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Abstract 
The inclusive edge (vertex, mixed) connectivity of a vertex v is the minimum number of 
edges (vertices, graph elements) whose removal yields a subgraph in which v is a 
cutvertex. Stability under edge addition, in which the value of the parameter remains 
unchanged with the addition of any edge, is investigated. In particular we examine 
relationships between stability of the inclusive vertex connectivity parameter and stability of 
the inclusive mixed connectivity parameter, affirming a conjecture posed in [5]. 

1. Introduction 

The cohesion of a vertex was initially introduced in [7] and was further expanded by 
[1-3] to the inclusive connectivity parameters of a graph element (vertex or edge). These i­
connectivity parameters are local measures of graph vulnerability. In fact, they are shown 
in [1] to be natural localizations of the widely studied graph connectivity and edge 
connectivity parameters. 

It is natural to inquire about the stability of these parameters with regard to edge 
addition since knowledge of local network vulnerability changes upon network alteration is 
desirable. Initial work in stability on the one parameter formerly called cohesion was 

accomplished in [8-13]. We do not consider A(stability of vertices here since it is largely 
independent of the other stability types. Initial results concerning stability relationships 
between inclusive connectivity parameters was begun in [5] and is continued here. 

2. Definitions and Fundamental Concepts 

Let G be a connected graph without loops or multiple with vertex set V(G), 

edge set E(G), (vertex) connectivity K(G), and edge connectivity A(G). If not defined 
here, we follow the notation found in [4]. 

A graph element will be understood to mean either an edge or a vertex of the graph. 

If S is a set of graph elements, e E Sand w E V(G) we denote with S - e + w the set 
consisting of those elements of S less the edge e unioned with {w}. A cutvertex of G is a 
vertex whose deletion either increases the number of components or increases the number 
of isolates in G. Note that this definition permits either end of a K2-component to be a 
cutvertex. 
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For v E V(G), the inclusive edge connectivity of v, Ai(v,G), (formerly called 
cohesion), is the minimum number of edges whose removal yields a subgraph in which v 

is a cutvertex. Similarly, for v E V(G), the inclusive vertex (mixed) connectivity of v, 

lQ(V,G), (lli(v,G» is the minimum number of vertices (graph elements) whose removal 
yields a subgraph in which v is a cutvertex. 

An alternative way of conceptualizing Ki(v) is as the size of the smallest set of vertices 
whose removal from G - v separates vertices from N(v) into different components or which 

isolates a neighbor ofv. The parameters ~(v) and /li(v) may be viewed analogously. This 
view of i-connectivity suggests that Mengers Theorem may be used to aid in computing the 
parameters. For instance, the smallest set of vertices whose removal from G - v separates 
vertices from N(v) into different components is the same as the maximum number of 
internally disjoint paths in G - v, among pairs of vertices from N(v). 

Theorem 1 provides a manner of characterizing inclusive mixed connectivity similar 
to Mengers Theorem for connectivity. The proof and parallel results for other i­
connectivity parameters are evident. 

Given v E V(G), let p(u, w) denote the maximum number of internally disjoint u-w 
paths in the graph G - v. 

Theorem 1: For any graph G with v E V(G) having degree greater than one, 

Il/v, G) = min { p(u, w) ; u, w E N(v) } 

Algorithms which compute the i-connectivity parameters (using Theorem 1 and its 
counterparts for the other parameters) have been implemented [6]. The i-connectivity 
values for all graphs given here were verified using that program. 

The parameters Ai(e,G), Ki(e,G), and lli(e,G) are defined similarly for any edge e 
of G where 'cutvertex' is replaced by 'bridge' in the preceding definitions. When the 
underlying graph is apparent reference to that graph may be suppressed, for instance we 

may use AiCv) instead of Ai(v,G) when no confusion arises. Inclusive connectivity is also 
referred to as i-connectivity. If S is a smallest set of vertices (respectively edges, graph 

elements) whose removal from G makes v a cutvertex, then we call SaKi-set (respectively 

Ai-set, Ili-set) for v in G. If a Ki-set (respectively Ai-set, Ili-set) for vertex v in G consists 

of the set of vertices (respectively edges, graph elements) adjacent to some u E NG(v) less 

the vertex v (or the edge uv), we call that set a neighborhood Ki-set (respectively Ai-set, Ili­
set) for vat u. 

