POSTTIVE BIPARE LABELLIHK OF GRAPHS
 Louis Caccetta and Ruizhong Jia
 School of Mathematics and Statistics
 Curtin University of Technology
 GPO Box U1987. Perth 6001
 Western Australla
 Email: caccetta@cs.curtin.edu.au

ABSTRACT:

Let $G=(V, E)$ be a finite undirected graph with vertex set V and edge set E. A mapping $f: E \rightarrow\{0,1\}^{\text {m }}$ is called an M-coding of G, if the induced mapping $g: V \rightarrow\{0,1\}^{\text {mim }}$, defined as $g(v)=\sum_{u \in V, u v \in E} f(u v)$, assigns different vectors to the vertices of G, where all summations are mod 2 . An M-coding f is called positive if the zero vector is not assigned to any edge and the induced labelling g does not assign the zero vector to any vertex. Let $m(G)\left(m^{*} G\right)$) be the smallest number m for which an M-coding (positive M-coding) of G is possible. Trivially, $\left.m^{\dagger}(G) \geq m(G) \geq\left|\log _{2}\right| V \mid\right\rceil$. Recently, Aigner and Triesch proved that $m(G) \leqq\left\lceil\log _{2}|V|\right\rceil+4$. In a recent paper, we determined $m(G)$. Tuza proved that $m^{+}(G) \leq m(G)+2$. In this paper we prove that

$$
{ }^{+}(G)=\left\{\begin{array}{lc}
k+1, & \text { if }|V|=2^{k}, 2^{k}-2 \text { or } 2^{k}-3 \\
k, & \text { otherwise }
\end{array}\right.
$$

where $k=\left\lceil\log _{2}|v|\right\rceil$.

1. INTRODUCTION

Let $G=(V, E)$ be a finite undirected graph with vertex set V and edge set E. The graph theory literature contains numerous problems concerned with labelling graphs. Such problems typically involve the
determination of a function f on $V \cup E$, that satisfies certain conditions. A well-known example is that of graceful labelling [4, 6, 7]. Most graph labellings are concerned with assigning natural numbers to the vertices and edges of the graph. Recently, labellings with subsets of a finite set have been studied $[1,2,3,5,8]$. Obviously such labelings can be interpreted as labellings with 0,1 -sequences. In this paper we consider such labellings.

More precisely, let $K=G F(2)$ be the 2-element finite field. A mapping $f: E(G) \rightarrow K^{m}$ is called an M-coding of G if the induced mapping $g: V(G) \rightarrow K^{m}$, defined as

$$
g(v)=\sum_{u \in V, u v \in E} f(u v)
$$

assigns different vectors to the vertices of G, where the addition is co-ordinatewise $(\bmod 2)$ in K^{m}, is called the length of the coding f. The smallest for which an M-coding of G exists is denoted by $m(G)$. Trivially $m(G) \geq\left\lceil\log _{2}|V|\right\rceil$. Further, a necessary condition for a graph G to have an M-coding is : every component of G has at least 3 vertices; note that if G has a component consisting of just two vertices u and v, then $g(u)=g(v)$ for any f. We assume throughout this paper that every component of G has at least 3 vertices.

The problem of determining $m(G)$ has been considered by a number of authors. In 1990, Tuza [8] proved that $m(G) \leq 3\left\lceil\log _{2}|V|\right\rceil$. Later Aigner and Triesch [1] established the better bound :

$$
m(G) \leq\left\lceil\log _{2}|V|\right\rceil+4
$$

Recently, Caccetta and Jia [5] established that :

$$
m(G)= \begin{cases}k, & \text { if }|V| \neq 2^{k}-2 \tag{1.1}\\ k+1, & \text { otherwise }\end{cases}
$$

where $k=\left[\log _{2}|V|\right\rceil$.
A number of labellings with additional properties were proposed by Tuza [8]. One such labelling is the following. An M-coding f is called positive if the zero vector is not assigned to any edge and the induced labelling g does not assign the zero-vector to any vertex. The smallest m for which a positive M-coding exists is denoted by (G).

