On the Number of Indecomposable Block Designs

Martin Grüttmüller
Department of Mathematics, University of Rostock, Germany
email: mgruttm@zeus.math.uni-rostock.de

Abstract

A $t-(v, k, \lambda)$ design \mathcal{D} is a system (multiset) of k-element subsets (called blocks) of a v-element set V such that every t-element subset of V occurs exactly λ times in the blocks of \mathcal{D}. A $t-(v, k, \lambda)$ design \mathcal{D} is called indecomposable (or elementary) if and only if there is no subsystem which is a $t-\left(v, k, \lambda^{\prime}\right)$ design with $0<\lambda^{\prime}<\lambda$. It is known that the number of indecomposable designs for given parameters t, v, k is finite. A block design is a $t-(v, k, \lambda)$ design with $t=2$. The exact number of nonisomorphic, indecomposable block designs is only known for $k=3$ and $v \leq 7$. We computed the number of indecomposable designs for $v \leq 13$ and $\lambda \leq 6$. The algorithms used will be described.

1 Introduction

A t - (v, k, λ) design \mathcal{D} is a system (multiset) of k-element subsets (called blocks) of a v-element set V such that every t-element subset of V occurs exactly λ times in the blocks of \mathcal{D}. A $t-(v, k, \lambda)$ design \mathcal{D} is called indecomposable (or elementary) if and only if there is no subsystem which is a $t-\left(v, k, \lambda^{\prime}\right)$ design with $0<\lambda^{\prime}<\lambda$. A survey about existence results was given by Archdeacon and Dinitz [1]. Two designs \mathcal{D} and \mathcal{D}^{\prime} based on the same set V are called isomorphic if and only if there is a permutation of the elements of V which has the property that every block of \mathcal{D} is bijectively mapped into a block of \mathcal{D}^{\prime}; we write $\mathcal{D}^{\prime}=\pi(\mathcal{D})$ with $\pi \in S_{V}$.
A block design is a $t-(v, k, \lambda)$ design with $t=2$. The number of indecomposable $t-(v, k, \lambda)$ designs for given parameters t, v, k is finite, see Street [17] or Engel [5]. One way to construct block designs with larger λ is to take the union of designs sharing a common set V. Let parameters t, v, k be fixed. The set of all non-isomorphic, indecomposable $t-(v, k, \lambda)$ designs $\tilde{\mathcal{D}}^{*}[t, v, k]=\left\{\tilde{\mathcal{D}}_{1}^{*}, \tilde{\mathcal{D}}_{2}^{*}, \ldots, \tilde{\mathcal{D}}_{|\tilde{\mathcal{D}} *[t, v, k]|}^{*}\right\}$ forms a finite generating system. Every $t-(v, k, \lambda)$ design \mathcal{D} can be built as follows:

$$
\mathcal{D}=\biguplus_{i=1}^{\left|\tilde{\mathcal{D}}^{*}[t, v, k]\right|} \biguplus_{j=1}^{\alpha_{i}} \pi_{i j}\left(\tilde{\mathcal{D}}_{i}^{*}\right) \quad \alpha_{i} \in \mathbb{N}, \pi_{i j} \in S_{V}
$$

where α_{i} denotes how often the indecomposable design $\tilde{\mathcal{D}}_{i}^{*} \in \tilde{\mathcal{D}}^{*}[t, v, k]$ is to be used. The $\uplus \operatorname{sign}$ means the union of multisets, i.e. if a block B occurs r times in
\mathcal{D}_{1} and s times in \mathcal{D}_{2}, B occurs $s+t$ times in $\mathcal{D}_{1} \uplus \mathcal{D}_{2}$. The exact number of nonisomorphic, indecomposable block designs is only known for $k=3$ and $v \leq 7$. In 1979 Burosch [2] showed that there exists exactly one indecomposable 2-($6,3, \lambda$) design. This is the only existing $2-(6,3,2)$ design. Landgev [11] proved that the number of indecomposable 2-(7,3, $)$ designs is 2 . One of them is the projective plane of order 2 (Fano plane). The second is obtained from all triples on 7 points by removing two disjoint Fano planes. A design is simple if it contains no repeated blocks. For a few small parameters the number of simple, indecomposable block designs is known. In Table 2 we show some results on simple designs and references.
Deciding whether a $2-(v, k, 2)$ design is decomposable can be done in polynomial time, see M. Colbourn [4]. C. Colbourn and M. Colbourn [3] proved that deciding whether a $2-(v, 3, \lambda)$ design (with $\lambda=3,4$) is decomposable is NP-complete.

