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. Let G be a graph and S a subset of G not ,",VLLCU,lJ.HHF-, 

element of The of G with respect to 
is a directed graph with vertex set G and for x and y in there is an arc 
from x to y if and only if x-1y E S. In this paper, we discuss the 
between the isomorphisms of D( G, S) and the automorphisms of G. The results 

to studying the and automorphisms of hierarchical 
digraphs of abelian groups. 

§1 Introduction 

Let G be a finite group and S a subset of G with 1 ¢:. S. The Cayley digraph 
D D( G, S) of G with respect to S is defined by 

V(D) G 
E(D) = {(g,gs) : g EsE S} 

For any a E the left multiplication Ta • X 1-+ ax is an automorphism 
of any Cayley digraph of G, and all these left multiplications constitute the 
left regular representation group L( G) of which is a subgroup of the auto­
morphism group of any Cayley digraph of G. It is well known that L( G) acts 
regularly on G. Thus Cayley digraphs are vertex transitive. 

Throughout, G is a finite group and I the identity permutation on G, and 
1- denotes the mapping: x----+ x-I (x E G). Set 

ST(G, S) = {o- E Aut[D(G, S)] : 0-(1) I} 
Aut(G, S) = {o- E AutG : o-(S) = S}. 

Then it routine to check that Aut( G, S) ~ ST( G, S). What we are concerned 
about is when Aut( G, S) = ST( G, In section 2, we will a necessary and 
sufficient condition for Aut(G, S) ST(G, S). 

Let G be a group and S ~ G \ {I}. For any a E Aut(G), set T a(S). 
0: 

Then it is routine to check that D( G, ~ D( G, T). What about the converse? 
Formally stated, if D(G,S) ~ D(G,T), when does thereexist some a E Aut(G) 
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such that T = o:(S)? Adam conjectured that this is true for Cayley digraphs 
of the finite cyclic groups, and Elspas and Turner disproved the conjecture in 
[6]. Inspired by these, many researchers devoted time to studying which groups 
have this property(see [3], [7] and [12]), or which subsets of a given group have 
this property(see [5J and [13]). In section 2, we will a sufficient condition. 

A set S of generators of a group G is said to be hierarchical if there exists 
an ordering of the elements in say S = {51, 52, ", Sk} such that, for any 
iI, 2, ... , k 1, the group generated by {51, 52, ... 1 Si} is a proper subgroup 
of the group generated by {Sl' ,Si+l}' The Cayley digraphs of a group 
with respect to hierarchical subsets of G are called hierarchical Cay-
ley digraphs. 

The of hierarchical Cayley digraphs is important since many intercon-
nection networks are modeled hierarchical Cayley digraphs. For the results 
on hierarchical Cayley digraphs, see [2], [8] and [9] for references. In section 3, 
we the isomorphisms and automorphisms of hierarchical digraphs 
of abelian groups. The results obtained here partially those of [10] 
and [11]. 

§2 .. Main results 

Let G be a finite group. Recall that { T a : a E the left regular 
representation group of G, where Ta is the left multiplication of G determined 
by a. Clearly, TaTb Tab, T1 = I and Ta-l = T;l. 

Theorem 1. ST(G, S) = Aut(G, if and only if ST(G, S) is contained 
in the normalizer subgroup of the left regular representation group of G in 
Aut[D(G, 

Proof: Set A Aut[D(G, S)]. The proof of one way follows from the 
simple observation that O'TgCT- 1 = Tu(g) for all g E G and all CT E ST(G,S). 

For the converse, suppose that ST( G, S) ~ N A (L( G)), and we will prove 
that ST(G, S) = Aut(G, S). It suffices to show that ST(G, S) ~ Aut(G, S) 
since Aut(G,S) ~ ST(G,S) holds for any G and S. Let CT E ST(G,S) and 
g E G. Since ST(G, ~ NA(L(G)), we may suppose that OTgO-1 Tg', where 

g' E G. Then g' = Tg' (1) = CTTgCT- 1 (1) = CT(g). Thus CTTgCT- 1 Tu(g) for 
any g E G. Now, for any a and b in G, we have that CTTabCT-1 Tu(ab)' On 
the other hand, CTTabCT-1 = CTTaTbCT-1 CTTaCT-lcrTbCT-l = Tu(a)Tu(b) Tu(a)u(b)' 
Therefore, Tu(ab) = Tu(a)u(b), and so CT(ab) = CT(a)CT(b). Thus CT E Aut(G). Since 
(I(l) = 1, we have that CT(S) = S, so (I E Aut(G, S). This completes the proof. 

