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Abstract 

Let DD(5, 1; v) denote the packing number of a directed packing with block size 

5 and index unity. It has been determined in [10] that DD(5, 1; v) = l2(:-1 JJ 
where v even. In this paper, the values of DD(5, 1; v) for all v are 
determined, with the possible exceptions of v 15, 19, 27. 

1 Introduction 

Let v and k be positive integers. A transitively ordered k-tuple (aI, a2, ... ,ak) is defined 
to be the set {(ai, aj) : 1 ::; i < j ::; k} consisting of k(k 1)/2 ordered pairs. A directed 
packing with parameters v, k and A = 1, denoted by DP(k, l;v), is a pair (X,A) where X is 
a v-set (of points) and A is a collection of transitively ordered k-tuples of X (called blocks) 
such that every ordered pair of distinct points of X occurs in at most one block of A. If 
there is no other packing with more blocks, the packing is said to be maximum, and the 
number of blocks in a maximum packing is the packing number denoted by DD(k, l;v). 

In graph theoretic terms, a D P (k, 1; v) is equivalent to the decomposition of the complete 
symmetric directed graph K; into transitive directed sub graphs on k vertices (tournaments 

of order k), in which some arcs of K; are not used. The main problem asks for the maximum 
number of subgraphs i.e. DD{k, l;v) in such a decomposition. 
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Using a simple counting argument similar to the Schonheim bound [9], we can show that the 
following inequality holds, 

DD(k, l;v) ::; l i (1.1 ) 

where lxJ is the floor of x. In what follows, the right hand side of 
DU(k,l;v). 

is denoted by 

D. B. Skillicorn studied in depth the function DD(k, v) and determined completely 
values of 1; v) and asymptotically for DD(4, 1: He also showed applications of this 
problem to coding theory and computer architecture reliability testing. 

For some values of v the blocks of maximum DP(k, 1; v) 
of distinct points exactly once, in which case DD(k, 1; v) 
packing is referred to as directed balanced incomplete block 
by DB(k, 1; D. J. Street and W. H. Wilson [12] proved that 
v 1 or .5 (mod 10) with the exception of the non-existent DB 
the following 

contain every ordered pair 

DU(k, 1: v) and the 

(D BIB D) and denoted 
DB 1: v) exists when 

1; This gives rise to 

Theorem 1.1 Let v v 1= 15 and v, 5 (mod 10). Then DD(5, 1 vi DU l;v). 

The values of 1; v) for all even v were determined in by N. Shalaby and J. Yin. 
In this paper we are interested in the values of D D 1; v) for all odd v. The 
result established. for the most part, by means of a result on directed balanced incomplete 
block which is of interest in its own right. 

2 

In this section we discuss the structure of the maximum 1; v) for the case of v odd. 

We first observe that if we ignore the order of the elements in the blocks. DP(5,1;v) 
becomes a standard (v, 5, 2) packing. With this observation we have the following result 
from 

Lemma 2.1 If v 7 or 9 (mod 10), then DD(5, l;v) DU(5, l;v) - 1. 

Let (X,A) be a DP(5, l;v). By DR(X,A) we mean the directed graph spanned by the 
arcs that are not in (X, A). It is clear that the number of arcs in DR(X, A) is 
v(v - 1) - lOIAI. For any particular point x of X, there are exactly 2(v - 1) ordered pairs 
containing x. When x appears in a block. it is included in the four ordered pairs contained 
in that block. The degree (including the in degree and outdegree) of x in DR(X, A) therefore 
must be 2(v 1) - 4rx where rx is the number of blocks containing x. 

Thus we have the following structure Lemma. 
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Lemma 2.2 Let v 2: 5 be an odd integer. Suppose that (X,A) is a DP(5, l;v) satisfying 
the following properties: 

(1) IAI = DU(5, l;v) -1 when v == 7 or 9 (mod 10) 

IAI DU(5.1;v), otherwise. 

Then the degree of each vertex of DR(X, A) must be divisible by 4 and the number of 
arcs in DR(X, A) is 0, 6 or 12 depending on whether v {I, {3} or 9} (mod 10), 
respectively. 

We further have the following 

Lemma 2.3 Let v 3 (mod If (X, A) is a 1; v) with DU 1: 'U) blocks, then 
the number of vertices in DR(X, is 3. 

Proof: From Lemma 2.2, we know that the number of vertices in DR(X, A) must be at least 
3. We claim that it must be at most 3. Assume that DR (X. A) contains 4 vertices. Since 

v == 3 (mod 10), for any EX, the number of blocks containing x rx S 

Therefore IAI S < 1; v) a contradiction. 

