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(V,E) be a finite undirected graph with vertex set V and 

edge set E. A mapping f ~ {O.l}m is called an M-coding of G, if the 

induced mapping g : V ~ {O,l • defined as g(v) f(uv). assigns 

ueV,uveE 

different vectors to the vertices of G, where all summations are mod 2.An 

M-coding f is calle~ positive if the zero vector is not assigned 

to any edge and the induced labelling g does not assign the 

zero vector to any vertex. Let meG) be the smallest number 

m for which an M-codlng (positive M-codlng) of G is possible. 

Trivially, Aigner and Triesch 

proved that a recent paper, we 

determined meG). Tuza proved that (G) ~ meG) + 2. In this paper we 

prove that 

{ 

k + 1, 

k, otherwise, 

where k 

1. INTRODUCTION 

Let G = (V,E) be a finite undirected graph with vertex set V and 

edge set E. The graph theory 11 terature contains numerous problems 

concerned with labelling graphs. Such problems typically involve the 
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determination of function f on V v E. that satisfies certain 

conditions. A well-known example is that of graceful labelling [4,6,7]. 

Most graph labellings are concerned with assigning natural numbers to the 

vertices and edges of the graph. Recently. labellings with subsets of a 

finite set have been studied [1,2,3.5.81. Obviously such labellings can 

be interpreted as labellings with 0, i-sequences. In this paper we 

consider such labellings. 

More precisely. let K GF(21 be the 2-element finite field. A 

mapping f: E(G) -+ K
m is called an K-coding of G if the induced 

mapping g V(G) -+ , defined as 

g(v) f(uv) 

ueV,uveE 

assigns different vectors to the vertices of G, where the add! tion is 

co-ordinatewise (mod 2) 'is called the length of the coding f. 

The smallest m for which an M-coding of G exists is denoted by m(G). 

Trivially meG) ~ r Ivll. Further, a necessary condition for graph 

G to have an M-coding is every component of G has at least 3 vertices; 

note that if G has a component consisting of just two vertices u and v, 

then g(u) = g(v) for any f. We assume throughout this paper that every 

component of G has at least 3 vertices. 

The problem of determining meG) has been considered by a number of 

authors. In 1990, Tuza proved that meG) ~ 3 

and Triesch [1] established the better bound 

Recently, Caccetta and Jia [5] established that 

m(G) :::: { k. 
k+l, 

if IVI * 
otherwise, 
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(1.1) 



where k r 
A number of labellings with additional properties were proposed by 

Tuza [8]. One such labelling is the following. An M-coding f is called 

positive if the zero vector is not assigned to any edge and the induced 

labelling g not assign the zero-vector to any vertex. The smallest 

m which positive M-coding exists is denoted by 

Tuza [8] proved that 

.+(G) ::s meG) + 

Consequently. from (1.1) we obtain that 

r Ivll + 3 

for any graph G. In this paper. we prove that 

{ 

k+l, 

k. otherwise, 

where k = r Ivll· 
We conclude our introduction by noting that the M-coding problem can 

be viewed as a set labelling problem by considering the O,l-vectors as 

characteristic vectors of subsets of fin! te set X. We wish to label 

the edges of G with subsets of X such that the symmetric differences are 

distinct at the vertices of G. Here .(G) (II+(G» becomes the 

cardinatlity of the smallest set which permits such a labelling (with the 

empty set excluded). 

2. RESULTS 

We establish our main results by exhibiting the required labellings 

inductively. We begin with some notation and terminology. 

As stated in the introduction, the M-coding problem can be viewed as 
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a set labelling problem. We use standard. set theoretic notation and 

terminology. Throughout, standard upper case letters will denote sets 

whilst script upper case letters will denote family of sets. Thus for 

sets A and B we write: 

A\B {x;xeA. and xeB} (A not B) 

(symmetric difference) 

A family t: 

denote t sets. We write 

.... ct } of subsets of 2
X is called 

t 

[~Ci fl· 
1=1 

In our work we will often deal with subgraphs of 

following terminology. For a graph G and set X let 

g : V(G) 

zero-subset if 

and utilize the 

be any vertex labelling of G. For a subgraph H of G we define 

g(H) L ~(v). 
veV(H) 

Trees will play an important role in our work. Let T be a tree and 

v e VeT) and e e E(T). T-e consists of two components. The component 

containing v is denoted by B{T:v.e]; the other component is denoted by 

B[T;v,e]. 