Figure 1 serves to illustrate the various i-connectivity parameters. Note that in this 

case Ki(v) > Ai(v) which is in contrast to Whitney's Theorem. This example also serves to 
illustrate our rather peculiar definition of a cutvertex. Notice that since < N(v) > is 
complete, the only way to make v a cutvertex by removing vertices is to isolate it in a K2 
component. In fact it is now apparent that Ki(v) = min { deg(w) : WE N(v) } - 1 
whenever N(v) induces a complete sub graph in G. 

We are primarily concerned with changes in i-connectivity with respect to the 

addition of an edge to G; thus we define a vertex v E V(G) as Ai-stable if Ai(v,G) = 
Ai(v,G + e) for every edge e ~ E(G). Similarly, a vertex v E V(G) is lQ- (Ili-) stable if 

Ki(v,G) = KHv,G + e) ( lli(v,G) = lli(v,G + e) ) for every edge e ~ E(G). In Figure 1, if e 

= va, then Ai(v,G + e) = Ki(v,G + e) = lli(v,G + e) = 2, where if e = vb then Ai(v,G + e) = 
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Ki(v,G + e) = /'!i(v,G + e) = 1. Hence vertex v has no stability under edge addition. 

Figure 2 shows a graph with vertex v having Ki and /.!i-stability, but not \-stability under 
edge addition. More examples of graphs exhibiting various types of stability under edge 
addition may be found in [5]. 

3. Preliminary Results 

Our fIrst four results provide useful tools for examining the stability of i-connectivity 
parameters under edge addition. The proof of Theorem 2 may be found in [2], 

Theorem 2: For any v E V(G), if /.!i(v, G) < Ki(V, G) then there exists a /.!(set for v 
containing exactly one edge and that edge has as its endpoints neighbors of v. 

The next lemma is straightforward to establish. 

Lemma 3: If /.!i(v, G) < Ki(V, G) and S is any /.!eset for v then G - S v has exactly two 
components which contain vertices ofNG(v). 

We now examine the effect of edge addition on inclusive mixed connectivity 
parameter values. The effect on the other i-connectivity parameters is similar and may be 
found in [13]. 

Theorem 4: Let u, v, and w be distinct vertices of G and e uw, where uw e E(G). 
Then 

(a) /.!i(v, G) S; /.!i(v, G + e) S; /.!i(v, G) + 1 and 

(b) K(G - u) S; /.!i(u, G + e) S; /.!i(u, G). 

Proof: Let S be any /.!(set for v in G. Then S u {e} is a set of graph elements whose 

removal from G + e makes v a c.utvertex showing that /.!/v, G + e) S; /.!i(v, G) + 1. The 

inequality /.!i(v, G) S; /.!i(v, G + e) holds since NG(v) = NG+e(v) and between any pair of 
neighbors of v there are at least as many internally disjoint paths between them in G + e as 
in G. 

Since G - u = (G + e) - u and every pair of neighbors of u in G is a pair of neighbors 

of u in G + e, it follows that /.!/u, G + e) S; /.!i(u, G). Finally, K(G - u) S; /.!i(u, G + e) 

holds because any /.!(set for u in G + e is a set of graph elements whose removal from G -

u either results in either a disconnected or trivial graph. 0 

4. Main Results 

We now begin investigating stability under edge addition. 

Theorem 5: If v E V(G) satisfies /.!i(v, G) < Ki(V, G) then v is not Ki-stable under edge 
addition in G. 
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Proof: Let v E V(a) be such that Ili(v, a) < Ki(V, G). By Theorem 2 there exists a Il( 
set, S, for v in G with S containing exactly one edge e = wI w 2 and with the endpoints of e 
both neighbors ofv. Further, by Lemma 3, a -S - v has exactly two components which 
contain vertices ofN(v). Name these components C1 and C2· Let wI E C1 and w2 E C2. 

We may assume, without loss of generality, that there is a vertex x E V(CI) which is 

distinct from w l' For if I V(C}) I = I V(C2) I:::: 1, then S is a neighborhood Ileset implying 

that Jlj(v, a) :::: Ki(V, G). 