2 Results

In 1993 Pietsch [16] developed a computer program called DESY which enumerates group divisible designs as the most general structures. We used DESY to construct block designs. The $(++$ program INDES is able to decide whether a design constructed in this way is decomposable or not. The computational results are presented in Table 1 (together with the best running time of INDES on a HP 735/125 workstation) and Table 2 (with reference INDES).
We introduce the following notations:
$N D(t, v, k, \lambda) \quad$ is the number of non-isomorphic $t-(v, k, \lambda)$ designs
$N E(t, v, k, \lambda) \quad$ is the number of non-isomorphic, indecomposable
$t-(v, k, \lambda)$ designs
$N D C(t, v, k, \lambda)$ is the number of non-isomorphic, decomposable
$t-(v, k, \lambda)$ designs
$N S D(t, v, k, \lambda)$ is the number of simple, non-isomorphic $t-(v, k, \lambda)$ designs
$N S E(t, v, k, \lambda)$ is the number of simple, non-isomorphic, indecomposable $t-(v, k, \lambda)$ designs

$t-(v, k, \lambda)$	$N D(t, v, k, \lambda)$	$N E(t, v, k, \lambda)$	$N D C(t, v, k, \lambda)$	Time
$2-(8,4,6)$	2310	$1784^{S, D}$	526^{J}	3 min 26 s
$2(9,3,3)$	22521	$13303^{S, D}$	9218^{J}	8 min 25 s
$2(9,4,6)$	≥ 300953	$\geq 953^{S, D}$	$\geq 300000^{J}$	32 h
$2-(10,4.4)$	≥ 10733	$\geq 2849^{D}$	7884^{J}	2 h 39 min
$2-(11,5,4)$	4393	4298^{D}	95^{J}	1 h 45 min
$2-(13,3,2)$	≥ 311074	$\geq 61074^{\mathrm{D}}$	$\geq 250000^{J}$	48 h
$2-(13,4,2)$	2461	2277^{D}	184^{J}	2 s

Table 1: Numbers of indecomposable and decomposable designs

In Tables 1 and 2 only nontrivial results are noted; e.g. it is trivial that $N D(t, v, k, \lambda)=N E(t, v, k, \lambda)$ if λ is the smallest number satisfying the well known necessary conditions. The numbers of designs listed in column $N D(t, v, k, \lambda)$ were taken from Pietsch [16]. It should be pointed out that the numbers of designs 2 $(13,4,2)$ and $2-(8,4,6)$ in the listing of Mathon and Rosa [14] are incorrect. The corrected listing of design numbers will appear shortly in the CRC Handbook of Combinatorial Designs [13].
The capital letters after numbers in Table 1 denote the algorithms used. Here ' S ' stands for 'Subset'-algorithm, 'D' for 'Decompose'-algorithm and 'J' stands for 'Join'algorithm. The bold capital letter denotes the algorithm whose running time is given.

$t-(v, k, \lambda)$	$N S D(t, v, k, \lambda)$	$N S E(t, v, k, \lambda)$	Reference
$2-(8,4,6)$	164	128	$[7],[8]$
$2-(8,4,9)$	164	1	$[7],[8]$
$2-(8,4,12)$	4	0	$[6]$
$2-(9,3,2)$	13	11	$[15],[12]$
$2-(9,3,3)$	332	172	INDES, $[10]^{1}$
$2-(9,3,4)$	332	0	$[10]$, INDES
$2-(9,3,5)$	13	0	$[9]$
$2-(9,3,6)$	1	0	$[9]$
$2-(11,5,4)$	3737	3679	INDES
$2-(13,4,2)$	1576	1453	INDES

Table 2: Numbers of simple, indecomposable designs
${ }^{1}$ Harnau's paper missed three designs; one of them is indecomposable.

3 The Algorithms used

The program DESY constructs one design from each isomorphism class. This representative is called the canonical design of that isomorphism class.
We used three different algorithms which can decide the question whether a design is indecomposable or decomposable.
The definition of indecomposability gives us the idea for the 'Subset'-algorithm: For a given t - (v, k, λ) design \mathcal{D} we have to find a permutation $\pi \in S_{V}$ and in the finite set of indecomposable, canonical $t-\left(v, k, \lambda^{\prime}\right)$ designs $\left(\lambda^{\prime} \leq\left\lfloor\frac{\lambda}{2}\right\rfloor\right)$ a design $\tilde{\mathcal{D}}^{*}$, such that: $\pi\left(\tilde{\mathcal{D}}^{*}\right) \subset \mathcal{D}$. If we can not find such a design and such a permutation then \mathcal{D} is indecomposable.

