POSITIVE BINARY LABELLING OF GRAPHS
Louis Caccetta and Ruizhong Jia
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987, Perth 6001

Western Australia
Email: caccetta@cs.curtin.edu.au

ABSTRACT:
Let G = (V,E) be a finite undirected graph with vertex set V and
edge set E. A mapping f : E = {0,1}™ is called an M-coding of G, if the

induced mapping g : V 3 {0,1Y*, defined as g(v) = Z f(uv), assigns
ueV, uvek

different vectors to the vertices of G, where all summations are mod 2.An
M-coding f is called positive 1if the =zero vector is not assigned
to any edge and the induced labelling g qus not assign the
zero vector to any vertex. Let n(G)(m'G)) be the smallest number
m for which an M-coding (positive M-coding) of G 1is possible.
Trivially, n'(G) =m(G) = fLogzlvl]. Recently, Algner and Triesch
proved that m(G) = [ Logz‘V|] + 4. In a recent paper, we
determined m(G). Tuza proved that m+(G) s m(G) + 2. In this paper we

prove that

k

k+1, 1f |v] = 25252 or 253

m (G) =
k. otherwise,

where k = [ logzlvl].

1. INTRODUCTION
Let G = (V,E) be a finite undirected graph with vertex set V and
edge set E. The graph theory literature contains numerous problems

concerned with labelling graphs. Such problems typically involve the
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determination of a function f on V v E, that satisfies certain
conditions. A well-known example is that of graceful labelling [4,6,7].
Most graph labellings are concerned with assigning natural numbers to the
vertices and edges of the graph. Recently, labellings with subsets of a
finite set have been studied [1,2,3,5,8]. Obviously such labellings can
be interpreted as labellings with 0, 1-sequences. In this paper we
consider such labellings.

More precisely, let K = GF(2) be the 2-element finite field. A
mapping f : E(G) =5 X* is called an M-coding of G if the induced
mapping g : V(G) » Km, defined as

glv) = Z f(uv)
ueV, uveE

assigns different vectors to the vertices of G, where the addition is
co-ordinatewise (moed 2) in Km, m is called the length of the coding f.
The smallest m for which an M-coding of G exists is denoted by n(G).
Trivially m(G) = [ logzlvl]. Further, a necessary condition for a graph
G to have an M-coding is : every component of G has at least 3 vertices;
note that if G has a component consisting of just two vertices u and v,
then g(u) = g{v) for any f. We assume throughout this paper that every
component of G has at least 3 vertices.

The problem of determining m(G) has been considered by a number of
authors. In 1990, Tuza [8] proved that m(G) s 3 riogalvf]. Later Aigner
and Triesch [1] established the better bound :

n(G) s [ 1ongV[] + 4.

Recently, Caccetta and Jia [5] established that :

k,  if |v] = 2%=2
n(G) = (1.1}
k+1, otherwise,
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where k = [ 1032|V|].
A number of labellings with additional properties were proposed by
Tuza [8]. One such labelling is the following. An M-coding f is called
positive if the zero vector 1s not assigned to any edge and the induced
labelling g does not assign the zero-vector to any vertex. The smallest
m for which a positive M-coding exists is denoted by n+(G).
Tuza [8] proved that :
2 (G) = m(G) + 2.
Consequently, from (1.1) we obtain that
n'(G) s [ log,|V|] + 3

for any graph G. In this paper, we prove that

k

ke1, if |V| = 25,252, or 2X-3

n'(G) =
k, otherwise,

where k = [ logZ{V]].

We conclude our introduction by noting that the M-coding problem can
be viewed as a set labelling problem by considering the 0,1-vectors as
characteristic vectors of subsets of a finite set X. We wish to label
the edges of G with subsets of X such that the symmetric differences are
distinct at the vertices of G. Here m(G) (m*(G)) becomes the
cardinatlity of the smallest set which permits such a labelling (with the

empty set excluded).

2. RESULTS
We establish our main results by exhibiting the required labellings
inductively. We begin with some notation and terminology.