The only directed graph with 6 arcs, 3 vertices and each vertex of degree divisible by 4 is 
the directed complete graph K;'. The situation is more complicated when v 7 or 9 (mod 
10) since there are I1}any directed graphs with 12 arcs satisfying the degree constraint. In 
this case, we shall use the following result. 

Lemma 2.4 If v 7 or 9, then DD(5,l;v) = DU(5, l;v) - 1. 

Proof: In view of Lemma 2.1, we need only construct DP(5, 1; v) with DU(5, 1; v) - 1 
blocks. For the stated values of v, we define the point set to be X = {I, 2,3, ... , v}. Then 
the required packings are obtained by taking the following blocks: 

v = 7: (1,2,3,4,5)(6,7,5,4,3)(3.2,1,7.6) 

v = 9 : (1,2,4,6,7)(2,8,9,1,5)(3,5,7,6,1)(4,1,3,9,8)(6,5,9, 2, 3)(7, 8, 3, 4, 2). 

Foregoing can be summarized in the following theorem. 

Theorem 2.5 Let v 2: 5 be an odd integer. Then 

(1) a DB(5, 1; v) with a hole of size 3 exists if and only if DD(5, 1; v) = DU(S, 1; v) whenever 
v == 3 (mod 10) 

(2) DD(5, l;v) = DU(S, l;v) -1 if v == 7,9 (mod 10) and a DB(5, l;v) with a hole of size 
7 or 9 exists. 
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3 Constructions for Incomplete Directed BIBDs 

In order to describe our constructions we require number of of other combinatorial 
designs. For the definitions of group divisible designs (GDDs), see We use notation 
K-GDD to indicate a GDD with index unity and block sizes from K. \Vhen K {k}, 
we omit the braces. The type of GDD is a listing of its group sizes and we use the so-
called "expOIlential" notation: a type P2 j 3k . . denotes occurrences of of size 1, j 

occurrences of size 2, and so on. In the literature a k-GDD of type is often called 
a transversal design (TD) and is denoted by T D(k, m). And a k-GDD of type IV is often 
called a balanced incomplete block design (BIBD) and denoted by B(k, 1: Furthermore, 
a k-GDD of type 1 'Uwl is referred to as an incomplete BIBD. The group of w is the hole. 
We write it I B(k, 1; u + w, w). 

We now define a directed group divisible design (DGDD). A k-DGDD is triple (X, 9, A), 
where 

1) X is fini te set (of points), 

2) 9 is collection of subsets of X groups) which partition X, 

3) A is collection of transitively ordered k-subsets of X (called blocks), 

4) no block meets group in more than one point, and 

5) each ordered pair (x. y) of distinct points not contained in the same group occurs in 
exactly one of the blocks. 

Similar to GDDs, the type of a DGDD a listing of its group sizes and is denoted by the 
"exponential" notation. A k-DGDD of type 1 'UWl is defined to be an incomplete DBlBD 
and written I DB (k, 1: u + W, w). The group of size w is the hole. It clear that an 
I DB(k, l;u + w, w) with w = 1 is essentially a DB(k, u + 1). 

In the sequel we shall use the following existence theorems for DGDDs whose proofs can be 
found in [10]. 

Lemma 3.1 Let n 5 be an integer satisfying n f 6,10,14,18,22,34 or 42. Then there 
exists a 5-DGDD of type (2n)5(2s)1 where is any integer satisfying a ~ s ~ n. 

The following construction is an extension of construction 4.5 in [13] for incomplete DBlBD's. 

Lemma 3.2 Let u, e and w be nonnegative integers. Suppose that there exist an J B (k, 1; U+ 
2e + w, 2e + w) and an I B (k, 1; U + w, w). Then there exists an I D B (k, 1; U + e + w, e + w). 

Proof: The case of e = a is trivial, thus we assume that e 2:: 1. Let 131 be the collection of 
I B(k, 1; U + 2e + w, 2e + w) defined on J(u + 2e + w) = {I, 2, .. I U + 2e +w} with the hole 
{u + 1, U + 2, ... U + 2e + w}. We use 131 to create a collection Al of transitively ordered 
k-tuples by the following way. 

220 



First, we order each block of Bl which does not contain the symbol u + +w + i(l S 'i S e) 
in a strictly increasing order. 

Secondly, we order each block which contains the symbol u + + w S i e) so that 
the symbol u + e + w + i lies on the leading place and the other symbols are in a strictly 
increasing order. 

