THE MAXIMUM GENUS OF DIAMETER THREE GRAPHS

Hung-Lin Fu ${ }^{1}$ and Ming-Chun Tsai ${ }^{1}$
Department of Applied Mathematics
National Chiao-Tung University
Hsin-Chu, Taiwan, Republic of China

Abstract

The maximum genus of a connected graph $G, \gamma_{M}(G)$, is the largest genus of an orientable surface on which G has a 2 -cell embedding, and the Betti deficiency, $\xi(G)$, is equal to $\beta(G)-2 \gamma_{M}(G)$ where $\beta(G)=$ $|E(G)|-|V(G)|+1$ is the Betti number of G.

In this paper we study the maximum genus of a graph with diameter $k \geq 3$ and we prove that the Betti deficiency of a diameter 3 multigraph is at most 2. In the case that the diameter 3 graph G is simple, the Betti deficiency of G can be determined. As to graphs with larger diameter, some partial results are obtained.

§1. Introduction

This paper is devoted to an investigation of the maximum genus of graphs. Since the maximum genus is invariant under homeomorphisms, the resuits we obtain can be extended to graphs which are homeomorphic to the investigated graphs.

Throughout of this paper a graph in which multi-edges and loops are allowed is called a pseudograph. A graph without loops is a multigraph, and a simple graph is a graph which contains no multi-edge and loop. Without mentioning otherwise, a "graph" means a "pseudograph". For basic information and resuits, the readers may refer to the book Graphs and Digraphs[1]. Recall that the maximum genus of a connected graph $G, \gamma_{M}(G)$, is the largest genus of an orientable surface on which G has a 2 -cell embedding, and the Betti deficiency, $\xi(G)$, is equal to $\beta(G)-2 \gamma_{A}(G)$. Thus the value $\xi(G)$ will naturally determine the maximum genus of G. We note here that $\xi(G) \equiv \beta(G)(\bmod 2)$. Hence $\gamma_{M}(G)$ can attain its maximum if and only if $\xi(G)=0$ or 1 (depending on whether $\beta(G)$ is even or odd). In the case that $\xi(G) \leq 1$, the graph G is said to be upper embeddable.

There are many good results in the study of the maximum genus[2-12]. Mainly two approaches have been utilized. The first one was proved by Xuong[11].

Theorem 1.1. [11] Let G be a connected graph. Then $\xi(G)=\min \{\xi(G, T) \mid T$ is a spanning tree of $G\}$ where $\xi(G, T)$ is the number of odd size components in $G-E(T)$.

The spanning tree T of G which gives $\xi(G, T) \leq 1$ is called a splitting tree of G. Therefore the following result is obvious.

[^0]Theorem 1.2. $[3,11]$ A graph G is upper embeddable if and only if G has a splitting tree.

In the other direction, Nebesky gave the following result. Let $\nu(G, A)=c(G-$ $A)+b(G-A)-1-|A|$, where $c(G-A)$ denotes the number of components in $G-A$ and $b(G-A)$ denotes the number of components in $G-A$ with odd Betti numbers.

Theorem 1.3. [4] Let G be a connected graph. Then

$$
\xi(G)=\max \{\nu(G, A) \mid A \subseteq E(G)\}
$$

Thus we have the following corollaries.
Corollary 1.4. Let G be a connected graph and let k be a positive integer. If $c(G-A)+b(G-A)-k \leq|A|$ for each $A \subseteq E(G)$, then $\xi(G) \leq k-1$.
Corollary 1.5. Let G be a connected graph. Then G is upper embeddable if and only if $c(G-A)+b(G-A)-2 \leq|A|$ for each $A \subseteq E(G)$.

From the above results, we derive the following theorems. The first one gives a distinct proof of SKoviera's result [9].
Theorem 1.6. [9] A diameter 2 multigraph is upper embeddable.
Theorem 1.7. Let G be a diameter 3 multigraph. Then $\xi(G) \leq 2$.
In the case that G is a simple diameter 3 graph, we can determine $\gamma_{M}(G)$. Before we state the theorem, we introduce two classes of graphs which have Betti deficiency 2.

A graph G is in class \mathcal{S} if it contains a bridge $v_{1} v_{2}$ such that
(1) both components G_{1} and G_{2} of $G-v_{1} v_{2}$ which contain v_{1} and v_{2}, respectively, have odd Betti numbers; and
(2) the vertex v_{i} is adjacent to every vertex in $G_{i}-v_{i}, i=1,2$.

Figure 1.1
A graph H is in class \mathcal{T} if it contains a 3 -element edge subset A such that
(1) $H-A$ consists of three components H_{1}, H_{2} and H_{3} with odd Betti numbers; and
(2) if V_{i} is the set of vertices in H_{i} incident with the edges in A, then every vertex in V_{i} is adjacent to all the vertices of $V\left(H_{i}\right) \backslash V_{i}, i=1,2,3$.