The following lemma plays a crucial role in the proof of our main 
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Lemma 2.1 Let T be tree with n vertices and X a set. Let 

of distinct subsets of 2~{~}. Then 

v V(T) , 1-1 

en for every e E E(T) 

Proof We induction n. The result trIvially true for n :: 1 

So suppose, our hypothesis that n :?:: 3 and the 

is true for We will prove that the assertion is 

for n. 

For v E V(T), we any edge, say eo incident to v. Let 

T B[T;v, and B[T;v, be the two components of T-e . 
1 0 

Let ) I. i 1. From f: we can choose subset 

t;" "" iC' C' } such that 
1 • n 

1 

n 
1 

L * ~ . 
i=1 

Now by our induction hypothesis, there exists a 1-1 mapping 

g : VeT ) ~ t;" 
1 1 

such that 

for every e E E(T
1
). 

Next we consider T2 and the set ~N ~~'. Our induction hypothesis 

implies the existence of a 1-1 mapping 

g : VCT } ~ ~N 
2 2 
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Our lemma establishes 

given a positive 

following notation. 

labelling of T. 

edge a tree T 

convenience we introduce the 

Let G be a graph. X a set and f an mapping of E(G) onto For 

V E E(G) we let 
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and 

Note that 

L M(uv) 

uvEE(G) 
ueV(Gl 

defines a mapping 

(2.1) 

(2.2) 

This is the mapping induced by f. Further, observe that f is an M-coding 

of G if and only if the induced aapping g is 1-1. 

Lemma 2.2 : Let T be a tree with n vertices and X a set. Lt ~ 

{C
1

,C
2

, ... ,Cn } denote a family of distinct subsets of 2~{¢} such that 

E ~C1 ¢. 

1=1 

Then there exists a positive M-coding f of T such that ~(f) ~. 

Proof Let v 
0 

eV(T). By Lemma 2.1, there exists a 1-1 mapping 

g : V(T) ~ l; 

such that 

g(B[T;v ,e]) 
0 

;& ¢. for every e E E(T). 

Observe that 
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Consequently 

for every e e E(T). 

n 

... L /lei 

1=1 

;. 

Define the mapping 

f : E(T) -+ 

as 

fee) = g(B[T; e]). 

Now for each v e VCT) 

L M(uy) 

uveE(T) 
ueV(T) 

L 
uveE(T) 
ueV(T) 

I 
uveE(T) 
ueV(T) 

[ Ilg(v' ) 

V/'$y 

Vi eV(T) 

e=uv] ) 

uvl) 

= { I Ilg(v') } M; 

'$y 

y'eV(T)V) 
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Consequently 

as required. 

::: { 
v'-:$;v 

v'eV(T) 

= geT) Ag(v) 

::: g(v) (as geT) 

v e VeT)} ::: {g(v) v e VCTn 

Our next lemma was proved in [5] tcorollary of Theorem 1). 

o 

Leoma 2.3 : k Let X be a set with IXI ::: k ~ Z and 2 = 3p + 4q + Sr + 1. 

Then 2~{~} can be partitioned into p zero-subsets of order 3, q 

zero-subsets of order 4 and r zero-subsets of order 5. o 

We make use of the above lemma to establish the existence of 

zero-subsets of prescribed order. This results plays an important role 

in the proof of our main theorem. 

Leoma 2.4: Let X be a set with IXI = k ~ Z and n
1
.n

2
, •.•• n t positive 

integers satisfying the following condltions 

(1) for all 1, 

t 

(11) L n
1 

s Zk_1• and 

1=1 
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t 

(i11 ) [ n
i 

:I; or 

i=l 

Then there exists zero-subsets ~ of 2~{1>} 
1 

such that 

I~il i s t, and f"\ ::: 1> for i :I; J. 

Proof We can write n
1 3Pi ... 4qi ... lsist. 

t t t 

p [ q [ r = [ r
i

, 

i=l 1=1 

and 

t 

- [ s. 

1=1 

Condition ( implies that S i!: 1. 

2k 3p ... 4q ... 5r ... s 

3p 1- 4q ... 5r ... (s-1) 1. 

Now by (iii) il: 3 or 5-1 O. We can write 

5-1 :::: 3Po ... 4Po ... 

and thus 

Now, by Lemma 2.3, can be part! tloned lnto (p ... 

(1 S i P ... of order 3, (q ... qo) zero-subsets 

of order 4 and (r ... r ) zero-subsets 
o 

OSisr ... 

Let 

We can use these zero-subsets in the obvious way (choosing 

zero-subsets 

of order 5. 

elements of 

{P i}' qi elements of {Q1} and r i elements of {Ri }) to construct the 

desired subsets of ~i' 1 s 1 S t, of 2~{1>}. This completes the proof 

142 



of the lemma. 