Finally, we replace the symbol u + e w + i by the symbol u + i, for 1 'i:::; wherever it 
occurs. 

Then we construct by the hypothesis an I B (k, 1; u + w, w) on the set [I (U) 1 u {u + e + j : 
j S w}. Write B'2 for its block collection. We now order each block of B'2 in a strictly 

decreasing order to create another collection A2 of transitively ordered k-tuples. Thus an 
IDB(k,l;u+e+w, +w)definedonI(u+ +w)withahole{u+1,u 2 .. ,u+ +w} 
is obtained by taking the collection of blocks Al U A'2' 

The following result is an extension of the well-known technique of "Filling Holes", of in­
complete DBIBDs. Please refer to [lOJ pp. 136-137 and [13J. 

Lemma 3.3 that there exist a k-DGDD of type {tl, t'2, . .. , tn} and an I DB(k, 1; ti+ 
w,w) for 1 SiS n '1. Then there exists an IDB(k,l:t + w,tn +w) where t 'L,ti' 
Furthermore, an IDB(k, l;t +w,e) exists if an IDB(k, l;tn +w,e) exists. 

Combining Lemma 3.3 with the results of Lemma 3.1 gives rise to the following. 

Lemma 3.4. Let t :::: 5 be an integer and t =1= 6,10,14,18,22 or 42. Then there exists an 
I DB(5, 1; 10t+2s+w, 2s+w) if an I DB(5, 2t+w, w) exists. Moreover, an I DB(5, 10t+ 
2s + w, e) exists if an I D B (5,1; 28 + w, e) exists, where s is any integer satisfying 0 S 8 :::; t. 

We are now in the position to present our results for incomplete DBIBDs. For ease of 
notation we define 

I DB ( w) = {v: there is an I D B ( 5, 1; v, w)}. 

Lemma 3.5 (1) {v . v == 3 (mod 20) and v :::: 23} c I DB(3), 

(2) {v: v == 7 (mod 20) and v:::: 47} C IDB(7), (3) {v: v == 9 (mod 20) and v:::: 49} C 
I DB(9). 

Proof: Note that a B (5,1; v) is equivalent to an I B (5,1; v, w) where w = 1 or 5. It is 
known [7J that a 1; v) exists when v == 1 or 5 (mod 20). It is also known [6] that an 
I B (5,1; v, 13) exists when v == 13 (mod 20) and v:::: 53. Thus suitable choices of u, e and w 
in Lemma 3.2 can be made to obtain the required result. 

Lemma 3.6 (i) Ifv == 17 (mod 20) and v?: 37, then v E IDB(9). 

(ii) DD(5, 1; 17) = DU(5, 1; 17) - 1. 
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Proof: (i) It is known [6] that an J B(5, 1; v, 9) exists if v == 17 (mod 20) and v 2: 37. For 
each stated value of v, we start with an I B(5, 1, v, 9) and write every block twice - once in 
some order and the other in the order. The result is an 1; v, 9) and the proof 
is complete. 

For (ii) let X {I, 2, .. , 17}, then the blocks are 

(1,2,6, 13, 12) 3,12,16,7) 1. 11,16, 17,3,13,11) 6.1,3, 

(3,1,9,10,17) (4, 10, 16, 13, (15,17,1,4.5) 6,0,16,17) (4.6,7,9,11) 

12.4,1) 5,9,7,13) (16,8,9,5,1) (14,5.15,10, (1:3,10. l. 7,8) 

14.17,16,6) 16,2,3,4) 9,15,8,6) 10,3,2,5) 16,11. 12. 10) 

(11,4.2,8,17) (17,10,9,12,14) 8,2,7, 14,13,2.9) (3,5,6.14,8) 

13,4,14,3) 

Lemma 3.1 {29, 39, 79} c I DB(7) and 99 C I DB 

Proof: For v = 29 let X (Z3 U {ex::}) x Z7 U {oo } where the hole is {oo} X Zi. Then the 
blocks are: 

((0.0)(1,0)(2, 0), mod(-,7) 

(00, 0)(2,0)(1,0)(0,0)) mod( -,7) 

((1. -2 (0, 2i)(00, 0)(0, i = 0, 1,2. 

For v 39 let X U Hi where H7 = {ha, ... , hs} is the hole. Then the blocks are 

(13,10, hi, 25, 0) translated by Gil i = 0, 1. 

(2, 11, hi+2, 15,0) translated by G i , i = 0,1. 

(6,29, hi+4' 0, 5) translated by Gi , i = 0, 1. 

