On the Number of Indecomposable Block Designs

MARTIN GRÜTTMÜLLER

Department of Mathematics, University of Rostock, Germany email: mgruttm@zeus.math.uni-rostock.de

Abstract. A t- (v, k, λ) design \mathcal{D} is a system (multiset) of k-element subsets (called blocks) of a v-element set V such that every t-element subset of V occurs exactly λ times in the blocks of \mathcal{D} . A t- (v, k, λ) design \mathcal{D} is called indecomposable (or elementary) if and only if there is no subsystem which is a t- (v, k, λ') design with $0 < \lambda' < \lambda$. It is known that the number of indecomposable designs for given parameters t, v, k is finite. A block design is a t- (v, k, λ) design with t = 2. The exact number of nonisomorphic, indecomposable block designs is only known for k = 3 and $v \leq 7$. We computed the number of indecomposable designs for $v \leq 13$ and $\lambda \leq 6$. The algorithms used will be described.

1 Introduction

A t- (v, k, λ) design \mathcal{D} is a system (multiset) of k-element subsets (called blocks) of a v-element set V such that every t-element subset of V occurs exactly λ times in the blocks of \mathcal{D} . A t- (v, k, λ) design \mathcal{D} is called *indecomposable* (or elementary) if and only if there is no subsystem which is a t- (v, k, λ') design with $0 < \lambda' < \lambda$. A survey about existence results was given by Archdeacon and Dinitz [1]. Two designs \mathcal{D} and \mathcal{D}' based on the same set V are called *isomorphic* if and only if there is a permutation of the elements of V which has the property that every block of \mathcal{D} is bijectively mapped into a block of \mathcal{D}' ; we write $\mathcal{D}' = \pi(\mathcal{D})$ with $\pi \in S_V$.

A block design is a t- (v, k, λ) design with t = 2. The number of indecomposable t- (v, k, λ) designs for given parameters t, v, k is finite, see Street [17] or Engel [5]. One way to construct block designs with larger λ is to take the union of designs sharing a common set V. Let parameters t, v, k be fixed. The set of all non-isomorphic, indecomposable t- (v, k, λ) designs $\tilde{\mathcal{D}}^*[t, v, k] = \{\tilde{\mathcal{D}}^*_1, \tilde{\mathcal{D}}^*_2, \ldots, \tilde{\mathcal{D}}^*_{|\tilde{\mathcal{D}}^*[t, v, k]|}\}$ forms a finite generating system. Every t- (v, k, λ) design \mathcal{D} can be built as follows:

$$\mathcal{D} = \bigcup_{i=1}^{|\tilde{\mathcal{D}}^*[t,v,k]|} \biguplus_{j=1}^{\alpha_i} \pi_{ij}(\tilde{\mathcal{D}}_i^*) \qquad \alpha_i \in \mathbb{N}, \ \pi_{ij} \in S_V \ ,$$

where α_i denotes how often the indecomposable design $\tilde{\mathcal{D}}_i^* \in \tilde{\mathcal{D}}^*[t, v, k]$ is to be used. The \boxplus sign means the union of multisets, i.e. if a block *B* occurs *r* times in

Australasian Journal of Combinatorics 14 (1996), pp. 181-186

 \mathcal{D}_1 and s times in \mathcal{D}_2 , B occurs s + t times in $\mathcal{D}_1 \uplus \mathcal{D}_2$. The exact number of nonisomorphic, indecomposable block designs is only known for k = 3 and $v \leq 7$. In 1979 Burosch [2] showed that there exists exactly one indecomposable 2-(6, 3, λ) design. This is the only existing 2-(6, 3, 2) design. Landgev [11] proved that the number of indecomposable 2-(7, 3, λ) designs is 2. One of them is the projective plane of order 2 (Fano plane). The second is obtained from all triples on 7 points by removing two disjoint Fano planes. A design is *simple* if it contains no repeated blocks. For a few small parameters the number of simple, indecomposable block designs is known. In Table 2 we show some results on simple designs and references.

Deciding whether a 2-(v, k, 2) design is decomposable can be done in polynomial time, see M. Colbourn [4]. C. Colbourn and M. Colbourn [3] proved that deciding whether a 2- $(v, 3, \lambda)$ design (with $\lambda = 3, 4$) is decomposable is NP-complete.

