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Abstract

Tni this paper, we introduce the notions of Latin and semi-Latin factorizations
of graphs and their support sizes. We essentially determine the set support
cizes of Latin and semi-Latin factorizations of complete graphs. Utilizing
these results we determine the set @SS(8m, ) of support sizes of quadruple
systems of order 8m and index A form > 6 with at most 5 possible omissions
for each m = 0 (mod 3).

1 Introduction

Let X be a finite set and k be a positive integer. We denote by Pi(X) the set of all k-subsets
of X. Suppose that 3; and By are two collections of the elements of P(X) and m is a positive
integer. The collection of the elements of B; and Bj will be denoted by By + Bz and m copies
of By is denoted by mB;. The set of distinct elements of By is called the support of By and
is denoted by Bf. The number b* = |Bf| is called the support size of By. Let X, and X,
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be two disjoint sets, and let k; and ks be two positive integers. Also, let By and B, be two
collections of the elements of Py, (X1) and P, (X3), respectively. Then, we will adopt the
following notation:

Bi#B; = {AUB|A€ By &B € B,}.

Clearly Bi * By is a collection of the elements of Py, 4k, (X1 U X2).

A quadruple system Q.S(v,A) of order v and index A is an ordered pair D = (X, B) in which
X is a v-set and B is a collection of the elements of Py(X) (called quadruples or blocks ) such
that every A € P3(X) appears in exactly A (not necessarily distinct) blocks. A QS (v, A) with
no repeated blocks is called simple. A QS(v,1) is called a Steiner quadruple system of order
v and will be denoted by 5Q §(v).

A M-factor in a multigraph G is a submultigraph F which is spanning and A-regular. A -
factorization of a multigraph G is a partition of edges of G into A-factors. For a simple graph G,
the multigraph AG is obtained by repeating each edge A times. Let G be a 1-factorable graph
of degree d. An mA-factorization T' = {Fy,..., F3} of AG is called completely decomposable if
there exist A one-factorizations of G, e.g. T; = {Ff,..,,Fé}, 1 €7 < A, such that for every
1 < j £ d, F; is the union of Fj’s (1 <7 < A). The support size of a A-factor is the number
of distinct- edges in the factor, and the support size of a A-factorization is the sum of the
support sizes of its factors. We denote by C.5(G, A) the set of the support sizes of completely
decomposable A-factorizations of AG. For simplicity, CS(Kn, ), and CS(K,n, ) will be
denoted by CS(n,A), and C(n, ), respectively. These sets have been completely determined

in [1,3] and the main results are as follows.
e Given n and A\, n > 5,

Cln\) = {n?%,...,min{n, A\}.n?}\ 4, if A#n,
{n?,...,min{n,A}.n?}\ B, otherwise,
where A = {n? +i]i = 1,2,3,5} and B = {n? +i,n® —i|i = 1,2,3,5}.
e For given n and A, n > 4,

{m,....,M}\ A, ifXx#2n-1,

CS(2n,)) =
(2n,2) {{m,...,M}\B, otherwise,

where m = n(2n — 1), M = min{2n - 1,A\}m, A = {m+i|i = 1,2,3,5}, B = {m +
iM —ili=1,2,3,5}.
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Let G be a d-regular graph on 2n vertices which is 1-factorable, and let (G, A) be the set
of all A-factors of AG. A Latin A-factorization of AG is a d X d matrix F = (F;;) with entries
in ¥(G,A) such that forevery 1 <i<d, Fi={F;|1<5< dyand Iy = {F;; |1 €5 < d}
are two A-factorizations of AG. The support size of F is the sum of the support sizes of its
entries. A Latin M-factorization of AG is called completely decomposable if there exists A Latin
1-factorizations of G, e.g. F! = (F,-’j), 1 €I < A, such that Fj; = Ef\gl F}j, for 1 < 1,5 <d.
The set of the support sizes of completely decomposable Latin A-factorization of AG will be
denoted by LF(G,)).

Let d be an odd integer and denote d¥2 = { {i,j} | 1 < i,j £ d 4+ 1}. A semi-Latin
Mfactorization of AG is a function F : dZ2 — (G, ), {i,7} — Fyi ;) such that for every
1<i<d {Fr|ieT e dt2}is a Afactorization of AG. For simplicity, Fy;j;; will be
denoted by Fi;. The support size of F is the sum of the support sizes of Fj;’s. The set of the
support sizes of semi-Latin A-factorization of AG will be denoted by SLF(G,)). For the sake
of simplicity, we denote SLF(K3n, ) by SLF(2n,A).

A (p,))-pattern is a p x p matrix with entries in nonnegative integers and with constant
line sum A. A (p,1)-pattern is called a permutation matrix. It is well known that every
(p,A)-pattern is a sum of Mnot necessarily distinct) permutation matrices. If {ry,...,r}
is any reordering of {1,...,n}, then the permutation matrix P = (é,;) will be denoted by
(r1y...,7a). Support size of a (p,\)-pattern is the number of its nonzero entries. Let Sy(p, A)
denote the set of possible support sizes for (p, A)-patterns. In [3] it is proved that if p > 3,
then
{p,-..,min{2p,p"}}\{p+1} i A#p,

{p,....0%}\ {p+1,p° -1} otherwise.