Figure 1.2. $A=\left\{e_{1}, e_{2}, e_{3}\right\}$
Now we are ready to state the theorem.
Theorem 1.8. A simple diameter 3 graph G has Betti deficiency 2 if and only if G is in \mathcal{S} or \mathcal{T}.

We note here that if G is a pseudograph with diameter 3 , then to determine its maximum genus is going to be very difficult. The graph in Figure 1.3 shows that the Betti deficiency of a diameter 3 pseudograph can be very large even it is 2 -edge connected. (A 2-edge connected diameter 2 pseudograph has Betti deficiency at most 4.[9]) As to the graphs of diameter 4 or larger, some results are obtained in section 3.

Figure 1.3

§ 2. The proof of Theorem 1.6, 1.7 and 1.8.

First, we need a lemma.
Lemma 2.1. Let G be a connected graph with $\xi(G) \geq 2$ and let $A \subseteq E(G)$ be a minimal set such that $\nu(G, A)=\xi(G)$. Then
(a) $b(G-A)=c(G-A)$, and moreover, if G is a multigraph then every component of $G-A$ is non-trivial and if G is a simple graph then every component of $G-A$ contains at least three vertices;
(b) the end vertices of every edge in A belong to distinct components of $G-A$; and
(c) any two components of $G-A$ are joined by at most one edge of A.

Proof. (a) Suppose not. Then there exists a component of $G-A$ with even Betti number; let it be F. Since $\xi(G) \geq 2$, we have $c(G-A) \geq 2$. Thus there is an edge $e \in A$ joining F and another component of $G-A$. Let $A^{\prime}=A \backslash\{e\}$. Then $c\left(G-A^{\prime}\right)=c(G-A)-1, b\left(G-A^{\prime}\right)=b(G-A)$, and $\left|A^{\prime}\right|=|A|-1$. This implies that

$$
\begin{aligned}
\nu\left(G, A^{\prime}\right) & =c\left(G-A^{\prime}\right)+b\left(G-A^{\prime}\right)-1-\left|A^{\prime}\right| \\
& =c(G-A)-1+b(G-A)-1-(|A|-1) \\
& =c(G-A)+b(G-A)-1-|A| \\
& =\nu(G, A) \\
& =\xi(G) .
\end{aligned}
$$

Since A^{\prime} is a proper subset of A, this contradicts to the minimality of A. Thus we have that every component of $G-A$ has odd Betti number. Moreover, if G is a multigraph then every component of $G-A$ is non-trivial and if G is a simple graph then every component of $G-A$ contains at least three vertices.
(b) Assume that f is an edge of A whose end vertices belong to the same component F_{m}. Let $A^{\prime \prime}=A \backslash\{f\}$. Then the component in $G-A^{\prime \prime}$ which consists of F_{m} and f has even Betti number. Thus $c\left(G-A^{\prime \prime}\right)=c(G-A)$ and $b\left(G-A^{\prime \prime}\right)=b(G-A)-1$. This implies that

$$
\begin{aligned}
\nu\left(G, A^{\prime \prime}\right) & =c\left(G-A^{\prime \prime}\right)+b\left(G-A^{\prime \prime}\right)-1-\left|A^{\prime \prime}\right| \\
& =c(G-A)+b(G-A)-1-|A| \\
& =\nu(G, A) \\
& =\xi(G)
\end{aligned}
$$

This contradicts to the fact that A is minimal and we have the proof of (b).
(c) Suppose not. Then there is a pair of components of $G-A$ such that they are joined by at least two edges of A. Let these two components be F_{1} and F_{2}, and let e_{1} and e_{2} be two of the edges joining F_{1} and F_{2}. Put $A^{\prime \prime \prime}=A \backslash\left\{e_{1}, e_{2}\right\}$. Then the component in $G-A^{\prime \prime \prime}$ which consists of F_{1}, F_{2} and ϵ_{1}, e_{2} has odd Betti number. Thus $c\left(G-A^{\prime \prime \prime}\right)=c(G-A)-1, b\left(G-A^{\prime \prime \prime}\right)=b(G-A)-1$, and $\left|A^{\prime \prime \prime}\right|=|A|-2$. Therefore we infer

$$
\begin{aligned}
\nu\left(G, A^{\prime \prime \prime}\right) & =c\left(G-A^{\prime \prime \prime}\right)+b\left(G-A^{\prime \prime \prime}\right)-1-\left|A^{\prime \prime \prime}\right| \\
& =c(G-A)+b(G-A)-|A| \\
& =\nu(G, A) \\
& =\xi(G) .
\end{aligned}
$$

Again, $A^{\prime \prime \prime}$ is a proper subset of A which is not possible. Hence we have the proof of (c) and conclude the proof of Lemma 2.1.