The 'Decompose'-algorithm:
Let \mathcal{D} be a $t-(v, k, \lambda)$ design. We call the graph G with vertex set the blocks of \mathcal{D} and edge set

$$
E=\left\{\left(B_{i} B_{j}\right): B_{i}, B_{j} \in \mathcal{D},\left|B_{i} \cap B_{j}\right| \geq t \text { and } i \neq j\right\}
$$

the block-intersection graph of \mathcal{D}.
Looking at the block-intersection graph we can say:

Theorem 1

A $t-(v, k, \lambda)$ design \mathcal{D} based on a set V is decomposable if and only if there is a $\lambda^{\prime} \in \mathbb{N}\left(1 \leq \lambda^{\prime} \leq\left\lfloor\frac{\lambda}{2}\right\rfloor\right)$ and a colouring (red,blue) of vertices (i.e. blocks) of the block-intersection graph such that for every pair $\{i, j\} \subseteq V$ there exist exactly λ^{\prime} red coloured blocks which contain the pair $\{i, j\}$.

In the case $\lambda=2$ such a colouring exists if and only if the block-intersection graph is bipartite. Then the 'Decompose'-algorithm can colour the graph in polynomial time. For $\lambda \geq 3$ we use a backtrack-algorithm to find a colouring. We orientated the description of the backtrack-algorithm to the notation which was used by Colbourn $[4$, p.75]. We have to decompose a $t-(v, k, \lambda)$ design \mathcal{D} which is given with any numbering of the blocks of \mathcal{D}. Let $1 \leq \lambda^{\prime} \leq\left\lfloor\frac{\lambda}{2}\right\rfloor$. In the r-th step the algorithm has constructed a vector $x=\left(x_{1}, \ldots, x_{r}\right)$ (with integer $x_{i} \leq|\mathcal{D}|$ and $x_{i} \neq x_{j}$ for $i \neq j$). This vector denotes that the block x_{k} was coloured red in the k-th step. For testing of permissibility of the vector x we colour blue all yet uncoloured blocks of \mathcal{D} which contain a pair $\{i, j\}$, which is contained in exactly λ^{\prime} red coloured blocks. The vector x is permissible if there is no pair $\{i, j\}$ which is contained in more than λ^{\prime} red coloured blocks or in more than $\lambda-\lambda^{\prime}$ blue coloured blocks. If the vector x is not permissible we uncolour the block x_{r} and all blue coloured blocks. The set X_{r} contains all blocks which can occur in the r-th position of the vector x. If X_{r} is not empty we choose the first block for x_{r} and delete it from X_{r}. We make again the test of permissibility. If the set X_{r} is empty then it is necessary to backtrack to the previous component of the vector x and replace block x_{r-1}. If X_{1} is empty the algorithm stops because there does not exist a permissible colouring with λ^{\prime}. If the vector x is permissible then we search for a pair $\{i, j\}$ which is not contained in λ^{\prime} red coloured blocks. If such a pair does not exist we have found a permissible colouring of the block-intersection graph. If such a pair $\{i, j\}$ exists then we form a new set X_{r+1} which has as elements all uncoloured blocks containing $\{i, j\}$. After choosing a block from X_{r+1} for component x_{r+1} and removing it from the set X_{r+1} we start again.

The 'Join'-algorithm:
Our aim is to build all canonical, decomposable $t-(v, k, \lambda)$ designs . A given canonical $t-(v, k, \lambda)$ design \mathcal{D} is indecomposable if and only if we can not find it in the set thus built.

Theorem 2

Every decomposable, canonical $t-(v, k, \lambda)$ design \mathcal{D}^{*} is isomorphic to a design \mathcal{D}, which can be built as the union of a canonical $t-\left(v, k, \lambda_{1}\right)$ design \mathcal{D}_{1}^{*} with an indecomposable $t-\left(v, k, \lambda_{2}\right)$ design $\tilde{\mathcal{D}}_{2}$ with the property that $\left\lfloor\frac{\lambda}{2}\right\rfloor \geq \lambda_{2}$ and $\tilde{\mathcal{D}}_{2}$ is isomorphic to an indecomposable, canonical $t-\left(v, k, \lambda_{2}\right)$ design $\tilde{\mathcal{D}}_{2}^{*}$.

$$
\mathcal{D}^{*} \cong \mathcal{D}=\mathcal{D}_{1}^{*} \uplus \pi\left(\tilde{\mathcal{D}}_{2}^{*}\right), \text { with } \lambda=\lambda_{1}+\lambda_{2} \text { and } \pi \in S_{V}
$$

If we try all possible combinations of the union of a canonical design with a permuted, canonical, indecomposable design, we build every decomposable, canonical
$t-(v, k, \lambda)$ design \mathcal{D}^{*}, up to isomorphism. For all these designs we construct the canonical design to make sure that we save only non-isomorphic designs.
A permutation $\pi \in S_{V}$ is called an automorphism of a design \mathcal{D} if $\mathcal{D}=\pi(\mathcal{D})$. The set of all automorphisms of a design forms a group. This group is called the automorphism group of a design. We use automorphism groups for decreasing the running time of the 'Join'-algorithm.

