Some Ramsey Numbers for Complete Bipartite Graphs

Martin Harborth
Otto-von-Guericke-Universität Magdeburg
Magdeburg, Germany

Ingrid Mengersen
Technische Universität Braunschweig Braunschweig, Germany

Abstract

Upper bounds are determined for the Ramsey number $r\left(K_{2,2}, K_{m, n}\right), 2 \leq$ $m \leq n$. These bounds are attained for infinitely many n in case of $m \leq 3$ and are fairly close to the exact value for every m if n is sufficiently large.

1 Introduction

For complete bipartite graphs G and H only few exact values of the Ramsey number $r(G, H)$ are known. Harary [4] determined the numbers $r\left(K_{1, t}, K_{1, n}\right)$. Parsons [7,8,9] and Stevens [10] investigated the numbers $r\left(K_{1, t}, K_{m, n}\right)$. Parsons determined an upper bound for the case $m=2$, which is attained if n is small relative to t and certain regular graphs exist. Stevens completely solved the case when n is sufficiently large depending on t and m. In [3] it was shown that $r\left(K_{2, n}, K_{2, n}\right) \leq 4 n-2$ with equality for infinitely many n. Moreover, Chung and Graham [1] derived a general upper bound for $r\left(K_{m, n}, K_{m, n}\right)$. But up to now, besides $r\left(K_{3,3}, K_{3,3}\right)=18$ determined in [3], no exact values of $r\left(K_{s, t}, K_{m, n}\right)$ are known when $s, t, m, n \geq 3$.

Here we focus on the numbers $r\left(K_{2,2}, K_{m, n}\right)=r\left(C_{4}, K_{m, n}\right)$. The case $m=1$ was already studied by Parsons. He showed that $r\left(C_{4}, K_{1, n}\right) \leq n+\lceil\sqrt{n}\rceil+1$ with equality for infinitely many n. Here we will derive corresponding upper bounds for the case $m \geq 2$. These bounds are attained for infinitely many n in case of $m \leq 3$ and are fairly close to the exact value for fixed m and sufficiently large n.

As usual, the vertex set of a graph G is denoted by V and the edge set by E . $N_{G}(v)$ denotes the set of neighbors of a vertex $v \in G$ in G and $d_{G}(v)$ the degree of v in G. The minimum degree of the vertices in G is denoted by δ_{G} and the maximum degree by Δ_{G}. In a 2 -coloring of the complete graph K_{n} we always use green and red as colors. The green subgraph is denoted by $G(g)$ and the red subgraph by $G(r)$. We write $N_{g}(v), d_{g}(v), \delta_{g}$ and Δ_{g} instead of $N_{G(g)}(v), d_{G(g)}(v), \delta_{G(g)}$ and $\Delta_{G(g)}$ and use the corresponding notations for $G(r)$. If A and B are two sets of vertices from $K_{n}, g(A, B)$ denotes the number of green edges from A to B. If A consists of a single vertex u, we write $g(u, B)$. A 2 -coloring of K_{n} is said to be a (G, H)-coloring if there is neither a green subgraph G nor a red subgraph H.

2 Properties of $\left(C_{4}, K_{m, n}\right)$-colorings

The following lemmas will be used later to establish upper bounds for $r\left(C_{4}, K_{m, n}\right)$.
Lemma 1. Let χ be a $\left(C_{4}, K_{m, n}\right)$-coloring of K_{p} and $v \in V$. Then the following assertions hold.
(i)

$$
\begin{equation*}
\sum_{u \in N_{g}(v)} g\left(u, N_{r}(v)\right) \leq p-d_{g}(v)-1 \tag{1}
\end{equation*}
$$

(ii) If $d_{g}(v) \geq m$ and if S is an m-element subset of $N_{g}(v)$ then

$$
\begin{equation*}
\sum_{u \in S} g\left(u, N_{r}(v)\right) \geq p-n-d_{g}(v)+\left|\bigcap_{u \in S} N_{r}(u) \cap N_{g}(v)\right| . \tag{2}
\end{equation*}
$$

(iii) If $d_{g}(v) \geq m-1$ and if S is an $(m-1)$-element subset of $N_{g}(v)$ then

$$
\begin{equation*}
\sum_{u \in S} g\left(u, N_{r}(v)\right) \geq p-n-d_{g}(v) \tag{3}
\end{equation*}
$$

Proof. Since no green C_{4} occurs in χ, each vertex in $N_{r}(v)$ can be joined by at most one green edge to $N_{g}(v)$ and this yields (1). Moreover, there is no red $K_{m, n}$ in χ. Thus, in $N_{g}(v)$ there are no m vertices with n common red neighbors in $N_{r}(v) \cup N_{g}(v)$ and no $m-1$ with n common red neighbors in $N_{r}(v)$. This implies (2) and (3).