With the support of Lemma 2.1, we are able to construct a new graph based on the choice of A. Let G be a connected graph with $\xi(G) \geq 2$, and let A be a minimal set of $E(G)$ such that $\nu(G, A)=\xi(G) . G_{A}$ is called a testable graph of G (with respect to A) if $V\left(G_{A}\right)$ is the set of components of $G-A$ and two vertices in G_{A} are adjacent whenever they are joined in G by one edge of A.

Accordingly, the following two lemmas are easy to prove.

Lemma 2.2. If $\xi(G) \geq 2$ and G_{A} is a testable graph of G, then

$$
\xi(G)=\nu(G, A)=2\left|V\left(G_{A}\right)\right|-\left|E\left(G_{A}\right)\right|-1
$$

Proof. By the definition of $G_{A},\left|V\left(G_{A}\right)\right|=c\left(G_{A}\right)$ and $\left|E\left(G_{A}\right)\right|=|A|$. Applying Lemma 2.1,

$$
\begin{aligned}
\xi(G) & =c(G-A)+b(G-A)-1-|A| \\
& =2 c(G-A)-1-|A| \\
& =2\left|V\left(G_{A}\right)\right|-\left|E\left(G_{A}\right)\right|-1
\end{aligned}
$$

Lemma 2.3. If $\xi(G) \geq 2$ and G_{A} is a testable graph of G, then the minimum degree of G_{A} is not greater than 3 , that is, $\delta\left(G_{A}\right) \leq 3$.

Proof. Suppose not. Then $\operatorname{deg}_{G_{A}} F \geq 4$ for each vertex F in G_{A}. Thus $\left|E\left(G_{A}\right)\right| \geq$ $2\left|V\left(G_{A}\right)\right|$. By Lemma 2.2,

$$
\xi(G)=2\left|V\left(G_{A}\right)\right|-\left|E\left(G_{A}\right)\right|-1 \leq 2\left|V\left(G_{A}\right)\right|-2\left|V\left(G_{A}\right)\right|-1=-1
$$

This is a contradiction. So the proof is complete.
Now we are ready to prove Theorem 1.6.

The proof of Theorem 1.6.

Proof. Suppose that G is a multigraph of diameter 2 with $\xi(G) \geq 2$. By Lemma 2.1 and 2.3 , there is a testable graph $G_{\text {A }}$ with minimum degree at most 3 . If G_{A} is a complete graph K_{n}, then by Lemma 2.2, $n=2$ or 3. In each case, either (a) or (c) of Lemma 2.1 is violated. Thus G_{A} is not a complete graph. Hence there exists a pair of vertices F_{1} and F_{2} which are not adjacent in G_{A}. Let $\left\{a_{i}, b_{i}\right\} \subseteq V\left(F_{i}\right)$, $i=1,2$. $\left(V\left(F_{i}\right)\right.$ denotes the vertex set of the component F_{i} in $G-A$.) Then the two vertices in each of the following pairs $\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\},\left\{a_{1}, b_{2}\right\}$ and $\left\{b_{1}, a_{2}\right\}$ must have a common neighbor outside $F_{1} \cup F_{2}$, for otherwise the diameter of G is greater than 2. This implies that $\operatorname{deg}_{G_{A}} F_{1} \geq 4$ and $\operatorname{deg}_{G_{A}} F_{2} \geq 4$. Since G_{A} is simple, it has at least 5 vertices. But by Lemma $2.3, G_{A}$ contains a vertex H_{1} of degree not larger than 3. This yields that there is a vertex H_{2} not adjacent to H_{1}. By repeating the above argument for H_{1} and H_{2}, we obtain $\operatorname{deg}_{G_{A}} H_{1} \geq 4$, a contradiction. This concludes the proof.

The proof of Theorem 1.7.

Proof. Suppose not. Then $\xi(G)>2$. By Lemma 2.1 and 2.3 , there is a testable graph G_{A} with $\delta\left(G_{A}\right) \leq 3$. Let F_{0} be a vertex of $V\left(G_{A}\right)$ which attains the minimum degree. We consider the following three cases.
Case 1. $\delta\left(G_{A}\right)=1$. Let F_{1} be the neighbor of F_{0} in G_{A}. By the assumption that $\xi(G)>2$, we have $c(G-A) \geq 3$ and thus there exists a vertex $F_{2} \in V\left(G_{A}\right) \backslash\left\{F_{0}, F_{1}\right\}$. By Lemma 2.1, for each $F \in V\left(G_{A}\right), F$ contains at least two vertices in $G-A$. Therefore there exist $u_{0} \in V\left(F_{0}\right)$ and $u_{2} \in V\left(F_{2}\right)$ such that u_{0} and u_{2} are not
adjacent to any vertex of $V\left(F_{1}\right)$. This implies that the distance of u_{0} and u_{2} is at least 4. But this is impossible for a graph with diameter 3. Hence we conclude that $\delta\left(G_{A}\right)=1$ is not possible.