If x E N(v) then S - e + wI is a set of vertices whose removal from G makes va 

cutvertex implying Ki(V, a) ::; I S - e + w 1 I:::: I S I:::: Jl/v, G), a contradiction. Then it must 

be the case that x ~ N(v). Now consider the graph G + vx. Upon removal from G + vx 

the set S - e + WI makes v a cutvertex. This gives K/V, G + vx)::; I S - e + WI I:::: I S I:::: 

Ilj(V' a) < Ki(V, G) so that v is not Kestable upon edge addition in G. 0 

Corollary 6: If v E VCG) is Kestable under edge addition in G then Ili(v, G) :::: a), 

The next theorem verifies a conjecture raised in [5]. 

Theorem 7: If v E V(G) is Kestable under edge addition in G then v is Jlfstable under 
edge addition. 

Proof: We establish the contrapositive. Toward that end, suppose that v E V(G) is not 

Jli-stable under edge addition. Let e ~ E(G) with Il/v, G) :t: Ilj(v, G + e). 

Case 1: Suppose Ili(v, G) = Ki(V, a). 

(a) If Jlj(v, G) < Ili(v, G + e) then Ki(V, a + e) ~ Jli(v, G + e) > Il/v, G) :::: Ki(V, a) 
implying that v is not Kestable under edge addition. 

(b) Suppose Jl/v, G) > Ili(v, G + e). If Ki(V, G) :t: Ki(V, G + e) then we are done. 

Assume then that Ki(V, G) = Ki(V, G + e) > Jl/v, G + e). By Theorem 2, we.let S' 

be a Ileset for v in G + e such that S' contains exactly one edge and that edge has as 

its endpoints neighbors of v. Since Ilj(v, G) > Jl/v, G + e), Theorem 4 implies that e 
must be adjacent to v. By Lemma 3, (G + e) - S' - v has exactly two components 
which contain neighbors of v. Let w 1 be a neighbor of v in component CI and w 2 be 
a neighbor of v in component C2 of (G + e) - S' - v. Let wI w2 be the lone edge in 
S', 

(i) If wI is the only vertex in C1 then lliCv, G + e) = Ki(V, G + e). To verify this, 
notice that S' - w 1 w 2 + w 2 is a set of vertices whose removal from G + e makes v a 

cutvertex. Hence Ki(V, G + e) ::; I S' - w 1 w2 + w2 I:::: I S' I = Jl/v, G + e). But 

Ki(V, G + e) ~ Jli(v, G + e) by definition resulting in equality. This contradicts our 

assumption that Ki(V, G + e) > Ilj(v, G + e). 
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(ii) There exists another vertex yin C1 and y E NG + e(v). Then v is a cutvertex 

with the removal of S' w1w2 + wI from G + e so Ki(V, G + e) = Ilj(v, G + e), a 
contradiction as above. 

(iii) There exists another vertex y and y (C NG + e(v). Then consider the graph G + 
vy. Since S' wI w 2 + wI is a set of vertices which makes v a cutvertex upon 

removal from G + vy, we see that Ki(V, G + vy) ~ I S' - wI w2 + wI I = I S' I = 

Il/V, G + vy) < Ili(v, G) = Ki(V, G) showing that v is not K(stable under edge 
addition in G. 

Case 2: Suppose Ili(v, G) < Ki(V, G). Then by Theorem 5, v is not Ki-stable under 

edge addition in G. 0 

We remark that a vertex which is Il(stable under edge addition is not necessarily K( 

stable under addition. For example the graph in Figure 3 has vertex v Il(stable but 

not K.-stable under 
1 

addition (see [5] for a detailed explanation). We now turn our 

attention to conditions under which Il(stability under edge addition implies Kestability. 
Theorem 8, which not difficult to establish, is presented without proof. 

Theorem 8: If v E Y(G) has degree one, then v is Ai, Ki' and Ili-stable or v is none of 

Ki' or Ili-stable depending on whether G - v is complete or not complete respectively. 

Corollary 9: If v E Y(G) is Il(stable under 
stable under edge addition. 

addition and degG(v) 1, then v is KC 

We now turn our attention to a more general scenario. 