Lemma 2. Let χ be a $\left(C_{4}, K_{m, n}\right)$-coloring of $K_{p}, m \geq 2$ and $p \geq \max \{n+m+$ $\left.1, n+m^{2}-m-1\right\}$. Then

$$
\begin{equation*}
\left\lceil\frac{p-n-1}{m}\right\rceil+1 \leq \Delta_{g} \leq m+\left\lfloor(m+n-1) /\left(\left\lceil\frac{p-n}{m}\right\rceil-1\right)\right\rfloor . \tag{4}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
d_{g}(v) \leq m-1+\left\lfloor(n-1) /\left\lceil\frac{p-n-d_{g}(v)}{m-1}\right\rceil\right] \tag{5}
\end{equation*}
$$

for every $v \in V$ with $m-1 \leq d_{g}(v) \leq p-n-1$.
Proof. No red $K_{m, n}$ implies green edges in χ. Take m vertices at least two of them adjacent in green. They have at least $p-m-m \Delta_{g}+2$ and at most $n-1$ common red neighbors. This implies $\Delta_{g} \geq m-1$. Consider now a vertex v with $d_{g}(v)=\Delta_{g}$. Let $N_{g}(v)=\left\{u_{1}, \ldots, u_{\Delta_{g}}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. We may assume that $g_{1} \leq g_{2} \leq \ldots \leq g_{\Delta_{g}}$. Using inequality (3) and $g_{i} \leq \Delta_{g}-1$ we obtain that $(m-1)\left(\Delta_{g}-1\right) \geq \sum_{i=1}^{m-1} g_{i} \geq$ $p-n-\Delta_{g}$. This yields the first inequality in (4). To prove the second inequality in (4) note that $\Delta_{g} \geq m$. Moreover, $\left|\cap_{i=1}^{m} N_{r}\left(u_{i}\right) \cap N_{g}(v)\right| \geq \Delta_{g}-2 m$ since each u_{i} can have at most one green neighbor in $N_{g}(v)$. Now inequality (2) implies that $\sum_{i=1}^{m} g_{i} \geq p-n-2 m$ which yields $g_{m} \geq\left\lceil\left(\sum_{i=1}^{m} g_{i}\right) / m\right\rceil \geq\lceil(p-n) / m\rceil-2$. Using
that $g_{m} \leq g_{m+1} \leq \ldots \leq g_{\Delta_{g}}$ and inequality (1) we obtain that $p-n-2 m+\left(\Delta_{g}-\right.$ $m)(\lceil(p-n) / m\rceil-2) \leq \sum_{i=1}^{\Delta_{g}} g_{i} \leq p-\Delta_{g}-1$ and this yields the second inequality of (4).

To prove inequality (5) consider a vertex v with $d=d_{g}(v) \geq m-1$ and $d \leq$ $p-n-1$. Let $N_{g}(v)=\left\{u_{1}, \ldots, u_{d}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. Again we may assume that $g_{1} \leq \ldots \leq g_{d}$. Then inequalities (3) and (1) imply that $p-n-d+(d-(m-1))\lceil(p-$ $n-d) /(m-1)\rceil \leq p-d-1$ yielding inequality (5).

3 Erdös-Rényi and Moore graphs

Here we consider two classes of graphs which will be useful to establish lower bounds for $r\left(C_{4}, K_{m, n}\right)$.

For a prime power q the Erdös-Renyi graph $E R(q)$, first constructed by Erdös and Rényi in [2], is defined to be the graph whose vertices are the points of the projective plane $P G(2, q)$ where two vertices (x, y, z) and ($x^{\prime}, y^{\prime}, z^{\prime}$) are adjacent iff $x x^{\prime}+y y^{\prime}+z z^{\prime}=0$. The Erdös-Rényi graph was studied in detail by Parsons in [9]. Here we will use the following properties of $E R(q)$.
($\alpha) E R(q)$ has $q^{2}+q+1$ vertices, $q+1$ of degree q and q^{2} of degree $q+1$.
(β) $E R(q)$ does not contain a subgraph C_{4}.
(γ) In $E R(q)$ there are no two adjacent vertices of degree q.
(δ) In $E R(q)$ no vertex of degree q belongs to a subgraph K_{3}.

Lemma 3. Let q be a prime power, $G=E R(q), \bar{G}$ the complement of G and let $S=\left\{v_{1}, \ldots, v_{m}\right\} \subset V=V(G)$. Then

$$
\begin{equation*}
\left|\bigcap_{v \in S} N_{\bar{G}}(v)\right| \leq q^{2}-(m-1) q+\binom{m-1}{2} . \tag{6}
\end{equation*}
$$