Case 2. $\delta\left(G_{A}\right)=2$. Let F_{1} and F_{2} be the neighbors of F_{0} in G_{A}. Thus, in G there are vertices $u_{i} \in V\left(F_{i}\right), i=0,1,2$, such that $u_{0} u_{1}$ and $u_{0} u_{2}$ are edges in G. Due to the fact that G_{A} is simple, these edges are the unique edges which join the component F_{0} and components F_{1} and F_{2} respectively. Suppose that $\left|V\left(G_{A}\right)\right|=3$, then F_{1}, F_{2} must be adjacent in G_{A}. This yields that $\xi(G)=2$ which is a contradiction to the assumption. Therefore $\left|V\left(G_{A}\right)\right|>3$. Let the vertices of $V\left(G_{A}\right)$ be denoted by $F_{x}, x=0,1,2, \cdots$. Now consider the components, $F_{i}, i>2$. Since G is of diameter 3 and every component of $G-A$ is non-trivial, there exist at least two edge disjoint shortest paths $P_{i, 0}$ and $P_{i, 0}^{\prime}$ of length 2 or 3 starting from the vertices of F_{i} to the vertices of F_{0} in G. Let the set of starting edges of all shortest paths from the vertices of F_{i} to the vertices of F_{0} be denoted by A_{i}. For convenience, any edge in A_{i} will be called a starting edge for F_{i}. Obviously, $A_{i} \subseteq A$ and $\left|A_{i}\right| \geq 2$. Consider $F_{i}, F_{i^{\prime}} \in V\left(G_{A}\right)$ where $i \neq i^{\prime}$ and $i, i^{\prime}>2$. If all the starting edges of F_{i} or $F_{i^{\prime}}$ are incident with only the vertices of F_{1} and F_{2}, then $A_{i} \cap A_{i^{\prime}}=\emptyset$. Otherwise, there exists a shortest path $P_{i, 0}$ of length 3 such that its starting edge e_{i} is incident with some vertex in $F_{k}, k>2$. If $k \neq i^{\prime}$, then $e_{i} \notin A_{i}$. Assume that e_{i} is incident with a vertex of $F_{i^{\prime}}$ and $e_{i} \in A_{i^{\prime}}$. Then $P_{i, 0}$ must be of length 2, which is a contradiction. Hence $\left|A_{i} \backslash A_{i^{i}}\right| \geq 2$. This implies that $\left|A_{i} \backslash\left(\cup_{j \neq i, j>2} A_{j}\right)\right| \geq 2$. For convenience, we shall assume that each set $A_{i}, i>2$, contains exactly two starting edges which are not in any other $A_{i^{\prime}}, i^{\prime}>2$ and $i \neq i^{\prime}$. By a direct count, if there exists an edge $f \notin\left\{u_{0} u_{1}, u_{0} u_{2}\right\} \cup\left(\cup_{i>2} A_{i}\right)$ which joins two components of $G-A$, then

$$
\begin{aligned}
|A| & \geq 2+1+2(c(G-A)-3) \\
& =2 c(G-A)-3 \\
& =c(G-A)+b(G-A)-3
\end{aligned}
$$

This yields $\xi(G) \leq 2$, a contradiction and we conclude the proof of Case 2. In what follows, we shall claim that the edge mentioned above does exist.