Tuza [8] proved that :

$$
{ }^{+}(G) \leq m(G)+2
$$

Consequently, from (1.1) we obtain that

$$
m^{+}(G) \leq\left\lceil\log _{2}|V|\right\rceil+3
$$

for any graph G. In this paper, we prove that

$$
m^{+}(G)= \begin{cases}k+1, & \text { if }|V|=2^{k}, 2^{k}-2, \text { or } 2^{k}-3 \\ k, & \text { otherwise }\end{cases}
$$

where $k=\left\lceil\log _{2}|V|\right\rceil$.
We conclude our introduction by noting that the M-coding problem can be viewed as a set labelling problem by considering the 0,1 -vectors as characteristic vectors of subsets of a finite set X. We wish to label the edges of G with subsets of X such that the symmetric differences are distinct at the vertices of G. Here (G) ($\left.{ }^{+}(G)\right)$ becomes the cardinatilty of the smallest set which permits such a labelling (with the empty set excluded).

2. RESULTS

We establish our main resuits by exhibiting the required labellings inductively. We begin with some notation and terminology.

As stated in the introduction, the M-coding problew can be viewed as
a set labelling problem. We use standard set theoretic notation and terminology. Throughout, standard upper case letters will denote sets whilst script upper case letters will denote family of sets. Thus for sets A and B we write:

$$
\begin{array}{ll}
A \backslash B=\{x: x \in A, \text { and } x \notin B\} & (A \operatorname{not} B) \\
A \Delta B=(A \cup B) \backslash(A \cap B) & \text { (symmetric difference) }
\end{array}
$$

Let $A_{1}, A_{2}, \ldots, A_{t}$ denote t sets. We write

$$
A_{1} \Delta A_{2} \Delta \ldots \Delta A_{t}=\sum_{i=1}^{t} \Delta A_{1}
$$

A family $\mathcal{G}=\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ of subsets of 2^{X} is called a zeromsubset if

$$
\sum_{i=1}^{t} \Delta C_{i}=\phi
$$

In our work we will often deal with subgraphs of G and utilize the following terminology. For a graph G and set X let

$$
8: V(G) \rightarrow 2^{X}
$$

be any vertex labelling of G. For a subgraph H of G we define

$$
g(H)=\sum_{V \in V(H)} \Delta g(V)
$$

Trees will play an important role in our work. Let T be a tree and $V \in V(T)$ and $e \in E(T)$. Twe consists of two components. The component containing V is denoted by $B[T ; V, e]$; the other component is denoted by $\bar{B}[T ; v, e]$.

The following lemma plays a crucial role in the proof of our main

Leman 2.1: Let T be a tree with n vertices and X a set. Let $\mathscr{G}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ denote a family of distinct subsets of $2^{X}\{\phi\}$. Then for every $v \in V(T)$, there exists a $1-1$ mapping

$$
g: V(T) \rightarrow V
$$

such that

$$
g(\bar{B}[T ; v, e]) * \quad \text { for every } e E(T)
$$

Proof: We use induction on n. The result is trivially true for $n=1$ and 2. So suppose, as our inductive hypothesis that $n \geq 3$ and the assertion is true for all $n^{\prime}<n$. We will prove that the assertion is true for n.

For $v \in V(T)$, we choose any edge, say $e_{0}=v v_{1}$, incident to v. Let $T_{1}=\bar{B}\left[T ; v, e_{0}\right]$ and $T_{2}=B\left[T ; v, e_{0}\right]$ be the two components of $T-e_{0}$. Let $n_{i}=\left|V\left(T_{i}\right)\right|, \quad 1=1,2$. From G we can choose a subset $\varepsilon^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n_{1}^{\prime}}^{\prime}\right\}$ such that

$$
\sum_{i=1}^{n_{1}} \Delta C_{i}^{\prime} \neq \phi
$$

Now by our induction hypothesis, there exists a $1-1$ mapping

$$
g_{1}: V\left(T_{1}\right) \rightarrow 6^{\prime}
$$

such that

$$
g_{1}\left(\bar{B}\left[T_{1} ; v_{2}, e\right]\right) \nLeftarrow
$$

for every e $E E\left(T_{1}\right)$.
Next we consider T_{2} and the set $\sigma^{*}=66^{\circ}$. Our induction hypothesis implies the existence of a $1-1$ mapping

$$
g_{2}: V\left(T_{2}\right) \rightarrow E^{\prime}
$$

such that

$$
g_{2}\left(\bar{B}\left[T_{2} ; v, e\right]\right) \neq \phi
$$

for every $e \in E\left(T_{2}\right)$.
Define

$$
g(u)= \begin{cases}g_{1}(u), & \text { if } u \in V\left(T_{1}\right) \\ g_{2}(u), & \text { if } u \in V\left(T_{2}\right)\end{cases}
$$

We will establish that g is the required fapping. Let e E(T). We distinguish 3 cases according to whether a is $\ln T_{1}$ or $\ln T_{2}$ or is e_{0}.

