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ABSTRACT. The maximum gen'us of connected 
of orient able surface on which G has 2-ce11 C:U.UYC;UUULl.".. 

to - 2,M(G) where (3(G) 
the Betti n'umber of G. 

are obtained. 

the maximum genus of Since 
the results we obtain can 

IS 

determine the maximum genus of G. We note 
Hence 1M can attain its maximum if and 

aCDelJ.rung on whether is even or In the case that 
G is said to be upper embeddable. 

results in the 
two appnoalcn~~s 

1.1. Let G be a connected graph. Then mm T 
tree of G} where T) is the number of odd size components m 

The spanning tree T of G which gives 
Therefore the following result is obvious. 

T) ~ 1 is called a splitting tree of G. 

1 Supported by the National Council of the Republic of China (NSC81-0208-M009-13). 
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Theorem A G is upper embeddable and has a splitting 

dwectlon, '"P" .... ,.''' gave the A) 
where denotes the number of components in 

denotes the number of components A with odd Betti 

Theorem Let G be a connected Then 

max {v(G, 

Thus we the loU ...... V ........ "'- corollaries. 

be a connected graph and let k be a positive If 
k ~ JAJ for each A ~ then k L 

Let G be a connected graph. Then G is upper embeddable if and 
beG - A) - ~ for each A ~ E(G). 

From the above results, we derive the theorems. The first one a 

distinct Skoviera's result(9]. 

Theorem 1.6. A diameter 2 multigraph is upper embeddable. 

Theorem 1. 7. Let G be a diameter :1 multigraph. Then 2. 

In the case that G is a simple diameter 3 graph, we can determine 1M ( G). Before 
we state the we introduce two classes which have Betti deficiency 
2. 

A graph G in class S if it contains a bridge VI V2 such that 

(1) both components G1 and G2 of G - VI V2 which contain VI and V2, respec­
tively, have odd Betti numbers; and 

(2) the vertex Vi is adjacent to every vertex in Gi - Vi, = 1,2. 

FIGURE 1.1 

A graph H is in class T if it contains a 3-element edge subset A such that 

(1) H - A consists of three components HI, H2 and H3 with odd Betti numbers; 
and 

(2) if Vi is the set of vertices in Hi incident with the edges in A, then every 
vertex in Vi is adjacent to all the vertices of V(Hi)\Vi, i = 1,2,3. 
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H 

FIGURE A = 

Now are to the theorem. 

Theorenl 1.8. 
G is in T. 

graph G has Betti deficiency 2 if and only if 

ffiaJOmum 
the Betti aelllCl,en(:y 
connected. 
most 
section 3. 

§ The 

FIGURE 1.3 

Theorem 1.6, 1.'7 1.8. 

need lemma. 

Lemma 2.1. Lei G be a connected graph with 
Then 

~ 2 and let A ~ be a 

b( G - and moreover, if G is a multigraph then every compo-
nent A. is non-trivial and if G a simple graph then every component 
of G - A contains at least three vertices; 

(b) the end vertices of every edge in A belong to distinct components of G .­
and 

(c) any two components of G - A are joined by at most one edge of A. 
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that 

This contradicts to the fact that 
(c) ;:'UP1DOSe 

Therefore we infer 

c(G -

V(G, 

Again, A'" is a proper subset of A which is not fJV".::>H.H<::. 

of (c) and conclude the proof of Lemma 2.1. 0 

1 

we have the 

With the support of Lemma 2.1, we are able to construct a new graph based 
on the choice of A. Let G be a connected graph with e( G) 2, and let A be a 
minimal set of E( G) such that v( G, G A is called a testable graph of G 
(with respect to A) if V(GA) is the set of components of G - A and two vertices in 
G A are adjacent whenever they are joined in G by one edge of A. 

Accordingly, the following two lemmas are easy to prove. 
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Lemma If and 

the definition of 
1, 

is a testable graph of 

o 

and G A is a testable graph of 
not greater than 3, thai is, :s;; 3. 