First, if $F_{1} F_{2} \in V\left(G_{A}\right)$, then we are done. Therefore assume that $F_{1} F_{2} \notin V\left(G_{A}\right)$. Consider the distance of v_{1}, v_{2} in $G, d\left(v_{1}, v_{2}\right)$, where $v_{1} \in V\left(F_{1}\right), v_{2} \in V\left(F_{2}\right)$ and v_{j} is not incident with the vertices in $F_{0}, j=1,2$. In the case that $d\left(v_{1}, v_{2}\right)=2$, there exists a vertex $v_{k} \in V\left(F_{k}\right)$, for some $k>2$, such that $v_{k} v_{1}$ and $v_{k} v_{2}$ are in A. Since F_{k} is non-trivial, let $v_{k}^{\prime} \in F_{k} \backslash\left\{v_{k}\right\}$. Thus, in order to keep that $d\left(v_{k}^{\prime}, v_{0}\right) \leq 3$ for each $v_{0} \in V\left(F_{0}\right), v_{k}^{\prime}$ must be incident with an edge g in $A \backslash\left\{v_{k} v_{1}, v_{k} v_{2}\right\}$. Furthermore, g can not be a starting edge for $F_{k^{\prime}}, k^{\prime}>2$ and $k^{\prime} \neq k$. Hence g is the extra edge f we are looking for. On the other case, $d\left(v_{1}, v_{2}\right)=3$. Thus there exists a shortest path of length 3 from v_{1} to v_{2}, let it be $v_{1}-a-b-v_{2}$. We consider the following three situations. First, $a \in V\left(F_{1}\right)$ or $b \in V\left(F_{2}\right)$. Then $d\left(a, v_{2}\right)=2$ or $d\left(v_{1}, b\right)=2$. By a similar argument as in the case $d\left(v_{1}, v_{2}\right)=2$, we can find an edge f. Secondly, if a and b are in the same component F_{k} for some $k>2$, then a must be adjacent to a vertex w in $F_{k^{\prime}}$ for some $k^{\prime}>2$. For otherwise, there exists a vertex $u \in V\left(F_{0}\right)$ such that $d(a, u) \geq 4$. Therefore f can be found in $\left\{a w, a v_{1}, b v_{2}\right\} \backslash A_{k}$. Finally, assume
that a and b are in distinct components F_{k}, F_{k}, for some $k, h>2$. If $a b$ is not a starting edge of one of the two components, then let $f=a b$, we are done. On the other hand, let $a b$ be a starting edge of a component $F_{h}, h>2$. Without loss of generality, let $a \in V\left(F_{h}\right)$. Since F_{h} is non-trivial, let $a^{\prime} \in V\left(F_{h}\right) \backslash\{a\}$. Clearly, a^{\prime} is incident with an edge f^{\prime} of A. Hence f can be found in $\left\{a v_{1}, a b, f^{\prime}\right\} \backslash A_{h}$, and thus we conclude the proof of Case 2.
Case 3. $\delta\left(G_{A}\right)=3$. Let F_{1}, F_{2}, F_{3} be the neighbors of F_{0} in G_{A}. By Lemma 2.2, we have $2\left|V\left(G_{A}\right)\right|-\left|E\left(G_{A}\right)\right|-1>2$ and $\left|E\left(G_{A}\right)\right| \geq \frac{3}{2}\left|V\left(G_{A}\right)\right|$. This implies $\left|V\left(G_{A}\right)\right|>6$. As in Case 2, for each $x>3$, let A_{x} be the set of starting edges of F_{x} such that $\left|A_{x}\right|=2$, and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. A bit of reflection, if there exist two edges in A which are not incident with the vertex in F_{0} and also not in any A_{i}, $i>3$, then

$$
\begin{aligned}
|A| & \geq 2+2(c(G-A)-4)+3 \\
& =2 c(G-A)-3 \\
& \geq c(G-A)+b(G-A)-3 .
\end{aligned}
$$

This implies $\xi(G) \leq 2$, a contradiction and we conclude that $\delta\left(G_{4}\right)=3$ is not possible either. In what follows, we shall claim that the two edges mentioned above do exist.

To start with, if $H=<\left\{F_{1}, F_{2}, F_{3}\right\}>_{G_{A}}$ which is a subgraph of G_{A} induced by $\left\{F_{1}, F_{2}, F_{3}\right\}$ has size at least 2 , then we are done. Therefore, there are two situations to consider. First, $|E(H)|=1$. Without loss of generality, let $F_{1} F_{2} \in E(H)$. Also, let $v_{1} \in V\left(F_{1}\right)$ and $v_{3} \in V\left(F_{3}\right)$ such that v_{1} and v_{3} are not adjacent to any vertex of F_{0}. Since $F_{1} F_{3} \notin E\left(G_{A}\right)$, the shortest path from v_{1} to v_{3} must pass some vertices of F_{i} for some $i>3$. Thus we can find an edge f as in the proof of Case 2. Therefore including the edge in H we have obtained the two edges. Secondly $|E(H)|=0$. Then $F_{1} F_{2}, F_{2} F_{3}, F_{1} F_{3} \notin V\left(G_{A}\right)$. Since every component of $G-A$ is non-trivial, there exists a vertex $v_{i} \in V\left(F_{i}\right)$ for each $i=1,2,3$ such that v_{i} is not adjacent to the vertices of $V\left(F_{0}\right)$. Moreover, since G is of diameter 3, for each j and k in $\{1,2,3\}, j \neq k$, there is a $v_{j}-v_{k}$ shortest path $P_{j, k}$ of length 2 or 3 such that $P_{j, k}$ contains no vertex of $V\left(F_{0}\right)$. Now let $\mathcal{F}_{j, k}=\left\{F_{i} \mid P_{j, k}\right.$ contains a vertex in F_{l}, $l>3\}$. Clearly, $\left|\mathcal{F}_{j, k}\right|=1$ or 2 . We consider the following three situations.

First, if there exist two distinct 2-subsets, $\{j, k\}$ and $\left\{j^{\prime}, k^{\prime}\right\}$ of $\{1,2,3\}$ such that $\mathcal{F}_{j, k} \cap \mathcal{F}_{j^{\prime}, k^{\prime}}=\emptyset$, then by the same argument as in Case 2 , we can find an edge f for each 2 -subset, thus we have the two edges.