As stated in the introduction, the M-~coding problem can be viewed as
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a set labelling problen. We use standard set theoretic notation and
terminology. Throughout, standard upper case letters will denote sets
whilst script upper case letters will denote family of sets. Thus for

sets A and B we write :

A\B = {x:xeA, and x#B} (A not B)
AAB = (A v B)\(A n B) (symmetric difference)
Let A1’Az""’At denote t sets. We write

A family € = {Cl,Cz,...,Ct} of subsets of ZX is called a =zero-subset if

t
X aC, = ¢.
1=1

In our work we will often deal with subgraphs of G and utilize the
following terminology. For a graph G and set X let
g V(G) 5 2%

be any vertex labelling of G. For a subgraph H of G we define

g(H) = ): Ag(v).
veV(H)

Trees will play an important role in our work. Let T be a tree and
v € V(T) and e € E(T). T-e consists of two components. The component
containing v is denoted by BI[T;v,e]; the other component is denoted by
BIT;v,el.

The following lemma plays a crucial role in the proof of our main
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result.

Lemma 2.1 : Let T be a tree with n vertices and X a set. Let
g = {Cx’cz""'cn} denote a family of distinct subsets of ZX\{¢). Then
for every v € V(T), there exists a 1-1 mapping
g: V(T > &
such that
g(BIT;v,el) = ¢ for every e e E(T).
Proof : We use induction on n. The result is trivially true for n = 1

and 2. So suppose, as our inductive hypothesis that n = 3 and the

assertion 1is true for all n’ < n. We will prove that the assertion is

true for n.

For v € V(T), we choose any edge, say g, = vV, incident to v. Let

[

T = BlT;v,e ] and T
1 o 2

]

Let n, = ]V(Ti)], i

¢ . ¢ I3 s
4 {Cx’cz""’cni} such that

n
1

Z AC; % ¢ .
i=1

Now by our induction hypothesis, there exists a 1-1 mapping
g, : V(Tl) > &
such that
gi(ﬁlTl; v, el) =g

for every e E(Tll.

1,2. From & we can choose

B[T;v,eo] be the twe components of T-ed

a subset

Next we consider T2 and the set Y = B\E’. Our induction hypothesis

implies the existence of a i-1 mapping

g, ¢ V(Tz) > B
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such that
g2(§[T2; v, el) # ¢
for every e & E(TZ).

Define

gl(u), if ueV(Tl)
glu) =
gz(u). if ueV(TZ)

We will establish that g is the required mapping. Let e e E(T).

distinguish 3 cases according to whether e is in Tl or in Tz or is e,

If e € E(Tx)’ then BlT:v,e] = §[T1;v1.e] and hence
g(BIT;v,e]) = g, (BIT ;v ,el) = ¢.
If e« E(Tz), then BIT;v,e] = é{Tz;v,el and hence

g(ﬁ[T;v,e}) = gz(EIva,e]} * ¢,
Finally, if e = e , then BIT;v,e] = T, and hence
g(BIT,v,e]) = g(T,)
= gx(Tx)

# ¢  (because of the choice of §').

This completes the proof of the lemma.

We

=]

Our next lemma establishes a positive edge labelling for a tree T

given a positive vertex labelling of T. For convenience we introduce the

following notation.
Let G be a graph, X a set and f an wapping of E(G)} onto ZX.

v € E(G) we let
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s;(f)- z Af (uv) 2.1)

uveE(G)
ueV(G)

and
Ly(f) = {s;(f) i voe V(G)}. (2.2)

Note that S;(f) defines a mapping

g : V(G » 2%

This is the mapping induced by f. Further, observe that f is an M-coding

of G if and only if the induced mapping g is 1-1.

Lemma 2.2 : let T be a tree with n vertices and X a set. Lt €&
{Cx’cz""’cn) denote a family of distinct subsets of ZX\{¢} such that
ac, - ¢
i=1

Then there exists a positive M-coding f of T such that LT(f) = .