If e EE(T, then $\bar{B}[T ; v, e]=\bar{B}\left[T_{1} ; v_{1}, e\right]$ and hence $g(\bar{B}[T ; v, e])=g_{i}\left(\bar{B}\left[T_{i} ; v_{i}, e\right]\right) \geqslant \phi$.
If $e \in E\left(T_{2}\right)$, then $\bar{B}[T ; v, e]=\bar{B}\left[T_{2} ; v, e\right]$ and hence $g(\bar{B}[T ; v, e])=g_{2}\left(\bar{B}\left[T_{2} ; v, e\right]\right) \neq \phi$.

Finally, if $e=e_{0}$, then $\bar{B}[T ; v, e]=T_{1}$ and hence

$$
\begin{aligned}
g(\bar{B}[T, \psi, e]) & =g\left(T_{1}\right) \\
& =g_{1}\left(T_{1}\right) \\
& \left.\neq \phi \quad \text { (because of the choice of } G^{\prime}\right)
\end{aligned}
$$

This completes the proof of the lema.
Our next lema establishes a positive edge labelling for a tree T given a positive vertex labelling of T. For convenience we introduce the following notation.

Let G be a graph, X a set and f an mapping of $E(G)$ onto 2^{X}. For $v \in E(G)$ we let

$$
S_{G}^{V}(f)=\sum_{\substack{u v \in E(G) \\ u \in V(G)}} \Delta f(u v)
$$

and

$$
\begin{equation*}
L_{G}(f)=\left\{S_{G}^{V}(f): v \in V(G)\right\} \tag{2.2}
\end{equation*}
$$

Note that $S_{G}^{Y}(f)$ defines a mapping

$$
g: V(G) \rightarrow 2^{X}
$$

This is the mapping induced by f. Further, observe that f is an M-coding of G if and only if the induced rapping g is $1-1$.

Leman 2.2 : Let T be a tree with n vertices and X a set. Lt $G=$ $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ denote a family of distinct subsets of $\left.2^{X} \backslash \phi\right\}$ such that

$$
\sum_{i=1} \Delta C_{i}=\phi
$$

Then there exists a positive M-coding f of T such that $L_{T}(f)=G$.

Proof : Let $v_{0} \in V(T)$. By Lemma 2.1, there exists a $1-1$ mapping

$$
g: V(T) \rightarrow E
$$

such that

$$
g\left(\bar{B}\left[T ; v_{0}, e\right]\right) \not \phi, \quad \text { for every } e \in E(T)
$$

Observe that

$$
g\left(\bar{B}\left[T ; v_{0}, e\right]\right)+g\left(B\left[T ; v_{0}, e\right]\right)=g(T)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \Delta C_{i} \\
& =\phi
\end{aligned}
$$

Consequently

$$
g\left(\bar{B}\left[T ; V_{0}, e\right]\right)=g\left(B\left[T ; v_{0}, e\right]\right)
$$

for every e $\in E(T)$.
Define the mapping

$$
f: E(T) \rightarrow 2^{X} \backslash\{\emptyset\}
$$

as

$$
f(e)=g\left(\bar{B}\left[T ; v_{0}, e\right]\right)
$$

Now for each $v \in V(X)$

$$
\begin{aligned}
S_{T}^{V}(f) & =\sum_{\substack{u v \in E(T) \\
u \in V(T)}} \Delta f(u v) \\
& =\sum \quad \Delta g\left(\bar{B}\left[T ; v_{o}, e=u v\right]\right) \\
& u v \in E(T) \\
& u \in V(T)
\end{aligned}
$$

$$
=\sum \Delta g(\bar{B}[T ; v, u v])
$$

$$
u v \in E(T)
$$

$$
u \in V(T)
$$

$$
=\sum_{\substack{V^{\prime} \neq V \\ V^{\prime} \in V(T)}} \Delta g\left(V^{\prime}\right)
$$

$$
=\left\{\sum_{\substack{\left.v^{\prime} \neq V \\ v^{\prime} \in V(T) V\right)}} \Delta g\left(v^{\prime}\right)\right\} \Delta \Phi
$$

$$
\begin{aligned}
& =\left\{\sum_{\substack{v^{\prime} \pm v \\
v^{\prime} \in V(T)}} \Delta g\left(v^{\prime}\right) \Delta g(v)\right\} \Delta g(v) \\
& =g(T) \Delta g(v) \\
& =g(v) \quad \text { (as } g(T)=\phi)
\end{aligned}
$$

Consequently

$$
L_{T}(f)=\left\{S_{T}^{V}(f): v \in V(T)\right\}=\{g(v): v \in V(T)\}=C
$$

as required.

