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ABSTRACT. The mazimum genus of a connected graph G, vy (G), is the
largest genus of an orientable surface on which G has a 2-cell embedding,
and the Bettr deficiency, £(G), is equal to B(G) — 2y (G) where 3(G) =
[E(G)] = |V(G)] + 1 is the Betti number of G.

In this paper we study the maximum genus of a graph with diameter
k > 3 and we prove that the Betti deficiency of a diameter 3 multigraph
is at most 2. In the case that the diameter 3 graph G is simple, the Betti
deficiency of GG can be determined. As to graphs with larger diameter,
some partial results are obtained.

§ 1. Imtroduction

This paper is devoted to an investigation of the maximum genus of graphs. Since
the maximum genus is invariant under homeomorphisms, the results we obtain can
be extended to graphs which are homeomorphic to the investigated graphs.

Throughout of this paper a graph in which multi-edges and loops are allowed is
called a pseudograph. A graph without loops is a multigraph, and a simple graph
is a graph which contains no multi-edge and loop. Without mentioning otherwise.
a "graph” means a "pseudograph”. For basic information and results, the readers
may refer to the book Graphs and Digraphs(l]. Recall that the maximum genus of a
connected graph G, v,, (&), is the largest genus of an orientable surface on which @
has a 2-cell embedding, and the Betti deficiency, £(G), is equal to 3(G) ~ 2+,,(G).
Thus the value £(G) will naturally determine the maximum genus of G. We note
here that £(@) = B(G) (mod 2). Hence v,,(G) can attain its maximum if and only
if £(G) = 0 or 1 (depending on whether 5(G) is even or odd). In the case that
E(G) < 1, the graph G is said to be upper embeddable.

There are many good results in the study of the maximum genus[2-12
two approaches have been utilized. The first one was proved by Xuong[1

] Mainly
1].

Theorem 1.1. [11] Let G be o connected graph. Then £(G) = min{&(G.T)| T
is o spanning tree of G} where £(G,T) is the number of odd size components in

G - E(T).

The spanning tree T' of G which gives £(G,T) < 1 is called a splitting tree of G.
Therefore the following result is obvious.

' Supported by the National Council of the Republic of China (NSC81-0208-M009-13).
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Theorem 1.2. [3,11] A graph G is upper embeddable if and only if G has a splitting
tree.

In the other direction, Nebesky gave the following result. Let v(G,A4) = ¢(G —
A) +b(G — A) — 1 — |A|, where ¢(G — A) denotes the number of components in
G — A and b(G — A) denotes the number of components in G — 4 with odd Betti

numbers.

Theorem 1.3. [4] Let G be a connected graph. Then
§(G) = max {v(G, 4)|4 C E(G)}.

Thus we have the following corollaries.
Corollary 1.4. Let G be a connected graph and let k be a positive integer. If
oG~ A)+HG — A) — k < |A] for each A C E(G), then £(G) < k—1.
Coroﬂary 1.5. Let G be a connected graph. Then G is upper embeddable if and
ondy if (G ~ A) 4+ b(G — A) - 2 < |A] for cach A C E(G).

From the above results, we derive the following theorems. The first one gives a

distinct proof of Skoviera’s result[9].
Theorem 1.6. [9] A diameter 2 multigraph is upper embeddable.

3

Theorem 1.7. Let G be a diameter § multigraph. Then £(G) < 2.
In the case that G is a simple diameter 3 graph, we can determine 7,,(G). Before

we state the theorem, we introduce two classes of graphs which have Betti deficiency
2.

A graph G is in class § if it contains a bridge viv; such that

(1) both components Gy and G of G — vyv, which contain v; and vq, respec-
tively, have odd Betti numbers; and
(2) the vertex v; is adjacent to every vertex in G; — vy, i = 1,2.

Vi V2

FIGURE 1.1

A graph H is in class T if it contains a 3-element edge subset A such that

(1) H - A consists of three components Hy, Hy and H; with odd Betti numbers;

and
(2) if V; is the set of vertices in H; incident with the edges in A, then every
vertex in V; is adjacent to all the vertices of V(H )\ Vi, ¢ = 1,2, 3.
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FIGURE 1.2. A= {ey,ea,e3}

Now we are ready to state the theorem.

Theorem 1.8. A4 simple diameter 3 graph G has Betti deficiency 2 if and only if
GisinS orT.