F 4 for each vertex F in 

This contradiction. o 
Now are 

of 

> 2. and 

then 

= IAI~ 

then the mmzmum 

-1. 

there is a testable 
which attains the minimum 

tol1oViTllll!" three cases. 

Case 1. 8(GA ) = 1. Let be the neighbor of Fo in GA. the assumption that 
e(G) > 2, we have c(G--A) andthusthereexistsavertexF2 E V(GA)\{Fo,Fr}. 

Lemma 2.1, for each F V(GA), F contains at least two vertices in G - A. 
Therefore there eXlst Uo E V(Fo) and Uz E V(Fz) such that Uo and Uz are not 
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2. 
there are 
G. Due to the fact that 

the 

contradiction. Hence 
COllVEmHmce, we shall assume that each 

which are not in any other Ail, if > 
exists an f ~ {UOUl, UOU2} U 
then 

that the distance of Uo U2 at 
with diameter Hence we conclude that 

2, contains two 
i'. By a direct count, if there 

two components of G -

IAI 2 + 1 + 3) 

2c(G - A) - 3 

c( G - + b( G - 3. 

This yields ~(G) :::; 2, a contradiction and we conclude the proof of Case In what 
follows, we shall claim that the edge mentioned above does exist. 

if FIFz E V( G A)' then we are done. Therefore assume that FIFz ~ V( G A)' 
Consider the distance of VI, V2 in G, d(Vl' V2), where VI E V(FI ), V2 E V(F2 ) and Vj 
is not incident with the vertices in j = 1,2. In the case that d( vI, V2) = 2, there 
exists a vertex Vk E V(Fk), for some k > 2, such that VkVl and VkV2 are in A. Since 
Fk non-trivial, let v~ Fk \ {Vk}. Thus, in order to keep that d( v~, vo) for each 
vo V(Fo), vA: must be incident with an edge 9 in A\{VkVl,VkV2}. Furthermore, 9 
can not be starting edge for , k' > 2 and k' =1= k. Hence 9 is the extra f we 
are looking for. On the other cru;;e, d( VI, V2) :::: 3. Thus there exists a shortest path 
of length 3 from VI to V2, let it be VI - a - b - V2. We consider the following three 
situations. First, a E V(Fd or bE V(F2)' Then d(a,v2) = 2 or d(Vl,b):::: 2. By a 
similar argument as in the case d( Vl , V2 ) 2, we can find an edge f. Secondly, if a 
and b are in the same component Fk for some k > 2, then a must be adjacent to a 
vertex w in Fk' for some k' > 2. For otherwise, there exists a vertex U E V(Fo) such 
that d(a,u) 2: 4. Therefore f can be found in {aw,avl,bv2}\Ak. Finally, assume 
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components for some k, h 
components, then let f 

of 

we COlD.cl,ucle 

- 4) + 3 

3. 

exist two distinct and {j', k'} of {I, 
0, then the same ar~~nel1t as in Case 2, we can 

L,-,,,,,,,,,..,,,_ thus we have the 

:::I 0 for any {j, 

a'is 
thus 

3} such that 
an f 

elements. Without loss of lS'-'J...I.\.OJ.<hU.V;Y 

VI a - b - Vz where a E 
Ax. Then b must be adjacent 

due to the reason that ab E Ax and 2 
for some u V(Fo). since each in G - A is nr.,n_,'""", 

that c E V(Fx)\ {a} and d E which are incident with el 

and ez E A\(Uk'T"yAk), Then the two edges can be found from the set 
{ VI a, bv, bV2 , e 1, ez }. most 4 of them are in Ax U On the other hand, 
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can be found in 
of Case and the theorem. 0 

of Theorem 1.8. 

or T has Betti 2, it suffices to show that 
is not upper embeddable then the is in either S 