Our next lemma was proved in [5] (Corollary of Theorem 1).
Lemana 2.3 : Let X be a set with $|X|=k \geq 2$ and $2^{k}=3 p+4 q+5 r+1$. Then $2^{X} \backslash\{\phi\}$ can be partitioned into p zero-subsets of order $3, q$ zero-subsets of order 4 and r zeromsubsets of order 5 .

We make use of the above lemma to establish the existence of zero-subsets of prescribed order. This results plays an important role in the proof of our main theorem.

Lemma 2.4: Let X be a set with $|X|=k \geq 2$ and $n_{1}, n_{2}, \ldots, n_{t}$ positive integers satisfying the following conditions :
(i)

$$
n_{i} \geq 3, \quad \text { for all } i
$$

(ii) $\sum_{i=1}^{t} n_{i} \leq 2^{k}-1$, and

$$
\text { (iii) } \sum_{i=1}^{t} n_{i} \neq 2^{k}-2 \text { or } 2^{k}-3 \text {. }
$$

Then there exists zero-subsets $G_{1}, G_{2}, \ldots, G_{t}$ of $2^{X} \backslash\{\phi\}$ such that $\left|C_{i}\right|=n_{i}, \quad 1 \leq 1 \leq t$, and $E_{i} \cap E_{j}=\phi$ for $1 \neq j$.

Proof : We can write $n_{1}=3 p_{1}+4 q_{1}+5 r_{i}$, $1 \leq 1 \leq t$. Let

$$
p=\sum_{i=1}^{t} p_{i}, \quad q=\sum_{i=1}^{t} q_{i}, \quad r=\sum_{i=1}^{t} r_{i},
$$

and

$$
2^{k}-\sum_{i=1}^{t} n_{i}=s
$$

Condition (ii) implies that $s \geq 1$. So

$$
\begin{aligned}
2^{k} & =3 p+4 q+5 r+s \\
& =3 p+4 q+5 r+(s-1)+1
\end{aligned}
$$

Now by (iii) $s-1 \geq 3$ or $s-1=0$. We can write

$$
s-1=3 p_{0}+4 p_{0}+5 r_{0}
$$

and thus

$$
2^{k}=3\left(p+p_{0}\right)+4\left(q+q_{0}\right)+5\left(r+r_{0}\right)+1
$$

Now, by Lemma $\left.2.3,2^{X} \backslash \phi\right\}$ can be partitioned into $\left(p+p_{0}\right)$ zero-subsets $P_{i}\left(1 \leq 1 \leq p+p_{0}\right)$ of order $3,\left(q+q_{0}\right)$ zero -subsets $Q_{i}\left(1 \leq 1 \leq q+q_{0}\right)$ of order 4 and $\left(r+r_{0}\right)$ zeromsubsets $R_{1}\left(1 \leq 1 \leq r+r_{0}\right)$ of order 5 . We can use these zero-subsets in the obvious way (choosing p_{1} elements of $\left\{P_{i}\right\}, q_{i}$ elements of $\left\{Q_{i}\right\}$ and r_{i} elements of $\left\{R_{1}\right\}$) to construct the desired subsets of $G_{1}, 1 \leq i s t$, of $2^{X} \backslash\{\phi\}$. This completes the proof

We are now ready to prove our main theorem.

Theorem 1 : Let G be a graph with each component having order at least 3. Then

$$
m^{+}(G)= \begin{cases}k+1, & \text { if }|V|=2^{k}, 2^{k}-2 \text { or } 2^{k}-3 \\ k, & \text { otherwise }\end{cases}
$$

where $k=\lceil\log |V|\rceil$.
Proof : Let $G_{1}, G_{2}, \ldots, G_{t}$ be the components of G. Choose a spanning tree T_{1} of $G_{i}, 1 \leq i \leq t$ and let $F=U T_{i} ; F$ is a spanning forest of G. $1=1$
Further, let $n=|V(G)|$ and $n_{i}=\left|V\left(G_{i}\right)\right|, 1 \leq i \leq t$. We can write

$$
2^{k}=n+d
$$

We consider two cases according to the value of d.