We are now ready to prove our main theorem. 

Theorem 1 Let G be a graph with each component having order at least 

3. Then 

otherwise, 

where k :: rlog IVI1. 

Proof Let G
1

.G
2 
•... ,G

t 
be the components of G. Choose a spanning tree 

t 

of G
i

• 1 ::s i ::s t and let F U Ti 
i=1 

F is a spanning forest of G. 

Further, let n IV(G)I and n i = IVCGi>l. 1::S i ::s t. We can write 

2k ... n + d. 

We consider two cases according to the value of d. 

Case 1: d * 0,2 or 3. 

We can write 

= n + n
2 

+ .•. + n
t 

+ (d-l) + 1. 

with d -1 01: 3 0 r d - 1 :: O. Lemma 2.4 implies the existence of 

zero-subsets ~i' 1 ::s i ::s t. of 2~{~} such that 

for 1 ::s 1 ::s t 

and 
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for each Ti' 1 ~ 1 ~ t. Lemma. 2.2 implies the existence of a 

mapping : 

such that (see (2.2) 

Now define 

as 

Then 

f E(F) ~ 

f(a) 

t 

U ~ (f) 
1=1 i 

t 

u~ 
1=1 i 

t 

U 
1=1 

for e e ). l~i:::t. 

Consequently. f is a positive M-coding of F. Using this f we now 

construct the desired mapping for G. 

Choose an edge eo e E(G)\E(F). Suppose wi thout any loss of 

generality that eo e G
1

" The subgraph Tl v {eo} contains a unique cycle 

C. Since C - eo is a path with at most nl - 1 edges, and n
l 

- 1 ::: n - 1 

::: 2k - 2. we have J::: {fee) : e E C - e } * 2~{~}. o 
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Now choose B E {2~{~}}~. 

Define the mapping : 

f E(F) v {e } ~ zX 
1 0 

as 

if e ,.. e 
o 

if e E C-e 
o 

otherwise. 

The choice of B ensures that fee) ~ ~ for any e. We now prove that 

for every v e V(G). If v ~ V(C), then 

as required. 

b.f (uv) 
1 

ueV(G) 
uVeE(F+eo > 

L b.f(uv) 

ueV(G) 
uveE(F) 

== S;(r>. 

Suppose now that v e V(C). Let u
1 

and u
2 

be the two neighbours of v 

in C. We have 
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AI (uv) 
1. 

ueV(G) 
uveE(T +e ) 

1 0 

= ( Af(UV))~f (u v)~f (u V) 
1. 1 1 2 

or u 
2 

uveE(T +e ) 
1 0 

Af(UV))~(f(U v)~B)~(f(u v)~B) 
1 2 

or u 
2: 

uveE(T ) 
1 

[ ~f(uv) 

ueV{T
1

) 

uveE(T
1

) 

Note that in the above. when ulv = eo we replace f(uiv) by ¢. We have 

shown that S;+e (f
1

) S;(f) for every v E u(G). as required. 
o 

Consequently 
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and hence f
t 

is a positive M-codlng of F + eo' 

We can repeat the above process, adding the edges of E(G)~(F) one 

by one. In each case the cycle considered is with respect to the added 

edge and the original F. Ultimately. we end up with the required 

mapping, thus establishing the result for d * O,Z or 3. 

Case 2 d "" 0, 2 or 3. 

Here n 

1 above clearly implies that II+(G) ::S k + 1. We distinguish these 

subcases according to the value of n. For n "" Zk, every M-coding f of G 

of length k yields a set LG(f) which contains ¢. Consequently m+(G) ~ k 

for n = 

For n "" Zk_Z. m+(G) ~ k since 

m+(G) ~ meG) 

"" k + 1. (by (1.1». 

We next consider the case n "" Zk_3. Let X be a set of k elements. 

Consider the mapping f : E(G) ~ 2
X and its induced mapping g 

defined by : 

g(v) L Af(uv). 

ueV 
uveE 

We have 

L g(v) L Af(uv) = ¢. (2.3) 

veV veV ueV 
uveE 

since each edge labelling appears twice in the above sum. Suppose there 

exists a zero-subset So "" {A.B.¢} of order 3. Then as AABA¢ "" ¢ we must 

have A A B = ~ implying that A :z B. Since this is not possible there 
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cannot exist a zero-subset of order 3 containing 4>. Consequen t 1 y we 

cannot find a zero-subset of 2~{4>} of order 

(note (2.3). 
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