Proof. Let $T=V \backslash S$ and, for $v \in S$, let $T_{v}=N_{G}(v) \cap T$ and $S_{v}=N_{G}(v) \cap S$. Then $\left|\cap_{v \in S} N_{\bar{G}}(v)\right|=|T|-\left|\bigcup_{v \in S} T_{v}\right|$ and, by property $(\alpha),|T|=q^{2}+q+1-m$. Thus, inequality (6) is proved if we can show that

$$
\begin{equation*}
\left|\bigcup_{v \in S} T_{v}\right| \geq q m-\binom{m}{2} . \tag{7}
\end{equation*}
$$

Let $M=\{(i, j) ; 1 \leq i<j \leq m\}$. Trivially,

$$
\begin{equation*}
\left|\bigcup_{v \in S} T_{v}\right| \geq \sum_{v \in S}\left|T_{v}\right|-\sum_{(i, j) \in M}\left|T_{v_{i}} \cap T_{v_{j}}\right| . \tag{8}
\end{equation*}
$$

Let $M_{1}=\left\{(i, j) \in M ;\left\{v_{i}, v_{j}\right\} \in E(G), \min \left\{d_{G}\left(v_{i}\right), d_{G}\left(v_{j}\right)\right\}=q\right\}$ and $M_{2}=$ $\left\{(i, j) \in M ;\left|S_{v_{i}} \cap S_{v_{j}}\right|=1\right\}$. By properties (β) and (δ),

$$
\begin{equation*}
\sum_{(i, j) \in M}\left|T_{v_{i}} \cap T_{v_{j}}\right| \leq\binom{ m}{2}-\left|M_{1}\right|-\left|M_{2}\right| \tag{9}
\end{equation*}
$$

Let $S^{\prime}=\left\{v \in S ; d_{G}(v)=q\right\}$ and $S^{\prime \prime}=S \backslash S^{\prime \prime}$. By property $(\gamma),\left|M_{1}\right|=\sum_{v \in S^{\prime}}\left|S_{v}\right|$. Furthermore, by property $(\beta),\left|M_{2}\right|=\sum_{v \in S}\binom{\left|S_{v}\right|}{2}$. Thus, inequalities (8) and (9) imply

$$
\begin{equation*}
\left|\bigcup_{v \in S} T_{v}\right| \geq \sum_{v \in S^{\prime}}\left(\left|S_{v}\right|+\left|T_{v}\right|+\binom{\left|S_{v}\right|}{2}\right)+\sum_{v \in S^{\prime \prime}}\left(\left|T_{v}\right|+\binom{\left|S_{v}\right|}{2}\right)-\binom{m}{2} . \tag{10}
\end{equation*}
$$

Note that $\left|S_{v}\right|+\left|T_{v}\right|=d_{G}(v)$ and, by property (α), the vertices in $S^{\prime \prime}$ have degree $q+1$. Thus, every summand of the two sums in (10) is at least q. This proves (7) and the proof of Lemma 3 is complete.

For integers $\delta \geq 3$ and $g \geq 3 \mathrm{a}(\delta, g)$ - Moore graph is defined to be a graph regular of degree δ with girth g and $p(\delta, g)$ vertices where

$$
p(\delta, g)= \begin{cases}1+\frac{\delta}{\delta-2}\left\{(\delta-1)^{(g-1) / 2}-1\right\} & \text { if } g \text { is odd } \tag{11}\\ \frac{2}{\delta-2}\left\{(\delta-1)^{g / 2}-1\right\} & \text { if } g \text { is even. }\end{cases}
$$

It is well known that every graph with minimum degree δ and girth g has at least $p(\delta, g)$ vertices.

In the following section we will use a result of Hoffman and Singleton [6] concerning $(\delta, 5)$-Moore graphs. They showed that there are no such graphs with $\delta \geq 3$ and $\delta \notin\{3,7,57\}$ whereas $(3,5)$ - and (7,5)-Moore graphs do exist (the Petersen graph and the so-called Hoffman-Singleton graph). Up to now it is unknown whether a $(57,5)$-Moore graph exists.

4 Ramsey numbers $r\left(C_{4}, K_{m, n}\right)$

We will determine bounds and values for $r\left(C_{4}, K_{m, n}\right)$ which depend in case of $2 \leq$ $m \leq 4$ on the difference s between n and $(\lceil\sqrt{n}\rceil-1)^{2}$, the greatest square less than $n(1 \leq s \leq 2\lceil\sqrt{n}\rceil-1)$.