(16,0, h6, 2,18) translated by {OJ 1, ... , 15} 

(4,31,0,10,24) mod 32, 

where Ga is the subgroup of even integers in Z32 and G1 is the coset of odd integers in Z32· 

For v = 79 let X = Z72 U H7 where H7 = {ha, . .. , hs} is the hole. Then the blocks are 

(42,11, hi, 49, 0) translated by G i , i = 0, 1. 
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(0,25, hi+2, 42, 9) translated by Gi , i 0, L 

(7,22, h i+4, 0, 33) translated by G i , i = 0,1. 

(50,14, h6, 0, 36) translated by {O, 1, .. 35} 

(3,5,1, 9, 0) (mod 72), (38, 0,13,18,3) mod (72) 

(6,26, 0,27, (mod (8, 18,0,53, mod 

(53,24, O. 40,12) (mod 72) 

where Go is the subgroup of even integers in Z72 and G1 is the coset of odd integers in Z72' 

For v = 99, take an RMGD[5, 1,5.45] [1] for the definition and existence of resolvable 
modified divisible design RMGD) and inflate it by a factor of two. To each of the 
three parallel of quintuples add two points and replace their blocks by the blocks of 
a 5-DGDD of type 26 and on the remaining blocks construct a 5-DGDD of type 25. The two 
input designs exist. See for example [10], [12]. To the groups add a new point and replace 
their blocks by the blocks of a DB(5, 1; 11). Finally, to the parallel class of size 9 add two 
points and replace their blocks by the blocks of 5-DGDD of type 210. Such designs can be 
constructed as follows: 

the blocks are 

((0, 0)(0, 2)(0,1)(0,3)) mod(-,9) 

((1,3)(0,0)(1,5)(1,6)(1,1)) mod(-, 9) 

((1,6) (0,2)001 (1,5) (0,0)) mode -,9) 

((1,2)(0,4)002(0,0)(1,8)) mode -,9). 

Lemma 3.8 (i) DD(5, 1; 13) = DU(5, 1; 13) - 1 

(ii) {33. 73,93,113.213, 313} C I DB(3) 

Proof: (i) In [IJ Assaf showed that a (5,2,13) packing design has DU(S, 1; 13)-1 = 14 blocks. 
Hence DD(S, 1; 13) ::; DU(5, 1; 13) 1. To show equality we construct a 1; 13) with 
14 blocks. 

Let X = {I, 2,. " , 13} then the blocks are: 

(1,2,3,5,11)(12,8,10,2,1)(3,1,7,8,13) (13,5,1,10,6)(7,1,9,11,12, )(7,3,2,9, 10) 

(6,5,9,2,8) (11,2,6,12,13)(8,3,4,12,6) (6,11,4,10,3)(9,5,12,13,3)(4,8,5,7,11) 

(10,12,7,5,4)(10,13,11,8,9) 
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For v = 33, let X 

The blocks are: 

((1,0)(1,5)(0.0)(0, 

X Z10 U 

+ i)i E Z5 

(0,5)(0, 0)(2. 0)(2, 5)) + i)i E Z5 

((2.5)(2,0)(1,5)(1,0), + i)i E Z5 

((0, 0)(1, 0)(1,3)(0,2)(0, l))mod 10) ((0,6)(2. 0)(0, 2)(0, 0)(1.1))mod 10) 

((2,4)(1,6)(2,2)(0, 0)(0, 3))mod 10) ((2, 6)(1,4)(0,0)(2, 9))mod 10) 

((2,5)(0,0)(1, 6)(2. 2))mod (-,10) ((1, 0)(1, 4)(1, 3))mod 10) 

((2,3)001(1,7)(0,0)(2,7))mod 10) ((0,3)003(0.0)(2,1)(1, 7))mod 10) 

((0,0)(1,6)(2, 2))mod 10). 

For v 73 let X = Z2 Z35 U {ooiH=l' The blocks are: 

((0,0)(0,1)(0,3)(0,8)(0,20)) mod 35) ((1,0)(0, 0)(0, 25)(0, 4)(0,13)) mod 35) 

((1,2)(1, 1)(0,0)) mod 35) ((1,20)(0,17)(0,0)(0,6)(0.27)) mod 

((1,23)(1. 17)(1,6)(0. 0)) mod ((1,21)(0,5)(0,0)(0,16)(1,34)) mod (-,35) 

((0,4)(1,11)(1. 19)(1. 30)(0. 0)) mod ((1,13)(1,25)(1,34)(0.1)(0, 0)) mod (-,35) 

((0,2)(1,18)(0,0)(1,0)(1,3)) mod (-,35) ((0,3)(1,15)(0,0)(1, 8)) mod (-,35) 

((0,6)(1,8)(0, 0)(1. 30)(1, 31)) mod (-,35) ((0,7)(0. 0)(1, 11)(1, (1,27)) mod (-,35) 

((0,9)(1,32)001 (0,0)(1,28)) mod (-,35) ((1,7)(0,13)002(0,0)(1, mod 35) 

((0,0)(1,6)003(0.15)(1,32) mod (-,35). 