2 Results

In 1993 Pietsch [16] developed a computer program called DESY which enumerates group divisible designs as the most general structures. We used DESY to construct block designs. The C++ program INDES is able to decide whether a design constructed in this way is decomposable or not. The computational results are presented in Table 1 (together with the best running time of INDES on a HP 735/125 workstation) and Table 2 (with reference INDES).

We introduce the following notations:

$NE(t, v, k, \lambda)$ is the number of non-isomorphic indecompose	ble
(i, i, n, n) is the number of non-isomorphic, indecompose	
$t\text{-}(v,k,\lambda) ext{ designs}$	
$NDC(t, v, k, \lambda)$ is the number of non-isomorphic, decomposable	e
t - (v, k, λ) designs	
$NSD(t, v, k, \lambda)$ is the number of simple, non-isomorphic	
t - (v, k, λ) designs	
$NSE(t, v, k, \lambda)$ is the number of simple, non-isomorphic,	
indecomposable t - (v, k, λ) designs	

$t-(v,k,\lambda)$	$ND(t,v,k,\lambda)$	$NE(t,v,k,\lambda)$	$NDC(t,v,k,\lambda)$	Time
2-(8,4,6)	2310	$1784^{S,D}$	$526^{\mathbf{J}}$	3 min 26 s
2-(9,3,3)	22521	$13303^{S, D}$	9218 ^J	$8 \min 25 s$
2-(9,4,6)	≥ 300953	$\geq 953^{S,D}$	$\geq 300000^{\mathbf{J}}$	32 h
2 - (10, 4.4)	≥ 10733	$\geq 2849^{D}$	7884 ^J	2 h 39 min
2 - (11, 5, 4)	4393	4298 ^{D}	95 ⁷	1 h 45 min
2 - (13, 3, 2)	≥ 311074	$\geq 61074^D$	$\geq 250000^{ extsf{J}}$	48 h
2 - (13, 4, 2)	2461	2277 ^{D}	184 ^J	2 s

Table 1: Numbers of indecomposable and decomposable designs

In Tables 1 and 2 only nontrivial results are noted; e.g. it is trivial that $ND(t, v, k, \lambda) = NE(t, v, k, \lambda)$ if λ is the smallest number satisfying the well known necessary conditions. The numbers of designs listed in column $ND(t, v, k, \lambda)$ were taken from Pietsch [16]. It should be pointed out that the numbers of designs 2-(13, 4, 2) and 2-(8, 4, 6) in the listing of Mathon and Rosa [14] are incorrect. The corrected listing of design numbers will appear shortly in the CRC Handbook of Combinatorial Designs [13].

The capital letters after numbers in Table 1 denote the algorithms used. Here 'S' stands for 'Subset'-algorithm, 'D' for 'Decompose'-algorithm and 'J' stands for 'Join'- algorithm. The bold capital letter denotes the algorithm whose running time is given.

$t - (v, k, \lambda)$	$NSD(t,v,k,\lambda)$	$NSE(t,v,k,\lambda)$	Reference
2 - (8, 4, 6)	164	128	[7],[8]
2 - (8, 4, 9)	164	1	[7],[8]
2 - (8, 4, 12)	4	0	[6]
2 - (9, 3, 2)	13	11	[15],[12]
2-(9,3,3)	332	172	$INDES,[10]^1$
2-(9,3,4)	332	0	[10],INDES
2 - (9, 3, 5)	13	0	[9]
2 - (9, 3, 6)	1	0	[9]
2-(11,5,4)	3737	3679	INDES
2-(13,4,2)	1576	1453	INDES

Table 2: Numbers of simple, indecomposable designs

¹ Harnau's paper missed three designs; one of them is indecomposable.

3 The Algorithms used

The program DESY constructs one design from each isomorphism class. This representative is called the *canonical* design of that isomorphism class.

We used three different algorithms which can decide the question whether a design is indecomposable or decomposable.

The definition of indecomposability gives us the idea for the 'Subset'-algorithm: For a given t- (v, k, λ) design \mathcal{D} we have to find a permutation $\pi \in S_V$ and in the finite set of indecomposable, canonical t- (v, k, λ') designs $(\lambda' \leq \lfloor \frac{\lambda}{2} \rfloor)$ a design $\tilde{\mathcal{D}}^*$, such that: $\pi(\tilde{\mathcal{D}}^*) \subset \mathcal{D}$. If we can not find such a design and such a permutation then \mathcal{D} is indecomposable.