Case 1: $d \neq 0,2$ or 3.
We can write

$$
\begin{aligned}
2^{k} & =n+d \\
& =n+n_{2}+\ldots+n_{t}+(d-1)+1
\end{aligned}
$$

with $d-1 \geq 3$ or $d-1=0$. Lemma 2.4 implies the existence of zero-subsets $G_{i}, 1 \leq i \leq t$, of $\left.2^{X} \backslash \phi\right\}$ such that

$$
\left|C_{i}\right|=n_{i}, \quad \text { for } 1 \leq i \leq t
$$

and

$$
C_{i} \cap C_{j}=\text { for } 1 \neq j
$$

For each $T_{1}, 1 \leqslant 1 \leqslant t$, Lemma 2.2 Implies the existence of a mapping :

$$
f_{1}: E\left(T_{i}\right) \rightarrow 2^{X} \backslash\{\phi\}
$$

such that (see (2.2))

$$
L_{T_{i}}\left(f_{i}\right)=E_{i} .
$$

Now define

$$
f: E(F) \rightarrow 2^{X}\{\oint\}
$$

as

$$
f(e)=f_{1}(e), \quad \text { for } e \in E\left(T_{1}\right), \quad 1 \leq i \leq t
$$

Then

$$
\begin{aligned}
L_{F}(f) & =\bigcup_{i=1}^{t} L_{T_{i}}(f) \\
& =\bigcup_{i=1}^{t} L_{T_{i}}\left(f_{i}\right) \\
& =\bigcup_{i=1}^{t} G_{i} .
\end{aligned}
$$

Consequently, f is a positive M-coding of F. Using this f we now construct the desired mapping for G.

Choose an edge $e_{0} \in E(G) \backslash E(F)$. Suppose without any loss of generality that $e_{0} \in G_{1}$. The subgraph $T_{1} \cup\left\{e_{0}\right\}$ contains a unique cycle C. Since $C-e_{0}$ is a path with at most $n_{1}-1$ edges, and $n_{1}-1 \leq n-1$ $\leq 2^{k}-2$, we have $\left.A=\left\{f(e): e \in C-e_{0}\right\} \neq 2^{X} \backslash \phi\right\}$.

Now choose $B \in\left\{2^{X} \backslash\{\phi\}\right\} \backslash A$.
Define the mapping :

$$
f_{1}: E(F) \cup\left\{e_{0}\right\} \rightarrow 2^{X}
$$

as

$$
f_{1}(e)= \begin{cases}B, & \text { if } e=e_{0} \\ f(e) \Delta B, & \text { if } e \in C-e_{0} \\ f(e), & \text { otherwise }\end{cases}
$$

The choice of B ensures that $f(e) \neq \phi$ for any e. We now prove that

$$
S_{F+e_{0}}^{V}\left(f_{1}\right)=S_{F}^{V}(f)
$$

for every $v \in V(G)$. If $v \notin V(C)$, then

$$
\begin{aligned}
S_{F+e_{0}}^{v}\left(f_{1}\right) & =\sum_{\substack{u \in V(G) \\
u v \in E\left(F+e_{0}\right)}} \Delta f_{1}(u v) \\
& =\sum_{\substack{u \in V(G) \\
u v \in E(F)}} \Delta f(u v) \\
& =S_{F}^{v}(f)
\end{aligned}
$$

as required.
Suppose now that $v \in V(C)$. Let u_{1} and u_{2} be the two neighbours of v in C. We have

$$
\begin{aligned}
& S_{F+e_{0}}^{v}(f)=S_{T_{1}+e_{0}}^{V}\left(f_{1}\right) \\
& =\sum_{\substack{u \in V(G) \\
u v \in E\left(T_{1}+e_{0}\right)}} \Delta f_{1}(u v) \\
& =\left(\sum_{u \neq u_{1} \text { or } u_{2}} \Delta f(u v)\right) \Delta f_{1}\left(u_{1} v\right) \Delta f_{1}\left(u_{2} v\right) \\
& u v \in E\left(T_{1}+e_{0}\right) \\
& =\left(\sum_{\substack{u \neq u_{1} \text { or } u_{2} \\
u v \in E\left(T_{1}\right)}} \Delta f(u v)\right) \Delta\left(f\left(u_{i} v\right) \Delta B\right) \Delta\left(f\left(u_{2} v\right) \Delta B\right) \\
& =\sum_{u \in V\left(T_{1}\right)} \Delta f(u v) \\
& u v \in E\left(T_{1}\right) \\
& =S_{T_{1}}^{V}(f) \\
& =S_{F}^{V}(\tilde{f}) .
\end{aligned}
$$