Theorem 2. If ST(G, S) is the identity group, then for any isomorphism 
D(G, S) ~ D(G, T) of Cayley digraphs of G, there exists some a E A.ut(G) such 
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that T a(S) . 

..... ",rv,.-\'''''''' that D( G, S) D( G, digraphs are ver-
tex we may assume that 0"(1) to prove that 0" E 
Aut(G). For any a E O"-lT(crCa»~lo"Ta an of D(G, S). 
On the other hand, 100Ta(1) L Thus O"-lTCcr(a»-lO"Ta E ST(G, , 
and a-I laTa is,O"Ta Therefore,O"(ab) O"(a)O"(b) 

for any a so 0" E Aut(G). On the other since 0"(1) 1, we 
have T. This our proof. 

Babai and Frankl [13] 1 in the automor-
phism groups of almost all for nilpotent groups with odd order 
is the group. This that Theorem 2 is for 'almost all' 

of nilpotent groups of odd order. 

can not be in the sense that there exists a Cayley 
such that the stabilizer is a group of order 

2, but it does not satisfies Adam's conjecture. 

1. {I, 2, 5} ) D( Zs, 2, 7}), but there is no automor-
phism mapping 5} into {3, 7} [2]). On the other hand, it is 
routine to check that ST(Za {1,2, {I, ¢} (here, the identity element is 0), 
where ¢ defined by 

X 1--+ 5x (x E 

We note that, in the above example, ¢ is 
Theorem 3 tells us that this is a 

automorphism of Zs. The fol­
of a general result. 

3. If ST(G, = {I,¢}, then ¢ E Aut(G). 

For any a E G, consider the mapping Ti<~)¢Ta. Clearly, 

Tic~)¢Ta(1) L Thus Tic~)¢Ta E ST(G, S). If Ti<~) I, then ¢ T¢(a)T;:l 

and so 1 ¢(1) T¢(a)T;:l(l) = ¢(a)a-
1

. Now I T1 T¢(a)a-1 = T4>Ca) Ta-l = 
T¢(a)T;:l ¢, a contradiction. Thus Tic~)¢Ta ¢, and so ¢(ab) ¢(a)¢(b). 

we have that ¢ E Aut( G). This the proof. 

If the isomorphism ¢ in Theorem 3 is I-, then, I- E Aut( G), G must 
be an abelian group. In this case, we have the following: 

4: If ST( G, S)· = {I, I-} and G is abelian, then for any iso-
morphism D(G, ~ D(G, T) of Cayley digraphs of G, there exists 0" E Aut(G) 
sueD. that a( S) = T. 

Proof. Let 0" be any isomorphism from D(G, to D(G, T) with 0"(1) = l. 
Then for any a E G, we know O"-lT;C~)o"Ta E ST(G, S), so O"-lT;C~)o"Ta = I or 

I-. Classify each element a E G as of type + or type - according to whether 
a-lT;(~)o"Ta = I or O"-lT;C~)aTa = I-, and note that the identity element of G 
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is of type +. We now proceed to show that every element of G is of type +, by 
contradiction. 

Assume G contains an element b of type Then OTb T u (b)o1- and so 
o(b~) 0-(b)0-(x- 1 ) for every x E G. Taking x b- 1 gives 1 0-(1) a(b)2, 
therefore 0-( b) has order 2, for every element b of type 

On the other hand, if a is any element of G of type +, then aTa T u(a)a 
and so a( ax ) o( a )o( x) for every x E G. In particular, taking x = a-I gives 
1 = o( a)a( a -1) and therefore a( a )-1 = a( a-I). But instead if x is taken as 
any element b of type then a( ab) a( a )a( b) while also a( ab) a( ba) = 
a(b)a(a- 1 ), and thus a(a)-l a(a- 1 ) = a(a). Hence a(a) has order lor 2, for 
every element a of type +. 

It follows that a(g) has order 1 or 2 for every g E G, and therefore every 
element of G has order 1 or 2. In this case however, 1- I, so we have no 
counter-example! 

Thus a-I T;(~)OTa I for all a G, and in particular, o( ax) a( a )o( x) for 

all a, x E G, showing 0 E Aut( G). 