Lemma 10: If v E Y(G) is Ilestable under edge addition and every Ilfset for v in G 

separates the same pair of neighbors of v, then Ili(v, G) = K/V, G). 

Proof: Let v Y(G) be Ili-stable and suppose every Ilj-set for v in G separates the same 

pair of neighbors. Label the two neighbors of v which get separated by every Il(set with u 

and w. Notice that since the same pair of neighbors get separated by every /li-set and v is 

Il(stable under edge addition, uw E B(G) and uw is in any !l(set for v in G. 

Assume for the sake of contradiction that Ilj(v, G) < Ki(V, G). Then no Ili-set for v 

in G is a neighborhood Ileset for v at u or w. By Theorem 1, there exist exactly Il/v, G) 

internally disjoint u-w paths in G - v. Let S be any set of Ili(v, G) internally disjoint u-w 
paths each of which is of minimal length. Then there is at least one neighbor for each of u 

and w in G - v which is not on any path in S (otherwise v has a neighborhood Ili-set at u or 
w)~ Call these neighbors x and y. Notice that x and yare distinct since if not, then u-x-w 
is a u-w path not in S and internally disjoint from all paths in S, contradicting the 

maximality of Ilj(v, G). Similarly, note that xy (C B(G). Then in G + xy, there are 
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ll/V, G) + 1 internally disjoint u-w paths implying that v is not JlCstable under edge 

addition. Then it must be the case that Jl/v, G) == Ki(V, G). 0 

Theorem 11: If v E V(G) is Jl(stable under edge addition and every Jl(set for v in G 

separates the same pair of neighbors of v, then v is K(stable. 

Proof: Let v E V(G) be Jl(stable under edge addition and suppose every Jli-set for v in 
G separates the same pair of neighbors of v. Label the two neighbors of v which get 

separated by every Jl(set with u and w. Then by Lemma 10, Jli(v, G) == Ki(V, G). 
With degG(u) "* degG(w) we assume without loss of generality degG(u) > 

degG(w). Let P be any set of Ilj (v, G) internally disjoint u-w paths, each of which is 

of rninimallength. Since Jli(v, G) < degG(u), then there exists at least one neighbor, 

x, of u which is not on any path of P. Then xw ~ B(G) by the maximality of Jli(v, 

G). Thus, in G + xw, there are Jli(v, G) + 1 internally disjoint u-w paths 

contradicting the fact that v is Jl(stable under edge addition in G. 

Suppose degG(u) == degG(w) == k. We now establish k Jlj(v, G) == 

K/V, G). Assume k"* Jl/v, G) == Ki(V, G). Then the number of internally disjoint u­

w paths in G v is strictly less than k. Let S be any set of Jli(v, G) internally disjoint 
u-w paths each of which is of rninimallength. Then each of u and w has at least one 
neighbor which is not on any path in S. Then, as in Lemma 10, a new u-w path may 

be constructed in G + e which is internally disjoint from each path in S for some e ~ 

B(G). This contradicts the Jli-stability. 

Thus k == Jli(v, G) == Ki(V, G) and since uw E B(G), the degree of at least one of u or 

w remains the same in G + e for any e ~ B(G). It then follows that Ki(V, G + e) ~ 

K/V, G) for every e ~ B(G). Combining this with Ki(V, G + e) ;::: Jl/v, G + e) and 

Jli(v, G + e) == Jli(v, G) gives Ki(V, G + e) == Ki(V, G) for all e ~ B(G). 0 

We now point out a consequence of Theorem 11 which extends Corollary 9 to the 
case of a degree two vertex. 

Corollary 12: If v E V(G) is Jlj-stable under edge addition and degG(v) == 2, then v is 

Ki-stable under edge addition. 

5. Conclusion 

The results presented here compliment initial investigations pertaining to stability 
under edge addition [5, 8-13] and settle an intriguing conjecture posed in [5]. Stability of 
the i-connectivity parameters under edge deletion is now under way and is remarkably 
different from the edge addition stability. 
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Figure 1: A graph with "-i(v) 2, Ki(v) == 3, and J.Li(v) == 2. 

v 
2: A graph illustrating stability. 
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Figure 3: A graph showing that J.L(stability 

does not imply Kcstability. 
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