Note that in the above, when $u_{i} v=e_{0}$ we replace $f\left(u_{i} v\right)$ by ϕ. We have shown that $S_{F+e_{0}}^{V}\left(f_{1}\right)=S_{F}^{V}(f)$ for every $v \in u(G)$, as required. Consequently

$$
L_{F+e_{0}}\left(f_{i}\right)=L_{F}(f)
$$

and hence f_{1} is a positive $M-c o d i n g$ of $F+e_{0}$.
We can repeat the above process, adding the edges of $E(G) \backslash E(F)$ one by one. In each case the cycle considered is with respect to the added edge and the original F. Ultimately, we end up with the required mapping, thus establishing the result for $d \geqslant 0,2$ or 3 .

Case $2: d=0,2$ or 3.
Here $n=2^{k}, 2^{k}-2$ or $2^{k}-3$. Since $n<2^{k+1}-3$, the conclusion of Case 1 above clearly implies that ${ }^{+}(G) \leq k+1$. We distinguish these subcases according to the value of n. For $n=2^{k}$, every M-coding f of G of length k yields a set $L_{G}(f)$ which contains ϕ. Consequently $m^{+}(G) \neq k$ for $n=2^{k}$.

For $\mathrm{n}=2^{\mathrm{k}}-2, \mathrm{~m}^{+}(\mathrm{G}) \neq \mathrm{k}$ since

$$
\begin{aligned}
\mathrm{m}^{+}(\mathrm{G}) & \geq \mathrm{m}(\mathrm{G}) \\
& =k+1 . \quad(\text { by (1.1)). }
\end{aligned}
$$

We next consider the case $n=2^{k}-3$. Let X be a set of k elements. Consider the mapping $f: E(G) \rightarrow 2^{X}$ and its induced mapping $g: V(G) \rightarrow 2^{X}$ defined by :

$$
g(v)=\sum_{\substack{u \in V \\ u v \in E}} \Delta f(u v)
$$

We have

$$
\begin{equation*}
\sum_{v \in V} g(v)=\sum_{v \in V} \sum_{\substack{u \in V \\ u v \in E}} \Delta f(u v)=\phi \tag{2.3}
\end{equation*}
$$

since each edge labelling appears twice in the above sum. Suppose there exists a zero-subset $S_{0}=\{A, B, \phi\}$ of order 3 . Then as $A \Delta B \Delta \phi=\phi$ we must have $A \Delta B=$ implying that $A=B$. Since this is not possible there
cannot exist a zero-subset of order 3 containing ϕ. Consequently we cannot find a zero-subset of $2^{X}\{\phi\}$ of order $2^{k}-3$ and thus $m^{+}(G) \neq k$ (note (2.3)).

REFERENCES

[1] Aigner, M., and Triesch, E.; Codings of graphs with binary labels. Graphs and Combinatorics 10, 1-10(1994).
[2] Aigner, M., and Triesch. E.; Irregular assignments of trees and forests. SIAM J Discrete math. 3, 439-449 (1990).
[3] Aigner, M. and Triesch, E.; Irregular assignments and two problems a la Ringel. In Topics in Combinatorics and graph theory. Physics Verlag, 29-36 (1990).
[4] Bloom, G.S.; A Chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful. Annals of the New York Academy of Sciences 329, 32-51, (1979).
[5] Caccetta, L. and Ruizhong Jia.; Binary Labellings of graphs. (Submitted for publication).
[6] Golomb, S.W..; How to number a graph. In : Graph theory and computing (R.C. Read, ed.) Academic Press, 23-37 (1972).
[7] Ringel, G. Problem No. 25. In Theory of graphs and its applications. Proc. Syp. Smolenice 1963 (M. Fiedler, ed.) Publ. House Czech. Acad. Sciences 1964.
[8] Tuza, Z. Encloding the vertices of a graph with binary edge-labels. In Sequences combinatorics, compression, security and transmittion (R.M. Capocelli, ed.) Springer--Verlag, 287-299 (1990).