Secondly, assume that $\mathcal{F}_{j, k} \cap \mathcal{F}_{j^{\prime}, k^{\prime}} \neq \emptyset$ for any pairs $\{j, k\},\left\{j^{\prime}, k^{\prime}\right\} \subseteq\{1,2,3\}$, and there exists a set $\mathcal{F}_{j, k}$ with two elements. Without loss of generality, let $\mathcal{F}_{1,2}=$ $\left\{F_{x}, F_{y}\right\}, x, y>3$, and let $P_{1,2}=v_{1}-a-b-v_{2}$ where $a \in V\left(F_{x}\right)$ and $b \in V\left(F_{y}\right)$. Now if $a b \in A_{x} \cup A_{y}$, say $a b \in A_{x}$. Then b must be adjacent to some vertex $v \in V\left(F_{1}\right) \cup V\left(F_{3}\right) \backslash\left\{v_{1}, v_{3}\right\}$ due to the reason that $a b \in A_{x}$ and then $d_{G}(b, u) \leq 2$ for some $u \in V\left(F_{0}\right)$. Again since each component in $G-A$ is non-trivial, we have that $c \in V\left(F_{x}\right) \backslash\{a\}$ and $d \in V\left(F_{y}\right) \backslash\{b\}$ which are incident with $e_{1} \in A \backslash\left(\cup_{k \neq x} A_{k}\right)$ and $e_{2} \in A \backslash\left(\cup_{k \neq y} A_{k}\right)$, respectively. Then the two edges can be found from the set $\left\{v_{1} a, a b, b v, b v_{2}, e_{1}, e_{2}\right\}$. (At most 4 of them are in $A_{x} \cup A_{y}$.) On the other hand,
if $a b \notin A_{x} \cup A_{y}$. Let $f_{1}=a b$. All we need is to find an edge f_{2} which is not $a b$ and not in any A_{k}, where $k>2$. Since $\mathcal{F}_{1,2} \cap \mathcal{F}_{1,3} \neq \emptyset, F_{x} \in \mathcal{F}_{1,3}$ or $F_{y} \in \mathcal{F}_{1,3}$. If $\mathcal{F}_{1,3}=\left\{F_{x}, F_{y}\right\}$, then $P_{1,3}$ must be $v_{1}-a-b-v_{3}$. Therefore, there exists an edge $g_{1} \in A \backslash\left(\cup_{k \neq y} A_{k}\right)$ which is incident with a vertex of $V\left(F_{y}\right) \backslash\{b\}$. Then f_{2} can be found in the set $\left\{v_{2} b, v_{3} b, g_{1}\right\}$. Otherwise, we can let $\mathcal{F}_{1,2} \cap \mathcal{F}_{1,3}=\left\{F_{x}\right\}$. If $\mathcal{F}_{1,3}=\left\{F_{x}\right\}$, then either $P_{1,3}=v_{1}-a-v_{3}$ or $v_{1}-a-c-v_{3}$ for some $c \in V\left(F_{x}\right) \backslash\{a\}$. Thus in any case, we can let c be a vertex of $V\left(F_{x}\right) \backslash\{a\}$. Since $d_{G}(c, u) \leq 3$ for each $u \in V\left(F_{0}\right)$, there exists an edge $g_{2} \in A \backslash\left(\cup_{k \neq x} A_{k}\right)$ such that $g_{2} \neq c v_{3}$ and g_{2} is incident with c. Thus we can find $f_{2} \in\left\{v_{1} a, v_{3} a, g_{2}\right\}$ or $\left\{v_{1} a, v_{3} c, g_{2}\right\}$ in respective cases. Finally, if $\mathcal{F}_{1,3}=\left\{F_{x}, F_{z}\right\}$ for some $z \notin\{0,1,2,3, x, y\}$. Since the edge which joins F_{x} and F_{z} belogs to $A_{x} \cup A_{z}$, we can find an edge f_{2} by a similar argument to that mentioned above.

Finally, we only have to check the situation when $\mathcal{F}_{1,2}=\mathcal{F}_{1,3}=\mathcal{F}_{2,3}=\left\{F_{i}\right\}$ for some $i>3$; i.e., $P_{j, k}$ passes only the vertices of a fixed component $F_{i}, 1 \leq j \neq k \leq 3$. Let h_{j} be the edge of A which joins F_{j} and $F_{i}, j \in\{1,2,3\}$. If h_{1}, h_{2} and h_{3} are incident with a common vertex a in F_{i}, then there is an edge $h_{4} \in A \backslash\left(\cup_{k \neq i} A_{k}\right)$ which is incident with a vertex of $V\left(F_{i}\right) \backslash\{a\}$. Thus we have the two edges f_{1}, f_{2} in $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$. Otherwise, h_{1}, h_{2} and h_{3} are not incident with a common vertex in F_{i}. This implies that there exists a vertex b in F_{i} such that b is incident with at most one edge of $\left\{h_{1}, h_{2}, h_{3}\right\}$. In order to keep $d_{G}\left(v_{m}, v_{n}\right) \leq 3$ for each pair $\{m, n\} \subseteq\{1,2,3\}, h_{j}$ must be incident with v_{j} for each $j=1,2,3$. Now since that $d_{C}(b, u) \leq 3$ for each $u \in V\left(F_{0}\right)$, we can find an edge $h_{4} \in A \backslash\left(\cup_{k \neq i} A_{k}\right)$ such that $h_{4} \notin\left\{h_{1}, h_{2}, h_{3}\right\}$ and h_{4} is incident with b. Now the two edges can be found in $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$. This concludes the proof of Case 3 and the theorem.