G be a diameter 3 simple which is not upper embeddable. 
2.1 and there is testable with minimum not 

{Fo, F I ,'" ,FjV(GA)I-d, Fo be a vertex of GA with 
be the of Fo. Consider Fi, i > 

is a graph and each component of G - A contains at least 
thr,ce vertices. Since G is of diameter 3, there exist at least three edge disjoint 

of length 2 or 3 which start from the vertices of Fi to the vertices of Fo. 
there are a vertex u in V(Fo) and a vertex v in V(Fi) such that 

v) 2: 4, a contradiction.) Similar to the of Theorem 1. 7, let Ex be the 
set of 3 disjoint of length or 3 which start from the vertices 
of to the vertices of Fo such that By n Bz =F 0 for any x, y, z > 8( G.4.) and y =F z. 
Now if 8( G A) = 3 then by Corollary 1.5, 

r3c(G - A)l = ~ IE(GA)I = IAI 
2 

< c( G - A) + b( G - - 2 S; 2c( G - A) - 2. 

This concludes c( G - A) 2: 6. 
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Assume that c( G 6. the fact == and n Bz == 0 for any 
x, y, > 3, y we obtain 

A) 2 c(G beG A) 2. 

there exists vertex 
c( G - A) == 6. Now if 

> 3, then 

IAI 
2. (c(G = 6) 

Tills is lIDPOf'lSlt>ie. Thus must be a c"-J.'''~UU.CLJ. 

IBxl 3, 
see that 

In 

n B z 0 for any x, Y, > 
must be both aaJiacl~nt 
2.1. 

FIGURE 

Assume that there exists a not adjacent with any 
of A. Since is vertex any v E j 4,5, 

v must be to one vertex of for some k {I, 2, 3} and this vertex is 
Due to the fact that IS we can find 

are not incident with any of 
UV,""HIULC for a diameter 3 

FIGURE 2.2 

of And then G must be as 
Hence we conclude that 



§ 3. C()ll4c:iutdlng remarks 

above 
that 
Thus 
much results has been obtained 

with diameter k 8. The 
diameter 8 graph may have very 
consider k E {3, 4, 5, 6, 7} in the 

FIGURE 3.1. I-edge connected and 2-edge connected 
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FIGURE 3.2. k 8 

REFERENCE 

1. M. Chartrad and Lesniak-Foster, Graphs and Digraphs, Prindle, Weber and 
Schmidt, Boston, 1979. 

2. H. L. Fu M. C. Tsai, and vertex operations on upper embeddable graph, Math. 
Slovaca, appear. 

3. M. Jungerman, characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 
(1978), 401-406. 

4. 1. Nebesky, A new characterization of the maximum genus of a graph, Czechoslovak Math. 
J. 31(106) (1981), 604-613. 

5. L. Nebesky, Every connected, locally connected graph upper embeddable, J. Graph Theory. 
5 (1981), 205-207. 

6. L. Nebesk:;T, On upper embeddability of complementary graphs, Casopis Pest. Math. (1087) 
no.2 (1983), 214-217. 

7. L. Nebesky, On locally quasi-connected graphs and their upper embeddability, Czechoslovak 
Math. J. 35(110) no.1 (1985), 162-166. 

8. M. The maximum of vertex-transitive graphs, Discrete Mathematics 78 (1989), 
179-186. 

9. M. ,')K<JVII>"","', The maximum genuB of graphs of diameter 2, Discrete Mathematics 87 (1991), 
175-180. 

10. M. The decay number and the maximum genus of a graph, Math. Slovaca 42 no.4 
(1992), 391-406. 

11. N. H. Xuong, How to determine the maximum genus of a graph, J. Combinatorial Theory 
Ser. B 26 (1979), 217-225. 

12. N. H. Xuong, Upper embeddable graphs and related topic, J. Combinatorial Theory Ser. B 26 
(1979), 226-232. 

(Received 9/12/95) 