We note here that if G is a pseudograph with diameter 3, then to determine its
maximum genus is going to be very difficult. The graph in Figure 1.3 shows that
the Betti deficiency of a diameter 3 pseudograph can be very large even it is 2-edge
connected. (A 2-edge connected diameter 2 pseudograph has Betti deficiency at
most 4.[9]) As to the graphs of diameter 4 or larger, some results are obtained in
section 3.

FiGuRre 1.3

§ 2. The proof of Theorem 1.8, 1.7 and 1.8.
First, we need a lemma.

Lemma 2.1. Let G be a connected graph with £(G) > 2 and let A C E(G) be a
manamal set such that v(G, A) = €(G). Then
(a) (G~ A) = c(G—A), and moreover, if G is a multigraph then every compo-
nent of G— A is non-trivial and if G is a simple graph then every component
of G — A contains at least three vertices;
(b) the end vertices of every edge in A belong to distinct components of G — A;

and
(¢) any two components of G — A are joined by ai most one edge of A.
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Proof. (a) Suppose not. Then there exists a component of G — 4 with even Betti
number; let it be F. Since £(G) > 2, we have ¢(G — 4) > 2. Thus there is an
edge ¢ € A joining F and another component of G — A. Let A’ = A\{e}. Then
AG—~AN)=cG~A)~1,bG—-A")=bG ~ 4), and |A'| = |A| — 1. This implies
that
(G, A = (G - AN+ (G- A" —- 1|4

=G - A) =~ 1+ G —A)~1—(]A]~1)

=G - A)+ G —~A)~1~|4]

=v(G,A)

= {(G).
Since A’ is a proper subset of A, this contradicts to the minimality of 4. Thus we
have that every component of G — A has odd Betti number. Moreover, if G is a
multigraph then every component of G — A is non-trivial and if G is a simple graph
then every component of G — A contains at least three vertices.

(b) Assume that f is an edge of A whose end vertices belong to the same compo-
nent Fi,. Let A" = A\{f}. Then the component in G—A4" which consists of Fp, and
£ has even Betti number. Thus o(G—A") = ¢(G—-A4) and {(G—~ A") = (G- 4)~ L.
This implies that

WG, A" = ¢(G~ A"+ b(G — A") ~ 1 —]4"
=c(G— A+ (G - 4) -1 —|A]
=46, 4)
=¢(@).

This contradicts to the fact that A is minimal and we have the proof of (b).

(c) Suppose not. Then there is a pair of components of G — A such that they are
joined by at least two edges of A. Let these two components be Fy and Fy, and let
e1 and ey be two of the edges joining Fy and Fy. Put A" = A\{e1,e2}. Then the
component in G — A" which consists of Fy, Fy and €1, e; has odd Betti number.
Thus oG — A") = (G~ 4) =1, b(G — A") = b(G — A) — 1, and |A"'] = |A] — 2.
Therefore we infer

I/(G,Al”) — C(G _ AIH) + b(G . Aln) -1 1AI”]
=c(G—-A)+ G~ A) —|A]
=v(G, 4)
={(G).
Again, A" is a proper subset of A which is not possible. Hence we have the proof
of (¢) and conclude the proof of Lemma 2.1.

With the support of Lemma 2.1, we are able to construct a new graph based
on the choice of A. Let G be a connected graph with {(G) > 2, and let 4 be a
minimal set of B{G) such that v(G, A) = £(G). G4 is called a iestable graph of G
(with respect to A) if V(G4) is the set of components of G — 4 and two vertices in
G 4 are adjacent whenever they are joined in G by one edge of A.

Accordingly, the following two lemmas are easy to prove.
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Lemma 2.2. If £(G) > 2 and G4 is a testable graph of G, then

§G) =v(G,A) =2[V(Ga)l - |E(Ga)| - L.

Proof. By the definition of Ga, [V(Ga4)| = «(G4) and |E(G 4)| = |A| Applying
Lemma 2.1,

£G) = (G — A) + (G — A) — 1~ |A]
= 2¢(G — A) ~ 1 - |4]
=2(V(Ga)l - E(Gy)-1. O

Lemma 2.3. If £(G) > 2 and G4 is a testable graph of G, then the minimum
degree of G 4 15 not greater than 3, that is, (G 4) < 3.