The 'Decompose'-algorithm:

Let \mathcal{D} be a t- (v, k, λ) design . We call the graph G with vertex set the blocks of \mathcal{D} and edge set

 $E = \{ (B_i B_j) : B_i, B_j \in \mathcal{D}, |B_i \cap B_j| \ge t \text{ and } i \neq j \}$

the block-intersection graph of \mathcal{D} .

Looking at the block-intersection graph we can say:

Theorem 1

A t- (v, k, λ) design \mathcal{D} based on a set V is decomposable if and only if there is a $\lambda' \in \mathbb{N}$ $(1 \leq \lambda' \leq \lfloor \frac{\lambda}{2} \rfloor)$ and a colouring (red, blue) of vertices (i.e. blocks) of the block-intersection graph such that for every pair $\{i, j\} \subseteq V$ there exist exactly λ' red coloured blocks which contain the pair $\{i, j\}$.

In the case $\lambda = 2$ such a colouring exists if and only if the block-intersection graph is bipartite. Then the 'Decompose'-algorithm can colour the graph in polynomial time. For $\lambda \geq 3$ we use a backtrack-algorithm to find a colouring. We orientated the description of the backtrack-algorithm to the notation which was used by Colbourn [4, p.75]. We have to decompose a t- (v, k, λ) design \mathcal{D} which is given with any numbering of the blocks of \mathcal{D} . Let $1 \leq \lambda' \leq \lfloor \frac{\lambda}{2} \rfloor$. In the *r*-th step the algorithm has constructed a vector $x = (x_1, \ldots, x_r)$ (with integer $x_i \leq |\mathcal{D}|$ and $x_i \neq x_j$ for $i \neq j$). This vector denotes that the block x_k was coloured red in the k-th step. For testing of permissibility of the vector x we colour blue all yet uncoloured blocks of \mathcal{D} which contain a pair $\{i, j\}$, which is contained in exactly λ' red coloured blocks. The vector x is permissible if there is no pair $\{i, j\}$ which is contained in more than λ' red coloured blocks or in more than $\lambda - \lambda'$ blue coloured blocks. If the vector x is not permissible we uncolour the block x_r and all blue coloured blocks. The set X_r contains all blocks which can occur in the r-th position of the vector x. If X_r is not empty we choose the first block for x_r and delete it from X_r . We make again the test of permissibility. If the set X_r is empty then it is necessary to backtrack to the previous component of the vector x and replace block x_{r-1} . If X_1 is empty the algorithm stops because there does not exist a permissible colouring with λ' . If the vector x is permissible then we search for a pair $\{i, j\}$ which is not contained in λ' red coloured blocks. If such a pair does not exist we have found a permissible colouring of the block-intersection graph. If such a pair $\{i, j\}$ exists then we form a new set X_{r+1} which has as elements all uncoloured blocks containing $\{i, j\}$. After choosing a block from X_{r+1} for component x_{r+1} and removing it from the set X_{r+1} we start again.

The 'Join'-algorithm:

Our aim is to build all canonical, decomposable t- (v, k, λ) designs. A given canonical t- (v, k, λ) design \mathcal{D} is indecomposable if and only if we can not find it in the set thus built.

Theorem 2

Every decomposable, canonical $t \cdot (v, k, \lambda)$ design \mathcal{D}^* is isomorphic to a design \mathcal{D} , which can be built as the union of a canonical $t \cdot (v, k, \lambda_1)$ design \mathcal{D}_1^* with an indecomposable $t \cdot (v, k, \lambda_2)$ design $\tilde{\mathcal{D}}_2$ with the property that $\lfloor \frac{\lambda}{2} \rfloor \geq \lambda_2$ and $\tilde{\mathcal{D}}_2$ is isomorphic to an indecomposable, canonical $t \cdot (v, k, \lambda_2)$ design $\tilde{\mathcal{D}}_2^*$.

$$\mathcal{D}^* \cong \mathcal{D} = \mathcal{D}_1^* \ \uplus \pi(\tilde{\mathcal{D}}_2^*), \text{ with } \lambda = \lambda_1 + \lambda_2 \text{ and } \pi \in S_V.$$

If we try all possible combinations of the union of a canonical design with a permuted, canonical, indecomposable design, we build every decomposable, canonical t- (v, k, λ) design \mathcal{D}^* , up to isomorphism. For all these designs we construct the canonical design to make sure that we save only non-isomorphic designs.