Theorem 1. Let $n \geq 2, q=\lceil\sqrt{n}\rceil, s=n-(q-1)^{2}$ and $M=\{2,5,37,3137\}$. Then

$$
r\left(C_{4}, K_{2, n}\right) \leq \begin{cases}n+2\lceil\sqrt{n}\rceil-1 ; & s=1 \text { and } n \notin M \tag{12}\\ n+2\lceil\sqrt{n}\rceil ; & n \in M \text { or } 2 \leq s \leq q-1 \\ n+2\lceil\sqrt{n}\rceil+1 ; & q \leq s \leq 2 q-1\end{cases}
$$

Proof. Suppose first that we have a $\left(C_{4}, K_{2, n}\right)$ - coloring of K_{p} where $p=n+2 q$ and $1 \leq s \leq q-1$. The two inequalities in (4) imply $\Delta_{g}=q+1$ for $1 \leq s \leq q-3$, $q+1 \leq \Delta_{g} \leq q+2$ for $q-2 \leq s \leq q-1, q \geq 3$, and $q+1 \leq \Delta_{g} \leq q+3$ for $q=2$, i. e. $n=2$. Inequality (5) yields that $d_{g}(v) \neq q+1$ for all $v \in \bar{V}$. Moreover, $\Delta_{g}=q+3$ for $n=2$ would immediately lead to a green C_{4} or to a red $K_{2,2}$. Thus, only $\Delta_{g}=q+2$ and $s=q-2$ or $s=q-1$ remains. Consider a vertex v with $d_{g}(v)=q+2$. Let $N_{g}(v)=\left\{u_{1}, \ldots . u_{q+2}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. Inequality (3) implies that $g_{i} \geq q-2$. We may assume that $g_{1} \leq \ldots \leq g_{q+2}$. Then $g_{q+2} \geq q-1$ in case of $s=q-2$ would
yield a contradiction to (1) and the same holds for $g_{q+1} \geq q-1$ or $g_{q+2} \geq q$ in case of $s=q-1$. Thus, $g_{1}=\ldots=g_{q+2}=q-2$ if $s=q-2$ and $g_{1}=\ldots=g_{q+1}=q-2$, $q-2 \leq g_{q+2} \leq q-1$ if $s=q-1$. Note that there must be vertices u_{i} and u_{j} in $N_{g}(v)$ with q common red neighbors in $N_{g}(v)$. But then (2) implies $g_{i}+g_{j} \geq 2 q-2$, a contradiction, and the second case of inequality (12) is proved.

To prove the first case consider now $n \geq 10$ with $s=1$. Suppose that we have a $\left(C_{4}, K_{2, n}\right)$-coloring of K_{p} with $p=n+2 q-1$ (i. e., $p=q^{2}+1$). Because of $q \geq 4$. inequality (4) implies that $q \leq \Delta_{g} \leq q+1$.

First assume that $\Delta_{g}=q+1$. Let v be a vertex with $d_{g}(v)=q+1, N_{g}(v)=$ $\left\{u_{1}, \ldots, u_{q+1}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. By (3), $g_{i} \geq q-2$. We may assume that $g_{1} \leq \ldots \leq g_{q+1}$. Then (1) yields $g_{1}=\ldots=g_{q}=q-2$ and $q-2 \leq g_{q+1} \leq q-1$. Moreover, there must be two vertices in $\left\{u_{1}, \ldots, u_{q}\right\}$ with $q-1$ common red neighbors in $N_{g}(v)$, and we obtain a contradiction to (2).

It remains that $\Delta_{g}=q$. Assume that $\delta_{g} \leq q-1$ and let w be a vertex with $d_{g}(w)=\delta_{g}$. If $\delta_{g} \geq 1$, inequality (3) yields $g\left(u, N_{r}(w)\right) \geq q$ for every $u \in N_{g}(w)$, contradicting $\Delta_{g}=q$. If $\delta_{g}=0, w$ and any other vertex have more than n common red neighbors and a red $K_{2, n}$ would occur. Thus, the green subgraph of K_{p} must be regular of degree q. Moreover, its girth g must be at least 5 since no green C_{4} occurs and since a green C_{3} would immediately lead to a red $K_{2, n}$. A girth $g \geq 6$ is impossible since then at least $p(q, g)$ vertices would occur in K_{p} (compare section 3) and $p(q, g)>q^{2}+1=p$ if $g \geq 6$. Since $q^{2}+1=p(q, 5)$, it remains that the green subgraph is a $(q, 5)$-Moore graph. But this yields a contradiction for $q \geq 4, q \neq 7, q \neq 57$ (i. e., $n \neq 37, n \neq 3137$) since such Moore graphs do not exist, and the first case in (12) is proved.

To prove the remaining third case, suppose that for $q \leq s \leq 2 q-1$ we have a $\left(C_{4}, K_{2, n}\right)$-coloring of K_{p} with $p=n+2 q+1$. Then inequality (4) implies that $\Delta_{g}=q+1$ for $q \leq s \leq 2 q-3$ and $q+1 \leq \Delta_{g} \leq q+2$ for $2 q-2 \leq s \leq 2 q-1$. By inequality (5), $d_{g}(v) \neq q+1$ for all $v \in V$. Moreover, $d_{g}(v)=q+2$ is only possible if $s=2 q-1$. Thus, only $s=2 q-1$ and $\Delta_{g}=q+2$ remains. Consider a vertex v with $d_{g}(v)=q+2$. Let $N_{g}(v)=\left\{u_{1}, \ldots, u_{q+2}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. By $(3), g_{i} \geq q-1$. Then (1) implies that $g_{1}=\ldots=g_{q+2}=q-1$. But this yields a contradiction to (2), since there must be two vertices in $N_{g}(v)$ with q common red neighbors in $N_{g}(v)$, and the proof of Theorem 1 is complete.