§3 .. Isomorphisms of hierarchical Cayley digraphs 
We first establish a lemma. 

Lemma 1. Suppose that D(G, S) strongly connected and D(G, S) ~ 
D(G,T). If for every isomorphism a from D(G,S) to D(G,T) with 0(1) 1, 
we have o(ab) = o(a)o(b) for all a and b in S, then 0 E Aut(G) for all such a. 

Proof: For any a, band g in G, we have 

a(gab) 
= O[Tg( ab)] 
= Tu(g)T;(~)OTg( ab). 

Since T;(~)OTg is an isomorphism from D(G, S) to D(G, T) satisfying T;(~)oTg(l) = 
1, we have 

a(gab) 
= TCT(g)T;(~)aTg(a)T;(~)OTg(b) 
= o(ga)[o(g)]-!a(gb). 

Since D(G, S) is strongly connected, any element of G can be expressed in the 
form IT;:! ai (ai E S). By applying induction on m and the above equality we 
can deduce that O(IT;:1 ai) = IT;:! a(ai). Thus a E Aut(G). 
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In the following, we always suppose that G is a finite abelian group and 
S = , . . . } is a hierarchical subset of that: 

)c G. 

Let D D(G, that U a subset of G. 

{ v G \ U .:Ju Us. t. v) E(D)}. 

5. Let G be an abelian "', sd be 
hierarchical (l""".""' .... ""hn<1' subset of G such that j. Then, for 

any 

Let m 
know m is 
m=] =p 

with 1;( 1) 1) we have 1; 

Lemma 1 to prove the 

. For distinct and j (1 J 

q 

we make 

n 

"',8m -I), we 
< j), either 

vertex a 
vertex of at most three vertices of S. 

is the common out-adjacency 

In of Observation we know that if a SiSp = SjSq and 
i. Thus is the common out _~I~V~44'JJ vertex of at 

u.o'r-r,,('oc Si,5 p and 5j. 

that 1;( Si )1;( 5 j) for S induction 
sr is the out-adjacency of only one vertex in S. 

suppose s1 E N+(sp) with p > 1, then there exists some Sq in S 
. By our condition, we have and if p < q, then 

(Sl' 8 2, ... ,Sq-d = ,52, ... ,Sq), a contradiction). Hence 1;( sD must be the 
vertex of only one vertex 1;(sI) in T. Thus 1;(si) = [1;(sdJ2. 

Assume that the conclusion is already established for all and S j in S with 
::; l. Now we consider the case that i+j = l+1. Two cases are distinguished. 

1.i=j. 
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If s; is the out-adjacency vertex of only one vertex Si in S, then, similarly 
to the above, we have that ¢(s;) [¢(Si)]2. Otherwise, by the condition and 
Observation 2, we know that s7 must be the common vertex of 
exactly three vertices, ,Si2 in S. Clearly = Si 1 and max{ iI, i 2 } < 

must be the common out-adjacency vertex of exactly three 
) and ) in T. Assume that 

¢(s;) ¢(Sd¢(Sjl) ¢(siJ¢(sh) ). 

Then {i,i 1 ,i2 } {jl,j2,h}. By the induction hypothesis, ¢(sn 
= ¢(Si 1 )¢(Si 2 ), so 12 iz and h = iI, and therefore h = i, 
= [¢(Si)]2. 

Case 2. i-#j. 

Assume, without loss of generality that i < j. If is the only common out-
adjacency vertex of Si and Sj) then ¢(SiSJ') is the common out-adjacency 
vertex of ¢(Si) and ¢(Sj). Thus ¢(SiSj) ¢(Si)¢(Sj). Otherwise, and Sj have 
another common out-adjacency vertex, say u. Then, Observation 1, we have 
that N+(Si)nN+(sj) {SiSj,U}, and so ¢(Si)¢(Sj) N+(¢(Si))nN+(¢(sj)) = 
{ ¢( SiS 'j ), ¢( u ) }. Since u is a common au t- adj acency vertex of and S j, we may 
suppose that u = SiSp = S jSq. Since S is a hierarchical subset of 
G and i j, we have that q j, and so i -# p and p < j. the induction 
hypothesis, we have that ¢(u) ¢(Si)¢(Sp). Since ¢(Sj)¢(sp) -# ¢(Si)¢(Sj), we 
deduce that ¢(SiSj) ¢(sd¢(Sj)' 

Thus ¢(SiSj) ¢(Si)¢(Sj) for any Si and Sj in S. lemma 1, we are done. 