Proof : Let vy € V(T). By Lemma 2.1, there exists a 1-1 mapping
g: V(T) 5 €
such that
g(ﬁ[T;vo,e]) ® ¢, for every e € E(T).
Observe that

g(ﬁ[T;vo,en + g(BIT;v ,e]) = g(T)
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Consequently
g(BIT;v ,el) = g(BIT;v ,el),
for every e € E(T).
Define the mapping
£ 1 E(T) » 2549},
as

fle) = g(BIT;v ,el).
Now for each v € V(T)

v
ST(f)

Z Af (uv)

uveE(T)
ueV(T)

i

E Ag(ﬁ[T;vo,ezuv])

uvekE(T)
ueV(T)

= Z Ag(BIT;v,uvl)

uvelk(T)
ueV(T)

z Agiv’)
v’ #v
v eV(T)

{ T s } X

v’ ey
v/ eV(T)V)
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Z Ag(v’ )Ag(V)}Ag(v)
v’/ #y
v/ eV(T)

g(T) Ag(v)

= g(v) (as g(T) = ¢).

Consequently

L(f) = { S;(f) i v e vm} = {g(v) : v e V(T)} = &,

as required. o

Our next lemma was proved in [S] (Corollary of Theorem 1).
Lemma 2.3 : Let X be a set with |X| = k = 2 and 25 = 3p + 4q + 5r + 1.
Then ZX\(¢) can be partitloned into p =zero-subsets of order 3, g

zero-subsets of order 4 and r zero-subsets of order 5. a

We make use of the above lemma to establish the existence of
zero-subsets of prescribed order. This results plays an important role

in the proof of our main theorem.

yeee,D

5 positive

Lemma 2.4 : Let X be a set with |X| = k = 2 and n,n :
integers satisfying the following conditions :

(1) n, = 3, for all i,

t
k
(i1) Z n, = 27-1, and
i=1
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t
k k
(111) eri * 2°-2 or 2°-3.
i=1

Then there exists zero-subsets 51,82,...,Et of ZX\{¢} such that

[61[ =n, 1 =1 s¢t, and ﬁi nE,=¢ for L = J.

J

Proof : We can write n, = 3pi + 4qi + Sri, 1241 st. Let

t t t
p = Zpi, q= Zqi. r= Eri'
i=1 i=1 =

and

Condition (ii) implies that s 2z 1. So
k

27 =3p + 4g + 5r + s
=3p + 4q + 5r + (s-1) + 1.
Now by (iii) s-1 z 3 or -1 = 0. We can write
s-1 = 3po + 4pO + Sro
and thus

k
27 = 3(p + po) + 4(q + qo) + S(r + ro) + 1.

Now, by Lemma 2.3, ZX\{¢} can be partitioned into (p + po) zero-subsets

Pi (1 =1 =p+ po) of order 3, (q + qo) zero—-subsets Q1 (1 s1=sq+ qa)

of order 4 and (r + ro) zZero—-subsets R1 (1 s1sr + rO) of order 5.
We can use these zero-subsets in the obvious way (choosing Py elements of

{Pi}, q elements of {Qi) and ry elements of {Ri)) to construct the

desired subsets of € 1 sist, of Zx\(¢). This completes the proof

1’
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of the lemma.

We are now ready to prove our main theorem.

Theorem 1 : Let G be a graph with each component having order at least
3. Then

. k1,  if |v| = 25, 2K-2 or 2%-3
m (G) =
k, otherwise,
where k = [log |V|].
Proof : Let Gl'Gz""'Gt be the components of G. Choose a spanning tree

- t
'I'1 of Gi’ 1 =1 st and let F = UTi; F is a spanning forest of G.
i=1
Further, let n = |V(G)] and n, = }V(Gl)[, 1 13 t. We can write
Zk =n + d.

We consider two cases according to the value of d.

Cage 1 : d = 0,2 or 3.