Corollary. For $n=3137$, equality in (12) is attained (i.e. $r\left(C_{4}, K_{2, n}\right)=3251$) iff there is a $(57,5)$-Moore graph.

Proof. The proof of Theorem 1 shows that a $(57,5)$-Moore graph must exist if equality is attained. Furthermore, the existence of such a graph leads to equality, since a 2-coloring of a K_{3250} where the green subgraph is isomorphic to a $(57,5)$-Moore graph contains no green C_{4} and no red $K_{2, n}$.

The next theorem shows that the bounds derived in Theorem 1 are attained in certain cases.

Theorem 2. Let $n \geq 2, q=\lceil\sqrt{n}\rceil, s=n-(q-1)^{2}$ and $M^{\prime}=\{2,5,37\}$. If q is a prime power then

$$
r\left(C_{4}, K_{2, n}\right)= \begin{cases}n+2\lceil\sqrt{n}\rceil-1 ; & s=1 \quad \text { and } n \notin M^{\prime} \tag{13}\\ n+2\lceil\sqrt{n}\rceil ; & n \in M^{\prime} \quad \text { or } \quad s=q-1 \geq 2 \\ n+2\lceil\sqrt{n}\rceil+1 ; & s=q\end{cases}
$$

and

$$
\begin{equation*}
n+2\lceil\sqrt{n}\rceil-1 \leq r\left(C_{4}, K_{2, n}\right) \leq n+2\lceil\sqrt{n}\rceil ; \quad 1 \leq s \leq q-2 . \tag{14}
\end{equation*}
$$

If $q+1$ is a prime power then

$$
\begin{equation*}
\left.r\left(C_{4}, K_{2, n}\right)=n+2\lceil\sqrt{n}\rceil+1 ; \quad s=2 q-1 \quad \text { (i. e. } \quad n=q^{2}\right) . \tag{15}
\end{equation*}
$$

Proof. First suppose that q is a prime power. In view of Theorem 1 it suffices to prove" \geq " for (13) and the left inequality of (14).

Consider a 2 -coloring of K_{p} with $p=q^{2}+q+1$ where the green subgraph is isomorphic to the Erdös-Rényi graph $E R(q)$. Then, by property (β) of $E R(q)$, no green C_{4} occurs and, by Lemma 3, no red $K_{2, q^{2}-q+1}$. This implies " \geq " for the third case of (13), i.e. for $s=q$, since then $n=q^{2}-q+1$ and $p=n+2 q$.

To settle the second case of (13), first consider $s=q-1$, i. e. $n=q^{2}-q$. Delete from K_{p} a vertex u with $d_{g}(u)=q$ (which exists by property (α) of $\left.E R(q)\right)$ and a green neighbor v of u. The remaining $K_{n+2 q-1}$ contains no green C_{4}. Assume that a red $K_{2, n}$ occurs. Then there are vertices x and y with n common red neighbors. By Lemma $3, x$ and y cannot have more than n common red neighbors in K_{p}. Thus, u and also v must be joined green to one of the vertices x and y. By property (δ) of $E R(q)$, we may assume that u is joined green to x and red to y and that v is joined green to y and red to x. Then the edge $\{x, y\}$ must be red since otherwise a green C_{4} would occur. Moreover, by properties (α) and $(\gamma), x$ has q green neighbours in $K_{n+2 q-1}$ and y at least $q-1$. No green C_{4} implies that in $K_{n+2 q-1}$ there are at least $2 q-2$ vertices joined green to x or y. But this yields at most $n-1$ common red neighbors of x and y, a contradiction, and " " follows for $s=q-1$. Note that $n=2$ is included for $q=2$. To establish " $\geq "$ for $n=5$ and for $n=37$, consider a 2-coloring of $K_{q^{2}+1}$ where the green subgraph is isomorphic to the Petersen graph respectively to the Hoffman-Singleton graph, the two special $(\delta, 5)$ - Moore graphs described in section 3 .

To prove " \geq " for the first case in (13) and the left inequality in (14) delete from K_{p} a vertex u with $d_{g}(u)=q$ and $q-s+1$ of its green neighbors where $1 \leq s \leq q-2$. The remaining $K_{n+2 q-2}$ contains no green C_{4}. Assume that a red $K_{2, n}$ occurs and consider two vertices x and y with n common red neighbors. Since x and y have at most $q^{2}-q=n+q-s-1$ common red neighbors in K_{p}, there are at least three among the deleted vertices joined green to x or to y. Thus, x or y must be joined green to two of the deleted vertices, contradicting one of the properties (β) and (δ) of $E R(q)$, and the proof of (13) and (14) is complete.