The proof of Theorem 1.8.

Proof. Since any graph in \mathcal{S} or \mathcal{T} has Betti deficiency 2 , it suffices to show that if a diameter 3 simple graph is not upper embeddable then the graph is in either \mathcal{S} or T.

Let G be a diameter 3 simple graph which is not upper embeddable. By Lemma 2.1 and 2.3 , there is a testable graph G_{A} with minimum degree not greater than 3. Now let $V\left(G_{A}\right)=\left\{F_{0}, F_{1}, \cdots, F_{\left|V\left(G_{A}\right)\right|-1}\right\}, F_{0}$ be a vertex of G_{A} with $\operatorname{deg}_{G_{A}} F_{0}=$ $\delta\left(G_{A}\right)$ and let $F_{1}, \cdots, F_{\delta\left(G_{A}\right)}$ be the neighbors of F_{0}. Consider $F_{i}, i>\delta\left(G_{A}\right)$. By Lemma 2.1, G_{A} is a simple graph and each component of $G-A$ contains at least three vertices. Since G is of diameter 3 , there exist at least three edge disjoint paths of length 2 or 3 which start from the vertices of F_{i} to the vertices of F_{0}. (or otherwise, there are a vertex u in $V\left(F_{0}\right)$ and a vertex v in $V\left(F_{i}\right)$ such that $d_{G}(u, v) \geq 4$, a contradiction.) Similar to the proof of Theorem 1.7, let B_{x} be the set of starting edges of 3 disjoint paths of length 2 or 3 which start from the vertices of F_{x} to the vertices of F_{0} such that $B_{y} \cap B_{z} \neq \emptyset$ for any $x, y, z>\delta\left(G_{A}\right)$ and $y \neq z$. Now if $\delta\left(G_{A}\right)=3$ then by Corollary 1.5,

$$
\begin{aligned}
\left\lceil\frac{3 c(G-A)}{2}\right\rceil & =\left\lceil\frac{3\left|V\left(G_{A}\right)\right|}{2}\right\rceil \leq\left|E\left(G_{A}\right)\right|=|A| \\
& <c(G-A)+b(G-A)-2 \leq 2 c(G-A)-2 .
\end{aligned}
$$

This concludes $c(G-A) \geq 6$.

Assume that $c(G-A)>6$. By the fact that $\left|B_{x}\right|=3$ and $B_{y} \cap B_{z}=\emptyset$ for any $x, y, z>3, y \neq z$, we obtain

$$
|A| \geq 3(c(G-A)-4)+3 \geq 2 c(G-A)-2 \geq c(G-A)+b(G-A)-2
$$

This contradicts to the assumption that $\xi(G)>2$. Hence, $c(G-A)=6$. Now if there exists a vertex $F_{x} \in V\left(G_{A}\right)$ such that $\operatorname{deg}_{G_{A}} F_{x}>3$, then

$$
\begin{aligned}
|A| & \geq\left\lceil\frac{3\left|V\left(G_{A}\right)\right|+1}{2}\right\rceil=10=2 c(G-A)-2 \\
& \geq c(G-A)+b(G-A)-2 . \quad(c(G-A)=6)
\end{aligned}
$$

This is impossible. Thus G_{A} must be a 3-regular graph. Again by the fact that $\left|B_{x}\right|=3, B_{y} \cap B_{z}=0$ for any $x, y, z>3, y \neq z$ and G_{A} is simple, it is easy to see that F_{4}, F_{5} must be both adjacent to F_{1}, F_{2}, F_{3}. Therefore, G_{A} has to be the graph in Figure 2.1.

Figure 2.1
Assume that there exists a vertex $u \in V\left(F_{i}\right)$ such that u is not adjacent with any edge of A. Since G_{A} is vertex transitive, let $i=0$. Thus for any $v \in V\left(F_{j}\right), j=4,5$, v must be adjacent to one vertex of $V\left(F_{k}\right)$ for some $k \in\{1,2,3\}$ and this vertex is also adjacent to a vertex in $V\left(F_{0}\right)$. Due to the fact that G_{A} is simple, we can find $v_{1} \in V\left(F_{1}\right)$ and $v_{2} \in V\left(F_{2}\right)$ such that v_{1} and v_{2} are not incident with any edge of A. Clearly, $d_{G}\left(v_{1}, v_{2}\right) \geq 4$. This is not possible for a diameter 3 graph. Therefore, for any veretx $u \in V(G), u$ is incident with one edge of A. And then G must be as the graph in Figure 2.2. But this graph is of diameter 4. Hence we conclude that $\delta\left(G_{A}\right) \leq 2$.