Proof. Suppose not. Then degg, F' > 4 for each vertex F in G 4. Thus [E(G4)| 2
2|V(G4)l. By Lemma 2.2,

EG) = 2AV(GA)| = |E(Ga)| =1 <2(V(Ga)| -2/V(G4) -1 =~1.

This is a contradiction. So the proof is complete. O
Now we are ready to prove Theorem 1.6.
The proof of Theorem 1.6.

Proof. Suppose that G is a multigraph of diameter 2 with £(G) > 2. By Lemma
2.1 and 2.3, there is a testable graph G4 with minimum degree at most 3. If G4 is
a complete graph K., then by Lemma 2.2, n = 2 or 3. In each case, either (a) or
(c) of Lemma 2.1 is violated. Thus G 4 is not a complete graph. Hence there exists
a pair of vertices Fy and Fy which are not adjacent in G 4. Let {a;, b} € V(F}),
i = 1,2. (V(F.) denotes the vertex set of the component F; in G — A.) Then the
two vertices in each of the following pairs {aj, a2}, {b1,02}, {a1,b2} and {by.as}
must have a common neighbor outside F; U Fy, for otherwise the diameter of G
is greater than 2. This implies that degg, Fy > 4 and degg, F» > 4. Since G 4
is simple, it has at least 5 vertices. But by Lemma 2.3, G4 contains a vertex H,
of degree not larger than 3. This yields that there is a vertex H; not adjacent to
Hy. By repeating the above argument for H; and Ha, we obtain degg, H1 > 4, a
contradiction. This concludes the proof. O

The proof of Theorem 1.7.
Proof. Suppose not. Then £(G) > 2. By Lemma 2.1 and 2.3, there is a testable

graph G 4 with §(G4) < 3. Let Fy be a vertex of V(G 4) which attains the minimum
degree. We consider the following three cases.

Case 1. §(G4) = 1. Let F} be the neighbor of Fj in G4. By the assumption that
£(G) > 2, wehave c(G—A) > 3 and thus there exists a vertex £y € V(Ga)\{Fo, F1}.
By Lemma 2.1, for each F' € V(G4), F contains at least two vertices in G — 4.
Therefore there exist ug € V(Fy) and uz € V(Fh) such that ug and uy are not
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adjacent to any vertex of V(Fy). This implies that the distance of ug and us is at
least 4. But this is impossible for a graph with diameter 3. Hence we conclude that
5(G 4) = 1 is not possible.

Case 2. §(G4) = 2. Let F; and F; be the neighbors of Fy in G4. Thus, in G
there are vertices u; € V(F), i = 0,1,2, such that wou; and ugus are edges in
G. Due to the fact that G4 is simple, these edges are the unique edges which
join the component Fy and components F) and F; respectively. Suppose that
|[V(G4)| = 3, then Fi, F; must be adjacent in G 4. This yields that £{(G) = 2 which
is a contradiction to the assumption. Therefore |V(G 4)| > 3. Let the vertices of
V(G 4) be denoted by F;, z = 0,1,2, --. Now consider the components, F}, 1 > 2.
Since G is of diameter 3 and every component of G — A is non-trivial, there exist
at least two edge disjoint shortest paths Py and P! of length 2 or 3 starting from
the vertices of F; to the vertices of F in G. Let the set of starting edges of all
shortest paths from the vertices of F; to the vertices of Fy be denoted by 4;. For
convenience, any edge in A; will be called a starting edge for F;. Obviously, 4; € A
and |A;| > 2. Consider F;, Fiy € V(G 4) wherei # ¢’ and 1,7' > 2. If all the starting
edges of F; or Fy are incident with only the vertices of F; and Fy, then A;NA4, = 0.
Otherwise, there exists a shortest path P; g of length 3 such that its starting edge e;
is incident with some vertex in Fy, k > 2. If k # ¢/, then e; € Ay, Assume that e,
is incident with a vertex of Fyy and e; € Ay. Then P; ¢ must be of length 2, which is
a contradiction. Hence |4;\A«| > 2. This implies that |4;\(Ujxi j>24;)] > 2. For
convenience, we shall assume that each set 4;, 7 > 2, contains exactly two starting
edges which are not in any other Ay, 7' > 2 and ¢ # ¢'. By a direct count, if there
exists an edge f & {uouy,uous} U (Uis24;) which joins two components of G — A,
then

14|22+ 1+ 2c(G = 4) - 3)
=2(G—-A4)-3
=c¢(G—-A4)+ G~ A4)~3.