The following example shows that if the condition that s1 -# s1 is not avail­
able, then the conclusion in Theorem 5 does not necessarily hold. 

Example 2. Letk 2beanintegerandn 2k. LetG ZnXZ2. 
Then S = {(2k-l, 1), (0,1), (1, O)} is a hierarchical generating subset of G. Let 
T = {(2k-2,1),(-2k-2,1),(1,0)}. Then D(G,S) ~ D(G,T). In fact, G = 
{(1, 0)) U (((1,0)) + (2 k

-
1

, 1)) ((1,0)) U (((1,0)) + (2 k
-

2
, 1)) and the mapping 

i(l, 0) + j(2k
-

1
, 1) r-7 i(l, 0) + j(2 k

-
2

, 1) 

is an isomorphism from D(G, S) to D(G, T). But there is no automorphism of 
G mapping S to T since T is not a hierarchical generating subset of G. 

We give below some corollaries of Theorem 5. 

Corollary 1. Under the conditions of Theorem 1, we have that 

Aut[D(G, S)] = LTgAut(G, S). 
gEG 

Corollary 2. If G is an abelian group of odd order and S a hierarchical 
generating subset of G, then Aut[D(G, S)] = L:gEG TgAut(G, S). 
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Corollary 3. Let S {Sl' 82, . ,sd be a hierarchical o·p ..... .,r·!>r·'n subset 
of the group If i= 8; whenever i i= j, then Aut[D(Znl 

By 1, we have that Aut[D(Znl 
On the other hand, for any CJ E Aut(Znl S), there exists some 
that x AX since CJ( S) we have AS 
there exists some z k) such that mod(n), 

mod(n). If 
then S is not a 

hierarchical subset of Zn, a contradiction. Thus 
for any i (1 k). Since S is subset of 

mod(n) 
we have that 

gCd(81 1 Xl,X2,'" ,Xk such 
Xi8i mod(n). Thus 

It i= b2 

g;cI1Cra1:,lug subset of a finite 
a and b are two distinct elements in a 

[10]). We thus have the 

4. If is a minimal IT",~)pr",j-,nO' subset of the cyclic group 
S)] 

Kn()wledlgemE~nt. The authors wish to D'V'Y,rD'C'(O their 
nrf-'~T1,r1'Tl,O' a version of 4 and 

theorem. 

gratitude to the 
nice proof of this 

[1] problem J.Comb.Theory, 2(1967), 393. 

[2] S.B.Akers and On group graphs and their fault tolerance, 
IEEE. Trans. Comput., 36(1987) 885-888. 

lc:r,rY1.",rr,h,crn of circulant and digraphs, 
254(1979),97--108. 

[4] L.Babai and C.D.Godsil, Automorphism groups of almost all Cayley 
graphs, J. Combin., 3(1982), 9-15 

[5] C.Delorme, O.Favaron and M.Maheo, Isomorphism of Cayley multigraphs 
of 4 finite abelian groups, European J .Combin., 13(1992), 5-7. 

[6J and with circulant matrices, 
J.Comb.Theory, 9(1970),297-307. 

C.D.Godsil, On Cayley graph isomorphism, Ars Combinatoria, 15(1983), 
231-246. 

[8] C.D.Godsil, Connectivity of minimal Cayley graphs, Arch. Math., 37(1981), 
473-476. 

99 



[9] Y.O.Hamidoune, A.S.Llado and O.Serra, The connectivity of hierarchical 
Cayley digraphs, Discrete Applied Math., 37/38 (1992), 275-280. 

[10] Qiongxiang Huang and Jixiang Meng, Isomorphisms and automorphism 
groups of circulant graphs and digraphs, submitted. 

[11] Jixiang Meng and Qiongxiang Huang, Isomorphisms of circulant digraphs, 
to appear. 

[12] P.P.PaIfy, Isomorphism problem for relational structures with a cyclic au­
tomorphism, European. J. Combin., 8(1987), 35-43. 

[13] L.Sun, Isomorphisms of circulant graphs, Chinese Annals of Mathematics, 
9A:5(1988), 567-574. 

(Received 6/10/94; revised 17/5/95) 

100 


