1)+2(l-1)$.

In the next cases we may assume that the degrees of the vertices in D are at least 3.
4. Suppose that u and v are vertices in D, each of degree at least three, and $u v$ is not in D.

Choose $c_{1}=u v, c_{2}=f_{1} u, c_{3}=v f_{2}$, and put $X=\left\{f_{1}, u, v, f_{2}\right\}$ and $X^{\prime}=$ $\left\{f_{2}, f_{1}\right\}$. The destroyer has at most two edges in $X^{\prime} Y$ and $n-4>5+3 k+2(l-3)$. 5. Suppose that D is a complete graph on at least four vertices.

Let u be a vertex of degree at least three in D. Choose $c_{1}=u f_{1}$, and $c_{2}=v u$ such that v is not in D and d_{2} is adjacent to c_{1} or c_{2}. (This is possible as D is a complete graph.) If $v \notin B$ then $X=\left\{v, u, f_{1}\right\}, X^{\prime}=\left\{v, f_{1}\right\}$, the destroyer has at most one edge in $X^{\prime} Y$, and $n-3>5+3 k+2(l-2)$. If $v \in B$ choose $c_{3}=f_{2} v$, $X=\left\{f_{2}, v, u, f_{1}\right\}$, and $n-4>5+3(k-1)+2(l-1)$.

3. Cycles

In this section we consider a Ramsey-type game played on n vertices, where the constructor wins if and only if he has selected all edges of some cycle on n vertices. We denote this game by $R_{n}^{c}\left(R_{n}^{d}\right)$ if the constructor (the destroyer) begins.

The constructor loses in R_{n}^{c} if $n \leq 4$, since the cycle has too many edges. Moreover, he loses in R_{5}^{c} (choose d_{1} nonadjacent to c_{1}, d_{2} adjacent to d_{1}, and d_{3} such that $\left\{d_{1}, d_{2}, d_{3}\right\}$ is either a 3 -cycle or contains a vertex of degree three), and in R_{6}^{C} (choose d_{1} nonadjacent to c_{1}; the constructor likes to pick at least two edges incident with each vertex, and utilizing this fact in the first five moves the destroyer can pick $K_{4}-e$, i.e., a complete graph on four vertices without one edge). However, for $n \geq 15$ we have:
Theorem 5. The constructor wins the game R_{n}^{d} if $n \geq 15$.
Proof. In the first five moves the constructor picks a 4 -cycle, and then a path on remaining $n-4$ vertices. Since the endvertices of the path will be joined to the 4 -cycle in a good way, this will result to a cycle on n vertices.

Let us choose $c_{1}=y x$ adjacent to d_{1} (assume that d_{1} is incident with y). Moreover, choose $c_{2}=y z$ adjacent to d_{2}. (If d_{1}, d_{2} and c_{1} form a triangle, choose any $c_{2}=y z$.) Then c_{1} and c_{2} form a path on three vertices. As $n>7+2$ we may choose c_{3} nonadjacent to any of the previously picked edges. Let $c_{3}=u v$. It is easy to see that no matter how the destroyer moves, we may choose $c_{4} \in\{y\}\{u, v\}$, say $c_{4}=y u$, and then $c_{5} \in\{v\}\{x, z\}$, say $c_{5}=v x$, to obtain a 4 -cycle (in this case (xyuv)). We remark that if $d_{5} \notin\{v\}\{x, z\}$, then there are two possibilities for c_{5}, namely $v x$ and $v z$, and we prefer that one for which d_{2} and c_{5} are adjacent.

Let $X_{1}=\{x, u\}, X_{2}=\{y, v\}, X=X_{1} \cup X_{2}$, and let Y be the set of the remaining $n-4$ vertices. In $X Y$ there are at least two destroyer's edges (either d_{1} and d_{2} or, if $d_{5} \in\{v\}\{x, z\}, d_{1}$ and $\left.d_{5}\right)$. Split $X Y$ into pairs of edges $\left\{X_{1}\{a\}, X_{2}\{a\}: a \in Y\right\}$. Denote by A^{\prime} those pairs in which the destroyer has picked an edge in the first five moves. In what follows we define a set $A=\left\{X_{i_{1}}\left\{a_{1}\right\}, X_{i_{2}}\left\{a_{2}\right\}, \ldots, X_{i_{m}}\left\{a_{m}\right\}\right\}$, $i_{1}, \ldots, i_{m} \in\{1,2\}$. If there is $X_{j}\{a\} \in A^{\prime}, 1 \leq j \leq 2$, with both edges picked by the destroyer, then let both edges $X_{i_{1}}\left\{a_{1}\right\}$ and no edge of $X_{i_{2}}\left\{a_{2}\right\}$ are picked by the destroyer and in this case we set $A=A^{\prime} \cup\left\{X_{i_{2}}\left\{a_{2}\right\}\right\}$. Otherwise $A=A^{\prime}$. Note that in either case there are exactly two destroyer's edges in $X_{i_{1}}\left\{a_{1}\right\}$ and $X_{i_{2}}\left\{a_{2}\right\}$, $2 \leq m \leq 5$, and there are at most five destroyer's edges in $X_{i_{j}}\left\{a_{j}\right\}, 1 \leq j \leq m$.