This yields £{G) < 2, a contradiction and we conclude the proof of Case 2. In what
follows, we shall claim that the edge mentioned above does exist.

First, if 1 Fy € V(G 4), then we are done. Therefore assume that Fy F; ¢ V(G 4).
Consider the distance of vy, vy in G, d(v1,vs), where vy € V(Fy), v, € V(F;) and v;
is not incident with the vertices in Fy, j = 1,2. In the case that d(vy, v2) = 2, there
exists a vertex vy € V(F%), for some & > 2, such that vyv; and vz are in 4. Since
Fy; is non-trivial, let vy, € Fy\{vx}. Thus, in order to keep that d(v},v,) < 3 for each
vy € V(Fp), v, must be incident with an edge g in 4\ {vgv1, vzvq }. Furthermore, ¢
can not be a starting edge for Fi, k' > 2 and k' # k. Hence g is the extra edge f we
are looking for. On the other case, d(vy,vs) = 3. Thus there exists a shortest path
of length 3 from v; to vy, let it be vy — a — b — v,. We consider the following three
situations. First, a € V(F1) or b € V(F,). Then d(a,ve) = 2 or d(v1,b) = 2. By a
similar argument as in the case d(vy,v) = 2, we can find an edge f. Secondly, if a
and b are in the same component F} for some k > 2, then a must be adjacent to a
vertex w in Fis for some k' > 2. For otherwise, there exists a vertex u € V(F) such
that d(a,u) > 4. Therefore f can be found in {aw, avy, bvs }\Ar. Finally, assume
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that ¢ and b are in distinct components Fy, Fy, for some k, h > 2. If ab is not a
starting edge of one of the two components, then let f = ab. we are done. On the
other hand, let ab be a starting edge of a component Fy, h > 2. Without loss of
generality, let a € V(Fy). Since Fj is non-trivial, let o’ € V(F3)\{a}. Clearly, a’ is
incident with an edge f' of A. Hence f can be found in {avy, ab. f'}\ A, and thus
we conclude the proof of Case 2.

Case 3. §(Ga) = 3. Let Fy, F,, Fy be the neighbors of Iy in G4 By Lemma
2.2, we have 2|V (G4)| — |E(G4)| ~ 1 > 2 and |E(G4)| 2 2|V(G4)|. This implies
[V(Ga)| > 6. As in Case 2, for each z > 3, let A; be the set of starting edges of
F, such that |4;] = 2, and 4; N A4; =0 for ¢ # j. A bit of reflection, if there exist
two edges in A which are not incident with the vertex in [ and also not in any 4;,

1> 3, then

[4] > 2+ 2(c(G - A)—4)+3
=2¢(G—~A4)~-3
> (G~ A)+b(G - 4) - 3.

This implies £(G) < 2, a contradiction and we conclude that §(G4) = 3 is not
possible either, In what follows, we shall claim that the two edges mentioned above
do exist.

To start with, if H =< {F, F», F3} >¢, which is a subgraph of G4 induced by
{Fy, Fy, F3} has size at least 2, then we are done. Therefore, there are two situations
to consider. First, |E(H)| = 1. Without loss of generality, let /3 Fy € E(H). Also,
let vy € V(F,) and vy € V(F3) such that v; and v; are not adjacent to any vertex of
Fy. Since F1Fs ¢ E(G4), the shortest path from vy to v3 must pass some vertices of
F; for some i > 3. Thus we can find an edge f as in the proof of Case 2. Therefore
including the edge in H we have obtained the two edges. Secondly. |[E(H)| = 0.
Then F\Fy, FhF3, FyFy ¢ V(G4). Since every component of G — A is non-trivial,
there exists a vertex v; € V(F;) for each ¢ = 1,2,3 such that v; is not adjacent
to the vertices of V(Fy). Moreover, since G is of diameter 3, for each j and & in
{1,2,8}, j # k, there is a vj — v} shortest path P; of length 2 or 3 such that
P; ;. contains no vertex of V(Fp). Now let F;; = {Fi| P; contains a vertex in F],
1 > 3}. Clearly, |Fji| = 1 or 2. We consider the following three situations.

First, if there exist two distinct 2-subsets, {7, k} and {j, ¥’} of {1, 2.3} such that
Fik N Fy g = @, then by the same argument as in Case 2, we can find an edge f
for each 2-subset, thus we have the two edges.