Now suppose that $q+1$ is a prime power and $s=2 q-1$, i. e. $n=q^{2}$. To prove (15), again it suffices to show " \geq " in view of Theorem 1. Consider a 2 -coloring of K_{p} with $p=(q+1)^{2}+(q+1)+1=n+3 q+3$ where the green subgraph is isomorphic
to the Erdös-Rényi graph $E R(q+1)$. Delete a vertex u with $d_{g}(u)=q+2$ and all its green neighbors. By property (β) of $E R(q+1), K_{p}$ and also the remaining $K_{n+2 q}$ contains no green C_{4}. Assume that a red $K_{2, n}$ occurs in the remaining $K_{n+2 q}$ and let x and y be two vertices with n common red neighbors. By Lemma $3, x$ and y can have at most $q^{2}+q=n+q$ common red neighbors in K_{p}. This implies that at least three of the deleted vertices, i. e., three of the green neighbors of u, must be joined green to x or to y. Thus, x or y has to be joined green to two green neighbors of u. But this yields a green C_{4} in K_{p}, a contradiction, and Theorem 2 is proved.

The following lemma shows that equality in (12) also holds for $n=8$ and that the lower bound in (14) yields the exact value in case of $n=11$.
Lemma 4.

$$
\begin{equation*}
r\left(C_{4}, K_{2,8}\right)=15, \quad r\left(C_{4}, K_{2,11}\right)=18 \tag{16}
\end{equation*}
$$

Proof. Figure 1 and inequality (12) imply that $r\left(C_{4}, K_{2,8}\right)=15$. To prove $r\left(C_{4}, K_{2,11}\right)=18$, it suffices to show ≤ 18 in view of the left inequality in (14).

Assume that we have a $\left(C_{4}, K_{2,11}\right)$-coloring of K_{18}. By (4), $4 \leq \Delta_{g} \leq 6$. Let v be a vertex with $d_{g}(v)=\Delta_{g}$ and $N_{g}(v)=\left\{u_{1}, \ldots, u_{\Delta_{g}}\right\}$. We may assume that all green edges between vertices of $N_{g}(v)$ belong to the edge-set $\left\{\left\{u_{i}, u_{i+1}\right\}: 1 \leq i \leq\right.$ $\Delta_{g}-1, i$ odd $\}$. This implies $\left|N_{r}\left(u_{i}\right) \cap N_{r}\left(u_{i+1}\right) \cap N_{g}(v)\right|=\Delta_{g}-2$, and (2) yields $g\left(u_{i}, N_{r}(v)\right)+g\left(u_{i+1}, N_{r}(v)\right) \geq 5$. Thus, $\Delta_{g}=6$ is impossible since otherwise we would obtain a contradiction to (1).

Now suppose that $\Delta_{g}=5$. Then (1) implies that $d_{g}\left(u_{5}\right) \leq 3$. and $\delta_{g} \leq 3$ follows. Let w be any vertex with $d_{g}(w)=\delta_{g}$. If $\delta_{g}<3, w$ and one of its green neighbors (or any vertex if $\delta_{g}=0$) would have at least eleven common red neighbors. a contradiction. Thus, $\delta_{g}=3$. Let $N_{g}(w)=\{1,2,3\}$ and $N_{r}(w)=\{4, \ldots, 17\}$. $\Delta_{g}=5$ and (3) imply $d_{g}(1)=d_{g}(2)=d_{g}(3)=5$ and only red edges between the vertices 1,2 and 3. We may assume that $N_{g}(i)=\{w, 4 i, 4 i+1,4 i+1,4 i+3\}$ for $1 \leq i \leq 3$. At most ten common red neighbors of 16 and 17 and no green C_{4} imply $g\left(16, N_{g}(i)\right)=g\left(17, N_{g}(i)\right)=1$ for $1 \leq i \leq 3$, and we can assume that $\{4,8,12\} \subset N_{g}(16)$ and $\{7,11,15\} \subset N_{g}(17)$. Consider $y \in\{5,6,9,10,13,14\}$. A green C_{4} would occur if $d_{g}(y)>4$, and eleven common red neighbors of y and w if $d_{g}(y)<4$. It remains that $d_{g}(y)=4$. This implies red edges $\{5,6\} .\{9,10\}$ and $\{13,14\}$, and, without loss of generality, green edges $\{2 j, 2 j+1\}$ for $2 \leq j \leq 7$. It can be shown that $d_{g}(z)=5$ for every $z \in\{4,7,8,11,12,15\}$. Since every vertex v with $d_{g}(v)=5=\Delta_{g}$ must have a green neighbor u with $d_{g}(u)=3$, we obtain that $d_{g}(16)=d_{g}(17)=3$, and, as for the vertex w, only red edges between the vertices in $N_{g}(x)$ for $x=16$ and $x=17$. The interdiction of a green C_{4} yields red edges $\{4,13\},\{8,13\}$, and $\{15,6\}$. Then $d_{g}(4)=d_{g}(8)=5$ implies that, without loss of generality, the edges $\{4,14\}$ and $\{8,15\}$ are green, which forces $\{15,4\}$ to be red. But then all edges from 15 to 4,6 and 7 are red and $d_{g}(15)=5$ implies that $\{15,5\}$ is green, yielding a green C_{4}.