A permutation $\pi \in S_V$ is called an automorphism of a design \mathcal{D} if $\mathcal{D} = \pi(\mathcal{D})$. The set of all automorphisms of a design forms a group. This group is called the automorphism group of a design. We use automorphism groups for decreasing the running time of the 'Join'-algorithm.

Theorem 3

Let \mathcal{D}_1 be a t- (v, k, λ_1) design with automorphism group $Aut(\mathcal{D}_1)$ and let \mathcal{D}_2 be a t- (v, k, λ_2) design with automorphism group $Aut(\mathcal{D}_2)$. Then we have for all $\pi \in S_V$:

 $\mathcal{D}_1 \ \uplus \pi(\mathcal{D}_2) \cong \mathcal{D}_1 \ \uplus \pi_a \circ \pi \circ \pi_b(\mathcal{D}_2) \quad \forall \pi_a \in Aut(\mathcal{D}_1), \forall \pi_b \in Aut(\mathcal{D}_2)$

During the 'Join'-algorithm we have a lot of permutations which generate the same design. For characterisation of these permutations we define an equivalence relation for elements $\pi_1, \pi_2 \in S_V$:

 $\pi_1 \sim \pi_2 \iff \pi_1 = \pi_a \circ \pi_2 \circ \pi_b \quad \pi_a \in Aut(\mathcal{D}_1), \pi_b \in Aut(\mathcal{D}_2).$

So we only have to work with one representative from each equivalence class.

References

- D. Archdeacon and J. Dinitz. Indecomposable Triple Systems exist for all Lambda. Discrete Math., 113:1-6, 1983.
- [2] G. Burosch. Über die Anzahl elementarer BUB der vollständigen (6,3)-Familie. Rostock. Math. Kollog., 11:5-11, 1979.
- [3] C.J. Colbourn and M.J. Colbourn. The Computational Complexity of Decomposing Block Designs. Discrete Appl. Math., 27:345-350, 1985.
- [4] M.J. Colbourn. Algorithmic Aspects of Combinatorial Designs: A Survey. Annals of Discrete Math., 26:67-136, 1985.
- [5] K. Engel. The Number of Indecomposable Designs is Finite. Ars Combinatoria, 17:33-34, 1988.
- [6] H.-D.O.F. Gronau. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8, 4, λ)-Blockpläne I. Rostock. Math. Kollog., 11:59-66, 1979.
- [7] H.-D.O.F. Gronau and R. Reimer. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8,4, λ)-Blockpläne II. Rostock. Math. Kollog., 17:27–35, 1981.
- [8] H.-D.O.F. Gronau and R. Reimer. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8,4, λ)-Blockpläne III. Rostock. Math. Kollog., 17:37-47, 1981.

- [9] W. Harnau. Die Anzahl paarweise nichtisomorpher, elementarer, wiederholungsfreier 2-(9, 3, λ)-Blockpläne. Teil I. Rostock. Math. Kollog., 11:75-83, 1979.
- [10] W. Harnau. Die Anzahl paarweise nichtisomorpher, elementarer, wiederholungsfreier 2-(9, 3, λ)-Blockpläne. Teil II. *Rostock. Math. Kollog.*, **13**:43–47, 1980.
- [11] I. Landgev. Nondecomposable Block Designs with v = 7 and k = 3. Mathematics and mathematical education (Bulgarian) (Albena, 1989), Bulgar. Akad. Nauk, Sofia, pages 386-389, 1989.
- [12] R. Mathon and A. Rosa. A census of Mendelson triple systems of order nine. Ars Combinatoria, 4:309-315, 1977.
- [13] R. Mathon and A. Rosa. 2- (v, k, λ) designs of small order. in: *CRC Handbook* of Combinatorial Designs. (C.J. Colbourn, J.H. Dinitz, eds.) to appear.
- [14] R. Mathon and A. Rosa. Tables of parameters of BIBDs with $r \leq 41$ including existence, enumeration and resolvability results: an update. Ars Combinatoria, **30**:65–96, 1990.
- [15] E.J. Morgan. Some small quasi-multiple designs. Ars Combinatoria, 3:233-250, 1977.
- [16] C. Pietsch. Über die Enumeration von Inzidenzstrukturen, 1993. Inaugural-Dissertation, Universität Rostock.
- [17] A.P. Street and D.J. Street. Combinatorics of Experimental Design. Clarendon Press, Oxford, 1987.

(Received 1/12/95)