For v = 93 let X = (Z3 U {oo}) x Z23 U {oo}, where the hole is {oo} x Z'23' 

The blocks are: 

((0,0)(1, 0)(2, O)(oc, 0), oo)mod(-, 23) 

(00(00, 0)(2, 0)(1. 0)(0, 0) )mod( -,23) 

((1, -4· 2i)(0, 2i)(00, 0)(0, -2i)(1, 4· 2i)) mod (3,23). 
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For v 113, we proceed as follows. In a T D(6, 11), we delete all but one point from the 
last group to obtain a {5, 6}-GDD of type 11511. Write A for its block collection and let 

Gll Gz, ... ,Gs be its groups, where IGil 11, for i = 1,2, . ,5 and IGsl 1. In the GDD, 
we take a particular block B of size 5. It is clear that B disjoint from G6 and intersects 
any other group of the GDD in exactly one point. We then assume B n G i = {Xi} for 
1 :5 i :5 5. Now let X Uf=l Gi and Y X 1(2) U {oo}. Now for each block A other 
than B we construct a 5-DGDD of type 25 or 26 (depending upon IAI = 5 or 6) defined on 
the set A x 1(2) taking {a} x 1(2), a E A, as groups. Denote its block collection by BA . Let 
Ai, i 1,2, .. ,5, denote the collection of blocks of a copy of an 1: 23, 3) Lemma 
3.5) formed on the set Gi x 1(2) U {(X)} in such a fashion that the hole is {Xi} 1(2) U {oo}. 

Finally we make use of Theorem 1.1 to construct a DB(5, 1; 11) on the set B x 1(2) U {(X)} 
and denote its block collection by Aoo. Then the blocks of U U Aoo 
form the block collection of an 1 DB (5, U { 00 }. 

For the case v 213 or 313, the proof is similar. In this case, we start with a T D (6, or 
a TD(6, 31) instead of a TD(6, 11). 

It is worth noting that the 5-DGDDs used above come from [7, Lemma 5J and all TDs used 
above exist for example, [7]). 

Lemma 3.9 (1) {v . v == 13 (mod 20) and v 2: 33} C 1 DB(3); 

(2) {v: v == 19 (mod 20) and v 2: 39} C 1DB(7) U IDB(9). 

Proof: From our previous Lemmas, we know that the conclusion holds for v {33, 73, 93, 39, 
79,99} U {113, 21.3. 313}. Applying Lemma 3.4 with the parameters shown in Table 1 and 
the previous established results we obtain that the conclusion holds for v 339. We now 
apply Lemma 3.4 for each t 2: 35 and t = 15 or 17 (mod 20), wand S E {I,ll, 21, 31} 
for the case v 13 (mod 20) and S E {4, 14,24, for the v 19 (mod 20). This 
guarantees the conclusion holds for v 2: 353 because of the Lemma 3.5 and the existence of 
a DB (5, 1; v) mentioned in Section l. 

Table 1 
lOt + 28 + W w lOt + 28 + w t 8 W 

53/59 5 1/4 233/239 21 8/11 7 
119 11 1 7 253/259 21 18/21 7 

133/139 11 8/11 7 273/279 27 1/4 
153/159 15 1/4 1 293/299 27 11/14 
173/179 15 11/14 1 319 31 1 7 
193/199 17 11/14 333/339 31 8/11 7 

219 21 1 7 

Summarizing the above results, we have proved 
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Theorem 3.10 (1) v ::::: 23 and v == 3 (mod 10), then v E I DB(3). 

(2) If v ::::: 29 and v or 9 (mod 10), then v E I DB(7) U I DB(9). 

Combining the results of Theorems 1.1, 2.5 and 3.10, we have 

Theorem 3.11 Let v ::::: 5 be an odd integer and v It {lS,19, 

{ 
DU(5,l;v) -1, if v 7,9(mod 11) or v 13 
DU(5, 1; v), otherwise. 
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