Theorem 3

Let \mathcal{D}_{1} be a $t-\left(v, k, \lambda_{1}\right)$ design with automorphism group $A u t\left(\mathcal{D}_{1}\right)$ and let \mathcal{D}_{2} be a $t-\left(v, k, \lambda_{2}\right)$ design with automorphism group $\operatorname{Aut}\left(\mathcal{D}_{2}\right)$. Then we have for all $\pi \in S_{V}$:

$$
\mathcal{D}_{1} \uplus \pi\left(\mathcal{D}_{2}\right) \cong \mathcal{D}_{1} \uplus \pi_{a} \circ \pi \circ \pi_{b}\left(\mathcal{D}_{2}\right) \quad \forall \pi_{a} \in \operatorname{Aut}\left(\mathcal{D}_{1}\right), \forall \pi_{b} \in \operatorname{Aut}\left(\mathcal{D}_{2}\right)
$$

During the 'Join'-algorithm we have a lot of permutations which generate the same design. For characterisation of these permutations we define an equivalence relation for elements $\pi_{1}, \pi_{2} \in S_{V}$:

$$
\pi_{1} \sim \pi_{2} \Longleftrightarrow \pi_{1}=\pi_{a} \circ \pi_{2} \circ \pi_{b} \quad \pi_{a} \in \operatorname{Aut}\left(\mathcal{D}_{1}\right), \pi_{b} \in \operatorname{Aut}\left(\mathcal{D}_{2}\right)
$$

So we only have to work with one representative from each equivalence class.

References

[1] D. Archdeacon and J. Dinitz. Indecomposable Triple Systems exist for all Lambda. Discrete Math., 113:1-6, 1983.
[2] G. Burosch. Über die Anzahl elementarer BUB der vollständigen (6, 3)-Familie. Rostock. Math. Kolloq., 11:5-11, 1979.
[3] C.J. Colbourn and M.J. Colbourn. The Computational Complexity of Decomposing Block Designs. Discrete Appl. Math., 27:345-350, 1985.
[4] M.J. Colbourn. Algorithmic Aspects of Combinatorial Designs: A Survey. Annals of Discrete Math., 26:67-136, 1985.
[5] K. Engel. The Number of Indecomposable Designs is Finite. Ars Combinatoria, 17:33-34, 1988.
[6] H.-D.O.F. Gronau. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8,4, λ)-Blockpläne I. Rostock. Math. Kolloq., 11:59-66, 1979.
[7] H.-D.O.F. Gronau and R. Reimer. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8, 4, λ)-Blockpläne II. Rostock. Math. Kolloq., 17:27-35, 1981.
[8] H.-D.O.F. Gronau and R. Reimer. Über nichtisomorphe elementare blockwiederholungsfreie 2-(8, 4, λ)-Blockpläne III. Rostock. Math. Kolloq., 17:37-47, 1981.
[9] W. Harnau. Die Anzahl paarweise nichtisomorpher, elementarer, wiederholungsfreier 2-(9,3, λ)-Blockpläne. Teil I. Rostock. Math. Kolloq., 11:75-83, 1979.
[10] W. Harnau. Die Anzahl paarweise nichtisomorpher, elementarer, wiederholungsfreier 2-(9, 3, 入)-Blockpläne. Teil II. Rostock. Math. Kolloq., 13:43-47, 1980.
[11] I. Landgev. Nondecomposable Block Designs with $v=7$ and $k=3$. Mathematics and mathematical education (Bulgarian) (Albena, 1989), Bulgar. Akad. Nauk, Sofia, pages 386-389, 1989.
[12] R. Mathon and A. Rosa. A census of Mendelson triple systems of order nine. Ars Combinatoria, 4:309-315, 1977.
[13] R. Mathon and A. Rosa. 2-(v,k, λ) designs of small order. in: CRC Handbook of Combinatorial Designs. (C.J. Colbourn, J.H. Dinitz, eds.) to appear.
[14] R. Mathon and A. Rosa. Tables of parameters of BIBDs with $r \leq 41$ including existence, enumeration and resolvability results: an update. Ars Combinatoria, 30:65-96, 1990.
[15] E.J. Morgan. Some small quasi-multiple designs. Ars Combinatoria, 3:233-250, 1977.
[16] C. Pietsch. Über die Enumeration von Inzidenzstrukturen, 1993. InauguralDissertation, Universität Rostock.
[17] A.P. Street and D.J. Street. Combinatorics of Experimental Design. Clarendon Press, Oxford, 1987.