Secondly, assume that J?j,k n Fj‘,k' # 0 for any pairs {]7k}7 '{jlv kl} c {1727 3}7
and there exists a set Fj; with two elements. Without loss of generality, let F; 5 =
{Fy,Fy}, z,y > 3,and let Py g =v; —a—b—wvy where a € V(F;) and b € V(F,).
Now if ab € A, U Ay, say ab € A;. Then b must be adjacent to some vertex
v € V(F1) U V(F3)\{v1,vs} due to the reason that ab € A, and then d (b,u) < 2
for some u € V(F). Again since each component in G ~ A4 is non-trivial, we have
that ¢ € V(F;)\{a} and d € V{(Fy)\{b} which are incident with e1 € A\(UpoAx)
and e; € A\(UgsyA4s), respectively. Then the two edges can be found from the set
{via,ab,bv,bvy,e1,e5}. (At most 4 of them are in A; U 4,.) On the other hand,
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if ab ¢ A, U Ay. Let fi = ab. All we need is to find an edge f, which is not ab
and not in any Ak where k > 2. Since F1, N Fi3 # 0, F; € Fi3 or Fy € Fi.
I Fi3 = {F;,F,}, then P ; must be v; —a — b~ v;. Therefore, there exists an
edge g1 € A\(UksyAg) which is incident with a vertex of V(F,)\{¢}. Then f,
can be found in the set {vzb,v3b, g1}. Otherwise, we can let Fy 2 N Fiz = {F,}. If
Fi1,3 = {F.}, then either P, 3 = v; —a—v; or v; —a~c—wv; for some ¢ € V(F;)\{a}.
Thus in any case, we can let ¢ be a vertex of V(F;)\{a}. Since d (c,u) < 3 for
each u € V(Fy), there exists an edge gz € A\(Ugses Ax) such that go # cvs and g is
incident with ¢. Thus we can find f; € {v1a,v3a,92} or {via, vsc, g2} in respective
cases. Finally, if 713 = {F;, F.} for some z ¢ {0,1,2,3,z,y}. Since the edge which
joins F, and F, belogs to 4, U 4., we can find an edge f, by a similar argument
to that mentioned above.

Finally, we only have to check the situation when Fj 3 = F; 3 = Fo3 = {F;} for
some? > 3; i.e., P passes only the vertices of a fixed component Fi, 1 < j #k < 3.
Let h; be the edge of A which joins F; and F;, j € {1,2,3}. If hy, by and Ay are
incident with a common vertex a in Fj, then there is an edge hs € A\(Upxzidz)
which is incident with a vertex of V(F;)\{a}. Thus we have the two edges f1, fu
in {hy, kg, hs, ha}. Otherwise, hy, hy and hs are not incident with a common vertex
in F;. This implies that there exists a vertex b in F such that b is incident with
at most one edge of {hy,hs,h3}. In order to keep dg(vm,vs) < 3 for each pair
{m,n} C {1,2,3}, h; must be incident with v; for each j = 1,2, 3. Now since that
d;(b,u) < 3 for each u € V(Fy), we can find an edge hy € A\(Ugxidi) such that
he & {h1,ha, hs} and hy is incident with b. Now the two edges can be found in
{h1, fz, hg, he}. This concludes the proof of Case 3 and the theorem. [J

The proof of Theorem 1.8.

Proof. Since any graph in S or 7 has Betti deficiency 2, it suffices to show that if
a diameter 3 simple graph is not upper embeddable then the graph is in either S
or 7.

Let G be a diameter 3 simple graph which is not upper embeddable. By Lemma
2.1 and 2.3, there is a testable graph G4 with minimum degree not greater than 3.
Now let V(G4) = {FQ,Fl, s Fiviga)-1}s Fo be a vertex of G4 with degg, Fo =
6(G.) and let Fy,-- F,;(C,A) be the neighbors of Fy. Consider F;, i > 6(G4). By
Lemma 2.1, G4 is a simple graph and each component of G — A contains at least
three vertices. Since G is of diameter 3, there exist at least three edge disjoint
paths of length 2 or 3 which start from the vertices of F; to the vertices of Fy.
(Yor otherwise, there are a vertex u in V(Fp) and a vertex v in V(F;) such that
dgiu.v) > 4, a contradiction.) Similar to the proof of Theorem 1.7, let B; be the
set o1 starting edges of 3 disjoint paths of length 2 or 3 which start from the vertices
of I'; to the vertices of Fy such that By N B, # 0 for any 2,9,z > §(G4) and y # 2.
Now if 6(G 4) = 3 then by Corollary l 5,

P2AE= Sy - (A ¢ g ) = 14

< oG- A)+b(G A) =2 < 2%(G — A) - 2.