The remaining case is $\Delta_{g}=4$. Then $\delta_{g}<4$ is impossible as otherwise again a vertex w with $d_{g}(w)=\delta_{g}$ and one of its green neighbors (or any other vertex if $\delta_{g}=0$) would have at least eleven common red neighbors. We obtain that the green subgraph must be a graph of order 18 regular of degree 4 . Moreover, no green triangle
can occur, and it is not difficult to see that no such graph exists. Thus, the proof of Lemma 4 is complete.

Fig.1. The green edges of a $\left(C_{4}, K_{2,8}\right)$-coloring of K_{14}.

The following table summarizes the preceding results for $r\left(C_{4}, K_{2, n}\right)$ up to $n=21$.

n	2	3	4	5	6	7	8	9	10	11	12	13
$r\left(C_{4}, K_{2, n}\right)$	6	8	9	11	12	14	15	16	17	18	20	22

n	14	15	16	17	18	19	20	21
$r\left(C_{4}, K_{2, n}\right)$	$22 / 23$	$22 / 24$	25	26	$27 / 28$	$28 / 29$	30	32

Tab.1. Values and bounds for $r\left(C_{4}, K_{2, n}\right)$ up to $n=21$.

Theorem 3. Given n, let $q=\lceil\sqrt{n}\rceil$ and $s=n-(q-1)^{2}$.
(i) If $n \geq 3$ then

$$
r\left(C_{4}, K_{3, n}\right) \leq \begin{cases}n+3\lceil\sqrt{n}\rceil ; & 1 \leq s \leq q-1 \tag{17}\\ n+3\lceil\sqrt{n}\rceil+2 ; & q \leq s \leq 2 q-1 .\end{cases}
$$

Equality in (17) is attained for $s=1$ if q is a prime power.
(ii) If $n \geq 4$ then

$$
\begin{equation*}
r\left(C_{4}, K_{4, n}\right) \leq n+4\lceil\sqrt{n}\rceil+3 . \tag{18}
\end{equation*}
$$

Furthermore, if $q+1$ is a prime power and $s=q+1$, then

$$
\begin{equation*}
r\left(C_{4}, K_{4, n}\right) \geq n+4\lceil\sqrt{n}\rceil+2 . \tag{19}
\end{equation*}
$$

Proof.(i) First suppose that we have a $\left(C_{4}, K_{3, n}\right)$-coloring of $K_{n+3 q}$ in case of $1 \leq$ $s \leq q-1$ which implies $q \geq 3$ because of $n \geq 3$. Then (4) yields $q+1 \leq \Delta_{g} \leq q+4$ for $q=3, s=2$ and $q+1 \leq \Delta_{g} \leq q+3$ otherwise. But $q+1 \leq d_{g}(v) \leq q+3$ is impossible by (5) and the remaining case is $q=3, s=2$ (i.e. $n=6$) and $\Delta_{g}=q+4=7$. Let v be a vertex with $d_{g}(v)=7$. Then there must be three vertices u_{1}, u_{2}, u_{3} in $N_{g}(v)$ with three common red neighbors u_{4}, u_{5}, u_{6} in $N_{g}(v)$. By (1), $g\left(\left\{u_{1}, u_{2}, u_{3}\right\}, N_{r}(v)\right) \leq 3$ or $g\left(\left\{u_{4}, u_{5}, u_{6}\right\}, N_{r}(v)\right) \leq 3$. In both cases a red $K_{3,7}$ occurs, a contradiction, and the first case of (17) is proved.

From (4) and (5) it can be deduced that a $\left(C_{4}, K_{3, n}\right)$-coloring of $K_{n+3 q+2}$ cannot exist for $s \leq 2 q-1$ and the second case of (17) follows.