From the sixth move on we will use the following strategy:

1. If $d_{i} \in\langle Y\rangle$, choose $c_{i} \in X_{i_{j}}\left\{a_{j}\right\}, 3 \leq j \leq m$.
2. If $d_{i} \in X_{j}\{a\}, 1 \leq j \leq 2$, such that $X_{j}\{a\} \notin A$, then choose $c_{i} \in X_{j}\{a\}$.
3. If $d_{i} \in X_{i_{j}}\left\{a_{j}\right\}, 1 \leq j \leq 2$, then choose $c_{i} \in X_{i_{j},}\left\{a_{j^{\prime}}\right\}, 1 \leq j^{\prime} \leq 2$.
4. If $d_{i} \in X_{i_{j}}\left\{a_{j}\right\}, 3 \leq j \leq m$, then choose $c_{i} \in X_{i_{j^{\prime}}}\left\{a_{j^{\prime}}\right\}$ such that $3 \leq j^{\prime} \leq m$ whenever possible.

We will proceed using this strategy until both edges are picked (by any of the players) in all $X_{i_{j}}\left\{a_{j}\right\}, 3 \leq j \leq m$. (This will happen as the game is finite.)

Thus, we may assume that there are no unpicked edges in $X_{i_{j}}\left\{a_{j}\right\}, 3 \leq j \leq m$. Let B consist of those $a_{j}, 3 \leq j \leq m$, for which the destroyer has picked both edges of $X_{i_{j}}\left\{a_{j}\right\},|B|=k$, and let l be the number of the destroyer's edges in $\langle Y\rangle$. In what follows, the constructor will play $P_{n-4}^{d}(k, l)$ on Y. There are three cases possible:

1. B is empty. In this case $l \leq 3$ (as two from the destroyer's first five edges are in $X_{i_{1}}\left\{a_{1}\right\}$ and $X_{i_{2}}\left\{a_{2}\right\}$). By Theorem 4 if $n-4 \geq 5+3 \cdot 2$ the constructor wins the game $P_{n-4}^{d}(0, l)$.
2. $|B|=1$. Then $l \leq 1$ and the constructor wins $P_{n-4}^{d}(1, l)$ if $n-4 \geq 5+1 \cdot 3+1 \cdot 2$, by Theorem 4. (If $d_{i} \in X_{i_{j}}\left\{a_{j}\right\}, 3 \leq j \leq m$, was the final edge chosen by the destroyer and it was not possible to choose $c_{i} \in X_{i_{j^{\prime}}}\left\{a_{j^{\prime}}\right\}, 3 \leq j^{\prime} \leq m$, then we can choose $c_{i} \in\langle Y\rangle$ according to the winning strategy for $P_{n-4}^{d}(1, l), l \leq 1$, where the destroyer has already picked its first edge.)
3. $|B|=2$. In this case $l=0$, and the constructor wins $P_{n-4}^{d}(2,0)$ if $n-4 \geq 5+2 \cdot 3$, by Theorem 4.

Since $n \geq 15$, in all three cases the constructor wins $P_{n-4}^{d}(k, l)$, i.e., he can construct an ($n-4$)-vertex path on Y whose endvertices are not in B.

Now proceed in our game: If $d_{i} \in\langle Y\rangle$ choose $c_{i} \in\langle Y\rangle$ according to the winning strategy for $P_{n-4}^{d}(k, l)$, while if $d_{i} \in X_{j}\{a\}, 1 \leq j \leq 2$, choose $c_{i} \in X_{j}\{a\}$. (In the case $d_{i} \in X_{i_{j}}\left\{a_{j}\right\}, 1 \leq j \leq 2$, choose $c_{i} \in X_{i_{j^{\prime}}}\left\{a_{j^{\prime}}\right\}, 1 \leq j^{\prime} \leq 2$.)

When the game is finished, there is a 4 -cycle on X and an $(n-4)$-vcrtex path P on Y that does not have endvertices in B. Let e_{1} and e_{2} be the endvertices of P. Our strategy requires that at most one from $X_{1}\left\{e_{1}\right\}, X_{2}\left\{e_{1}\right\}, X_{1}\left\{e_{2}\right\}, X_{2}\left\{e_{2}\right\}$ has both edges picked by the destroyer, say $X_{1}\left\{e_{1}\right\}$ (in this case $e_{1}=a_{1}$ or $e_{1}=a_{2}$). Thus, there are constructor's edges in both $X_{2}\left\{e_{1}\right\}$ and $X_{1}\left\{e_{2}\right\}$, and these edges together with three edges of the 4 -cycle (xyuv) and the edges of P form an n-vertex cycle, i.e., the constructor has won.