3!V(

This concludes ¢(G ~ 4) > 6.

194



Assume that ¢(G — A) > 6. By the fact that |B;| = 3 and B, N B, = § for any
z,y,z > 3,y # z, we obtain
|A] > 3(c(G ~A4)~4)+322(G - 4)=22>¢(G~4) +bG ~A4)-2.
This contradicts to the assumption that £(G) > 2. Hence, (G — A) = 6. Now if
there exists a vertex Fy € V(G 4) such that degs , F; > 3, then

|A12[M§¥§M]=1O=ZC(G~A)~2

>e(G-A)+HG~-4)-2. (c(G~A)=6)
This is impossible. Thus G4 must be a 3-regular graph. Again by the fact that
|B;| =3, ByNB; = 0 for any 2,y,z > 3, y # z and G4 is simple, it is easy to
see that F,, Fs must be both adjacent to Fy, Fy, F3. Therefore, G4 has to be the
graph in Figure 2.1.

FIGURE 2.1

Assume that there exists a vertex u € V(F}) such that u is not adjacent with any
edge of A. Since G 4 is vertex transitive, let i = 0. Thus for any v € V(F}), j = 4,5,
v must be adjacent to one vertex of V(F}) for some k € {1,2, 3} and this vertex is
also adjacent to a vertex in V(Fy). Due to the fact that G4 is simple, we can find
vy € V(Fy) and vy € V(Fy) such that v; and vy are not incident with any edge of
A. Clearly, d,(v1,vs) > 4. This is not possible for a diameter 3 graph. Therefore,
for any veretx u € V(G), u is incident with one edge of 4. And then G must be as
the graph in Figure 2.2. But this graph is of diameter 4. Hence we conclude that

§(Ga) <2

FIGURE 2.2



First if §(G4) = 1, then it is clear that G4 is isomorphic to K,. By Lemma
2.1, there exists an edge ¢ = vyv; such that G — e = G; U G with v; € V(G;) and
B(G;) odd for ¢ = 1,2. Furthermore, G is of diameter 3, so v; must be adjacent to
all vertices of V(G)\{v:}, for ¢ = 1,2. This implies that G is in S.

Finally, we consider the situation that §(G4) = 2. Again by the fact that
|B:| =3 and By N B, = for any z,y,2 > 3, y 5 z, we infer

2e(G—A)=2> (G— A)+HG—A)=2 > |A] > 2+ 3(c(G~A) ~3) = 3c(C~ A)~T.

This yields that (G — 4) < 4. Since G is of diameter 3 and §(G4) = 2, we have
that ¢(G — 4) = 3 and G4 is isomorphic to K. Applying Lemma 2.1, A must be
a J-element edge subset in G such that G — A = Gy U Gy U G5 and A(G;) odd for
i=1,2,3. Let V; = {v € V(G)|v is incident with an edge of A} for eachi = 1,2,3.
We claim that for each v; € V; and w; € V(G;)\V;, vi, w; are adjacent in G.

Suppose not. Without loss of generality, let vy € V; and w; € V(G \V; such
that vy, w; are not adjacent. Clearly, v; must be adjacent to some vertex of V,
or V3. Without loss of generality, let vy be adjacent to a vertex of V. Then we
can find a vertex wy € V(G)\V2 such that d{wy,wy) > 3. This is a contradiction.
Hence we finish the claim and conclude that G is in 7. [

§ 3. Concluding remarks

It would be interesting to know whether 7 Betti deficiency” is bounded from
above for the graphs of diameter greater than 3. The graphs in Figure 3.1 show
that £(() does not have an upper bound in general if & is a diameter 4 graph.
Thus we only have to consider the graphs with edge connectivity 3. So far, not
much results has been obtained in this direction except for the 3-edge connected
graphs with diameter £ > 8. The graph in Figure 3.2 shows that a 3-edge connected
diameter 8 graph may have very large Betti deficiency. Therefore, it remains to
consider k € {3,4,5,6,7} in the case where the graph is 3-edge connected.

FIGURE 3.1. l-edge connected and 2-edge connected
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