Now let $s=1$, i.e. $n=q^{2}-2 q+2$, and let q be a prime power. Consider a 2 -coloring of $K_{q^{2}+q+1}$ where the green subgraph is isomorphic to $E R(q)$. Then no green C_{4} occurs and, by (6), any three vertices have at most $q^{2}-2 q+1=n-1$ common red neighbors. Thus, $r\left(C_{4}, K_{3, n}\right) \geq q^{2}+q+2=n+3 q$ and equality in (17) follows.
(ii) Suppose now that we have a ($C_{4}, K_{4, n}$)-coloring of $K_{n+4 q+3}$. From (4) it can be deduced that $q+2 \leq \Delta_{g} \leq q+5$. By (5), $q+3 \leq \Delta_{g} \leq q+5$ is impossible and $\Delta_{g}=q+2$ is only possible if $s=2 q-1$, i.e., $n=q^{2}$. The remaining case is $\Delta_{g}=q+2$ and $n=q^{2}$. Let v be a vertex with $d_{g}(v)=q+2, N_{g}(v)=\left\{u_{1}, \ldots, u_{q+2}\right\}$ and $g_{i}=g\left(u_{i}, N_{r}(v)\right)$. We may assume that $g_{1} \leq g_{2} \leq \ldots \leq g_{q+2}$. If $g_{3} \leq q$, the vertices v, u_{1}, u_{2} and u_{3} have at least n common red neighbors in $N_{r}(v)$, a contradiction. Taking into account that $\Delta_{g}=q+2$, the remaining case is $g_{3}=\ldots=g_{q+2}=q+1$. But then, if a green C_{4} is avoided, the vertices v, u_{1}, u_{2} and one common red neighbor of u_{3}, \ldots, u_{q+2} in $N_{r}(v)$ have n common red neighbors among the green neighbors of the vertices u_{3}, \ldots, u_{q+2} in $N_{r}(v)$. Thus, there is no ($C_{4}, K_{4, n}$)-coloring of $K_{n+4 q+3}$ and inequality (18) is proved.

Now let $s=q+1$, i.e. $n=q^{2}-q+2$, and let $q+1$ be a prime power. Then a 2-coloring of $K_{n+4 q+1}$ where the green subgraph is isomorphic to $E R(q+1)$ is a $\left(C_{4}, K_{4, n}\right)$-coloring by (6) and inequality (19) follows.

In addition to Theorem 3 we can show that equality in (19) holds for $n=4$. It seems to be difficult to decide whether equality holds for all n such that $q+1$ is a prime power and $s=q+1$. The next theorem shows that bounds similar to the preceding ones can be obtained for $r\left(C_{4}, K_{m, n}\right)$ for all m if n is sufficiently large (depending on $m)$.

Theorem 4. Let $2 \leq m \leq n$. Then

$$
\begin{equation*}
r\left(C_{4}, K_{m, n}\right) \leq n+\left(m^{2}+3\right) / 2+m \sqrt{n+\left(m^{2}+2+1 / m^{2}\right) / 4-1 / m} . \tag{20}
\end{equation*}
$$

Moreover, if $q=(m-1) / 2+\sqrt{n-\left(m^{2}-4 m+7\right) / 4}$ is a prime power (i.e. $n=$ $\left.q^{2}-(m-1) q+\binom{m-1}{2}+1\right)$ then

$$
\begin{equation*}
r\left(C_{4}, K_{m, n}\right) \geq n+m+m \sqrt{n-\left(m^{2}-4 m+7\right) / 4} \tag{21}
\end{equation*}
$$

Proof. Inequality (20) is an immediate consequence of (4). Now let q be a prime power. Note that $q^{2}+q+1=n+m-1+m \sqrt{n-\left(m^{2}-4 m+7\right) / 4}$. Consider a 2 -coloring of $K_{q^{2}+q+1}$ with the green subgraph isomorphic to $E R(q)$. Then no green C_{4} occurs and, by Lemma 3, no red $K_{m, n}$. This yields inequality (21) and the proof of Theorem 4 is complete.

References

[1] F. R. K. Chung and R. L. Graham, On multicolor Ramsey numbers for complete bipartite graphs, J. Combinatorial Theory (B) 18 (1975), 164-169.
[2] P. Erdös and A. Rényi, On a problem in the theory of graphs (in Hungarian), Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 623-641.
[3] G. Exoo, H. Harborth and I. Mengersen, On Ramsey numbers of $K_{2, n}$, in Graph Theory, Combinatorics, Algorithms and Applications (Y. Alavi et al., eds.), SIAM, Philadelphia, 1991, 207-211.
[4] F. Harary, Recent results in generalized Ramsey theory for graphs, in Graph Theory and Applications (Y. Alavi et al., eds.), Springer, Berlin, 1972, 125-138.
[5] H. Harborth and I. Mengersen, The Ramsey number of $K_{3,3}$, in Combinatorics, Graph Theory and Applications, Vol. 2, (Y. Alavi et al., eds.) Wiley, 1991, 639 - 644.
[6] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. of Res. Develop. 4 (1960), 497-504.
[7] 'T. D. Parsons, Ramsey graphs and block designs, I, Trans. Amer. Math. Soc. 209 (1975), 33-44.
[8] T. D. Parsons, Ramsey graphs and block designs, J. Combinatorial Theory (A) 20 (1976), 12-19.
[9] T. D. Parsons, Graphs from projective planes, Aequationes Math. 14 (1976), 167-189.
[10] S. Stevens, Ramsey numbers for stars versus complete multipartite graphs, Congressus Numerantium 73 (1990), 63-71.