We can write

=n+n, +...+n ¥ (d-1) + 1,
with d-1 2 3 or d - 1 = 0. Lemma 2.4 implies the existence of
zero-subsets ?o’i, 1 =si1ist, of 2x\(¢) such that
‘8i|=n1, for 151 st
and

Einl? =¢ for i = j.

J
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For each Ti' 1 =41 s t, Lemma 2.2 ilmplies the existence of a

mapping :

£, ¢ E(T)) » 2XN(¢}
such that (see (2.2))

L‘Ti(fi) = 51.

Now define

£ 1 E(F) > 2°{¢}

as

f(e) =f1(e), foreeE(Ti), 1 =1=t.

Then

LF(f)

"
<
=
&)

i
Lot
=
[

—~
by

[
—

i=1

Consequently, f 1s a positive M-coding of F. Using this f we now
construct the desired mapping for G.

Choose an edge e, € E(GI\E(F). Suppose without any loss of
generality that e, € Gx' The subgraph 'I'1 u {eo) contains a unique cycle
C. Since C - €, is a path with at most no- 1 edges, and n - 1=n-1

= Zk - 2, we have 4 = {f(e) : e e C ~ eo) #* Zx\(¢).
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Now choose B e (Zx\{¢))\4.

Define the mapping :

f1 : E(F) v {eo) > Zx

as

B, if e = eo
fl(e) = {4 f(e)AB, if e & C-eo
fle), otherwise.

The choice of B ensures that f(e) # ¢ for any e. We now prove that

v v
sF+eo(f1) = SF(f)

for every v € V(G). If v ¢ V(C), then

Fre (fx) = Z Afl(uv)
0 uev(G)
uveE(F*eo)

X Af (uv)

ueV(G)
uveE(F)

L}

\Z
Spf),

as required.
Suppose now that v € V(C}. Let u, and u, be the two neighbours of v

in C. We have
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ree () =S
0

= Z Afl(uv)
ueV(G)
uveE(Tl+e0)

= [ X Af(uv)}Afl(uxv)Afl(uzv)
"JR*\I1 or uz

uveE(T1+eo)

- [ ) Af(uv)]A(f(ulv)AB)A(f(uzv)AB)
u*ul or u
uveE(Tl)

2

= Z Af (uv)
ueV(Tl)
uveE(Tl)

e oY
..S_r
1

(f)

v
Sp(f).

Note that in the above, when Wy o= e we replace f(uiv) by ¢. We have

shown that S;+e (fx) = S;(f) for every v € u(G), as required.
o

Consequently

LF+e (fi) = LF(f)
[+]
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and hence f: is a positive M-coding of F + e

We can repeat the above process, adding the edges of E(G)\E(F) one
by one. In each case the cycle considered is with respect to the added
edge and the original F. Ultimately, we end up with the required.

mapping, thus establishing the result for d # 0,2 or 3.

Case 2 : d =0, 2 or 3.

Here n = Zk. Zk*Z or Zk—3. Since n < 2k+1

-3, the conclusion of Case
1 above clearly implies that I*(G) s k + 1. We distinguish these
subcases according to the value of n. For n = Zk, every M-coding f of G
of length k yields a set LG(f) which contains ¢. Consequently m (G) # k
for n = Zk.

For n = Zk-Z, n'(G) # k since -

m (G) = m(G)
=k +1. (by (1.1)).
We next consider the case n = Zk—3. Let X be a set of k elements.

Consider the mapping f : E(G) » 2x and its Induced mapping g : V(G) » ZX

defined by :
glv) = Z Af (uv).
ueV
uveE
We have
P gty = ] T afuw) =g, (2.3)
veV veV ueV
uveE

since each edge labelling appears twice in the above sum. Suppose there
exists a zero-subset So = {A,B,¢} of order 3. Then as AABA¢ = ¢ we must

have A A B = ¢ implying that A = B. Since this is not possible there
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cannot exist a zero-subset of order 3 contalning ¢. Consequently we

cannot find a zero-subset of Zx\{¢) of order 2k~3 and thus m+(G) # k

(note (2.3)). o
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