We remark that $n \geq 15$ is our best estimate even for R_{n}^{c}, since the destroyer can choose $d_{1}=w z$ and $d_{2}=w x$ in the preceding proof and three edges from d_{1}, \ldots, d_{4} will be in $\langle Y\rangle$.

Let $R_{n}^{d}(l)$ be a Ramsey-type game where the constructor wins if and only if he has selected all edges of some n-vertex cycle, however, the destroyer (who begins) had picked l edges before the game started. We have:

Theorem 6. If $n \geq 15+2 l$ then the constructor wins the game $R_{n}^{d}(l)$.
The proof is similar to that of Theorem 5. The only difference is that there will be l more edges in $\langle Y\rangle$ and applying Theorem 4 we obtain the result.

4. Trees

Let T be a prescribed n-vertex tree. By T_{n}^{d} we denote a Ramsey-type game played on n vertices, where the destroyer begins and the constructor wins if and only if he has selected all edges of some T.

Let T be a tree. Suppose that the edge set of T can be decomposed into a subtree T_{0} (having l edges) and a nonempty collection of paths, say P_{1}, \ldots, P_{k}, that may pairwise intersect only in the vertices of T_{0}. If each of the paths contains at least $15+2\left\lceil\frac{l}{k}\right\rceil$ vertices, we write $T \in T$.

In this section we show that if $T \in \mathcal{T}$ then the constructor is a winner in T_{n}^{d}.
Lemma 7. Let G be a graph on $k(m-1)+k^{\prime}$ vertices with l edges, $1 \leq k^{\prime} \leq k$. Let $X=\left\{x_{1}, \ldots, x_{k^{\prime}}\right\}$ be some vertices of G, and let Y be the set of the remaining $k(m-1)$ vertices. Moreover, let $k_{1}+\cdots+k_{k^{\prime}}=k$ and $k_{i} \geq 1,1 \leq i \leq k^{\prime}$. Then there are vertex sets X_{1}, \ldots, X_{k} each of size m, such that $\left|X_{j} \cap X\right|=1, X_{1}-X$, $X_{2}-X, \ldots, X_{k}-X$ is a partition of Y, x_{i} is in k_{i} of the X_{j} 's, and each $\left\langle X_{j}\right\rangle$ contains at most $\left\lceil\frac{l}{k}\right\rceil$ edges, $1 \leq j \leq k$ and $1 \leq i \leq k^{\prime}$.

Proof. Let $X^{2}, X^{3}, \ldots, X^{m}$ be a partition of $Y,\left|X^{2}\right|=\cdots=\left|X^{m}\right|=k$, such that there is $m^{0}, 1 \leq m^{0} \leq m$, for which if $x^{\prime} \in X^{j}, 2 \leq j<m^{0}$, then $X\left\{x^{\prime}\right\}$ is nonempty, while if $x^{\prime} \in X^{j}, m^{0}<j \leq m$, then $X\left\{x^{\prime}\right\}$ is empty (moreover, if $m^{0}>1$, we may assume that $X X^{m^{0}}$ is not empty). Let $X_{1}^{1}=X_{2}^{1}=\cdots=X_{k_{1}}^{1}=$ $\left\{x_{1}\right\}, \ldots, X_{k_{k^{\prime}-1}+1}^{1}=\cdots=X_{k_{k^{\prime}}}^{1}=\left\{x_{k^{\prime}}\right\}$. We construct $X_{i}^{2}, \ldots X_{i}^{m}$ such that $\left|X_{i}^{j}\right|=j, \cup_{i=1}^{k}\left(X_{i}^{j}-X_{i}^{j-1}\right)=X^{j}$, and if $\left\langle\cup_{i=1}^{k}\left(X_{i}^{j}-X\right)\right\rangle$ contains l_{j} edges, then $\cup_{i=1}^{k}\left\langle X_{i}^{j}-X\right\rangle$ will have at most $\frac{l_{j}}{k}$ edges, $1 \leq j \leq m$.