Figure 2.2

First if $\delta\left(G_{A}\right)=1$, then it is clear that G_{A} is isomorphic to K_{2}. By Lemma 2.1, there exists an edge $e=v_{1} v_{2}$ such that $G-e=G_{1} \cup G_{2}$ with $v_{i} \in V\left(G_{i}\right)$ and $\beta\left(G_{i}\right)$ odd for $i=1,2$. Furthermore, G is of diameter 3 , so v_{i} must be adjacent to all vertices of $V\left(G_{i}\right) \backslash\left\{v_{\bar{\varepsilon}}\right\}$, for $i=1,2$. This implies that G is in S.

Finally, we consider the situation that $\delta\left(G_{A}\right)=2$. Again by the fact that $\left|B_{x}\right|=3$ and $B_{y} \cap B_{z}=\emptyset$ for any $x, y, z>3, y \neq z$, we infer
$2 c(G-A)-2 \geq c(G-A)+b(G-A)-2>|A| \geq 2+3(c(G-A)-3)=3 c(G-A)-7$. This yields that $c(G-A) \leq 4$. Since G is of diameter 3 and $\delta\left(G_{A}\right)=2$, we have that $c(G-A)=3$ and G_{A} is isomorphic to K_{3}. Applying Lemma 2.1, A must be a. 3-element edge subset in G such that $G-A=G_{1} \cup G_{2} \cup G_{3}$ and $\beta\left(G_{i}\right)$ odd for $i=1,2,3$. Let $V_{i}=\left\{v \in V\left(G_{i}\right) \mid v\right.$ is incident with an edge of $\left.A\right\}$ for each $i=1,2,3$. We claim that for each $v_{i} \in V_{i}$ and $w_{i} \in V\left(G_{i}\right) \backslash V_{i}, v_{i}, w_{i}$ are adjacent in G.

Suppose not. Without loss of generality, let $v_{1} \in V_{1}$ and $w_{1} \in V\left(G_{1}\right) \backslash V_{1}$ such that v_{1}, w_{1} are not adjacent. Clearly, v_{1} must be adjacent to some vertex of V_{2} or V_{3}. Without loss of generality, let v_{1} be adjacent to a vertex of V_{2}. Then we can find a vertex $w_{2} \in V\left(G_{2}\right) \backslash V_{2}$ such that $d\left(w_{1}, w_{2}\right)>3$. This is a contradiction. Hence we finish the claim and conclude that G is in T.

§3. Concluding remarks

It would be interesting to know whether "Betti deficiency" is bounded from above for the graphs of diameter greater than 3. The graphs in Figure 3.1 show that $\xi(G)$ does not have an upper bound in general if G is a diameter 4 graph. Thus we only have to consider the graphs with edge connectivity 3. So far, not much results has been obtained in this direction except for the 3-edge connected graphs with diameter $k \geq 8$. The graph in Figure 3.2 shows that a 3 -edge connected diameter 8 graph may have very large Betti deficiency. Therefore, it remains to consider $k \in\{3,4,5,6,7\}$ in the case where the graph is 3 -edge connected.

Figure 3.1. 1-edge connected and 2-edge connected

Acknowledgement

We would like to express our thanks to Dr. M. Skoviera and the referees for their helpful comments.

FIGURE 3.2. $k=8$

Reference

1. M. Behzad, G. Chartrad and L. Lesniak-Foster, Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, 1979.
2. H. L. Fu and M. C. Tsai, Edge and vertex operations on upper embeddable graph, Math. Slovaca, to appear.
3. M. Jungerman, A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401-406.
4. L. Nebeský, A new characterization of the masimum genus of a graph, Czechosiovak Math. J. 31 (106) (1981), 604-613.
5. L. Nebeský, Every connected, locally connected graph is upper embeddable, J. Graph Theory. 5 (1981), 205-207.
6. L. Nebeský, On upper embeddabidity of complementary graphs, Casopis Pest. Math. (1087) no. 2 (1983), 214-217.
7. L. Nebeský, On locally quasiconnected graphs and their upper embeddability, Czechoslovak Math. J. 35(110) no. 1 (1985), 162-166.
8. M. Skoviera, The maximum genus of vertex-transitive graphs, Discrete Mathematics 78 (1989), 179-186.
9. M. SKoviera, The maximum genus of graphs of diameter 2, Discrete Mathematics 87 (1991), 175-180.
10. M. Skoviera, The decay number and the maximum genus of a graph, Math. Slovaca 42 no. 4 (1992), 391-406.
11. N. H. Xuong, How to determine the maximum genus of a graph, J. Combinatorial Theory Ser. B 26 (1979), 217-225.
12. N. H. Xuong, Upper embeddable graphs and related topic, J. Combinatorial Theory Ser. B 26 (1979), 226-232.

[^0]: ${ }^{1}$ Supported by the National Council of the Republic of China (NSC81-0208-M009-13).