By induction, suppose that this is true for all $j^{\prime}, 2 \leq j^{\prime} \leq j$. Let l^{\prime} be the number of edges in $\left(\cup_{i=1}^{k}\left(X_{i}^{j}-X\right)\right) X^{j+1}$. We construct X_{i}^{j+1} from X_{i}^{j} such that $U_{i=1}^{k}\left(X_{i}^{j+1}-X_{i}^{j}\right)=X^{j+1}$. Clearly, there are $k!$ possibilities for constructing X_{i}^{j+1}, s in this way. Let e be an cdge in $\left(X_{i}^{j}-X\right) X^{j+1}$. In $(k-1)$! cases we have $e \in\left\langle X_{i}^{j+1}\right\rangle$. Thus, the average number of new edges in $\cup_{t=1}^{k}\left\langle X^{j+1}-X\right\rangle$ is $\frac{l^{\prime}(k-1)!}{k!}=\frac{l^{\prime}}{k}$. Hence, the required sets $X_{i}^{j+1}, 1 \leq i \leq k$, exist such that $\cup_{i=1}^{k}\left\langle X^{j+1}-X\right\rangle$ contains at most $\frac{l_{j}}{k}$ edges. Thus, there are at most $\frac{l_{m}}{k}$ edges in each $\left\langle X_{i}^{m}-X\right\rangle$.

However, there are still $l^{\prime \prime}$ edges in $X Y, l^{\prime \prime}>k\left(m^{0}-2\right)$, and in each $\left\langle X_{i}^{m}\right\rangle$ we have at most $m^{0}-1$ from these $l^{\prime \prime}$ edges. As $m^{0}-1<\frac{l^{\prime \prime}}{k}+1$, there are at most $\left\lceil\frac{i}{k}\right\rceil$ edges in each $\left\langle X_{i}^{m}\right\rangle, 1 \leq i \leq k$.

Theorem 8. The constructor wins the game T_{n}^{d} if $T \in \mathcal{T}$.
Proof. As $T \in \mathcal{T}$, it consists of a subtree T_{0} and k paths P_{1}, \ldots, P_{k}. In the first l moves the constructor will construct T_{0}. (Recall that l is the number of edges of T_{0}.) This can be done step by step by joining a new vertex (that is not incident with the destroyer's edges) to the subtree of T_{0} just constructed. When T_{0} is constructed, there are l edges picked by the destroyer.

Let $X=\left\{x_{1}, \ldots, x_{k^{\prime}}\right\}$ be the vertices of both T_{0} and $\cup_{i=1}^{k} P_{i}$, each x_{i} lying on k_{i} paths from P_{1}, \ldots, P_{k}, and let Y^{\prime} be the set of vertices that are not in
$T_{0}\left(\left|Y^{\prime}\right|=n-l-1\right)$. Moreover, let Y be a subset of $Y^{\prime},|Y|=2 k\left\lceil\frac{l}{k}\right\rceil$, such that there are no picked edges incident with vertices in $Y^{\prime}-Y$. (Observe that $2 l \leq 2 k\left\lceil\frac{l}{k}\right\rceil<n-l-1$.) Let X_{1}, \ldots, X_{k} be the sets whose existence is guaranteed by Lemma $7\left(\cup_{i=1}^{k} X_{i}=X \cup Y\right)$. Then there are at most $\left\lceil\frac{l}{k}\right\rceil$ edges in each X_{i}, $1 \leq i \leq k$.

Now extend every X_{i} to X_{i}^{*} by adding some of those vertices from $Y^{\prime}-Y$ that are not in $X_{j}^{*}, j<i$, and do this so that X_{i}^{*} will have as many vertices as P_{i}. Since $\left|X_{i}^{*}\right| \geq 15+2\left\lceil\frac{l}{k}\right\rceil$ and there are at most $\left\lceil\frac{l}{k}\right\rceil$ destroyer's edges in $\left\langle X_{i}^{*}\right\rangle, 1 \leq i \leq k$, by Theorem 6 the constructor has a winning strategy in $R_{\left|X_{i}^{*}\right|}^{d}\left(\left\lceil\frac{l}{k}\right\rceil\right)$ on X_{i}^{*}. Thus, if $j>l$ and $d_{j} \in\left\langle X_{i}^{*}\right\rangle, 1 \leq i \leq k$, choose $c_{j} \in\left\langle X_{i}^{*}\right\rangle$ according to this winning strategy to obtain T.

Let T consist of a star T_{0} and a path P_{1} such that T_{0} has $l=\left\lfloor\frac{n-15}{3}\right\rfloor$ edges, P_{1} has $n-l$ vertices $(n-l \geq 15+2 l)$, and P_{1} crosses T_{0} in the central vertex. Then $T \in \mathcal{T}$ and the maximum degree in T equals $l+2=\left\lfloor\frac{n-9}{3}\right\rfloor$. Thus, the constructor can win in T_{n}^{d} even if T contains a vertex of degree $\left\lfloor\frac{n-9}{3}\right\rfloor$.

Acknowledgement

I would thank to J. Bukor and J. Širáñ for their interest in this work and helpful comments.

References

[1] Beck J., Van der Warden and Ramsey type games, Combinatorica 1 (1981), 103-116.
[2] Erdős P., Selfridge J. L., On a combinatorial game, J. Comb. Theory (A) 14 (1973), 298-301.
[3] Hahn G., Širán̆ J., Star wars, preprint (1995).