In this paper we intend to determine the set Q5§(v, A) of support sizes of quadruple systems

Sp(p,A) = {

of order v and index ). First, we mention some well known results. Colbourn and Hartman [2],
and Hartman and Yehudai[4] have completely determined the set J(v) of possible intersections
of two Steiner quadruple systems for v # 14,26. In this way they have essentially determined
the set QSS(v,2) for v = 2 0r 4 (mod 6) with v # 14,26. Also in [2], the set of possible
intersections for a special class of 3-wise balanced designs is completely determined, and utiliz-
ing this result they obtained some partial result concerning QSS(v,3)forv=0 (mod 6). In
this paper we essentially determine LF(K2n,), LF(Knn,A) and SLF(K4n,A) for n > 12 and
then utilizing these results we essentially determine Q55(v, A)forv =0 (mod 8) with v > 48.
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2 Latin Factorizations

In this section, we develop some recursive methods to construct Latin factorizations with
different support sizes, and then utilizing them we completely determine LS (#2n, A) and
LF(K,n,A) for n > 12.

2.1. Recursive Constructions

Throughout this section, we suppose that G is a simple m-regular graph on 2n vertices
which is 1-factorable. Let Gy be a subgraph of G such that both G and Gy = G \ G are
1-factorable, and deg(G1) < m/2. Denote d = deg(G1), and k = deg(Gs), so m = d + k,
and d < k. Our first task is to show that any Latin 1-factorization of Gy can be embedded
in a Latin 1-factorization of G. Let H = (H;) be any Latin 1-factorization of Gy, and let
A = (a;;) be any Latin square of order m such that 1 < a;; < d,for 1 < 4,5 <d (since 2d < m
this is possible). Since both of Gy and Gy are 1-factorable, we can form a I-factorization
F ={FR,...,Fa} of G such that {Fy,..., Fy} is a 1-factorization of Gy and {Fatry oy Fn}

is a 1-factorization of GG3. Define
Hija if 1 <45 < d>
Li; =
Fa,.j, otherwise.
The proof of the following lemma is straightforward and so it is omitted.
Lemma 2.1 £ = (Lji;) is a Latin 1-factorization of G. O

Let o be any permutation on {1,...,d} and let 1 be any permutation on {d+1,... ,m}.

Define ‘
L, if 1<i<d and 1<j5<d,

Kij=14 Low;, if 1<i<d and d+1<j<m,
Ly, if d41<i<m and 1<
The proof of the following lemma is straightforward.

Lemma 2.2 K = (Kj;) is a Latin 1-factorization of G. O

Lemma 2.3 Let A > 2. If r € CLF(Gy, ), s € Sp(d,}), 2 < p < min{d,A}, and ¢ €
{0,...,k}\ {1,k = 1}, then
(i) b= 7+ skn+ (kp — ¢)mn € CLF(G,)).
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(ii) b+ tnm? € CLF(G, A +1t), fort =1,...,k.
Proof. Let B = (b;;) be any d x k Latin rectangle whose first two rows are

1 ... ¢g—1 ¢ g+1 ... k-1 k
2 ... q 1 ¢g+2 ... k g+1
if ¢ ¢ {0,k} and
1 ... k=1 k%
2 ... k 1

otherwise. Define A permutation matrices Q*,... ,Q* by

(1,...,k = 1,k), if =0,
Q=< (2,...,k1), if g =k,
2., g+ 1,... . k=1Lk), ifge{2,... k-2}

ol = (bpyyeoosbix), if2<1<p,
(bph--'abpk)q ifp<i<A

Then @ = T4, Q' is a (k, A)-pattern with support size kp — ¢. Let C = (cij) be any Latin
square of order d and define a d x m matrix D = (di;) by

e =

e M

{cej, for1<i<d, .,

b;(jud) +d, ford<j<m,

Clearly D is a d x m Latin rectangle, and so it can be completed in a Latin square A = (aij)
of order m. Let Pl,..., P> be permutation matrices of order d such that P = A, P has
exactly s nonzero entries. Let M = (M;;) be a completely decomposable Latin A-factorization
with support size r of AGy. Since M is completely decomposable, we can find A Latin 1-
factorization of Gy, e.g. My = (M};), I = 1,...,, such that M;; = Yoy MY, for 1 <d,j < d.
Define L;;’s as in Lemma 2.1. For every 1 <1 < A, denote P = (pf-j) and Q' = (q‘:]) Also
denote P = (p;;) and Q = (gi;). For every 1 <1< A, define:

M} if 1<i<d and 1<7j<d,
Nj = zﬂp{v vis if 1<i<d and d+1<j<d,
2,,=, q(i—d)uL(U'{"d)j’ if d+1<i<m and 1<j7<m
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By Lemma 2.2, forevery 1 <1< A\ N = (ij) is a Latin 1-factorization of G. Thus if we put
A
Nij=3 Nj,1<ij<m,
=1

then A = (Ny;) is a completely decomposable Latin A-factorization of AG. To prove (i), we
must show that the support size of A is b. For every 1 < i < k, we denote by r; the number
of nonzero entries of ith row of @, and for every 1 < i < d, we denote by s; the number of
nonzero entries of ith row of P. Clearly, we have kp — ¢ = Z:‘xl ri,and 8 = Z?:z si. Now we
compute the support size of each of N;’s.

Ifl1<i<d andd+1 < j < m, then the support of Ni; consists of s; edge-disjoint
1-factors of GG, and consequently the support size of IV; is equal to ns;.

fd+1<i<m and 1 < j < m, then the support of N;; consist of r;_y edge-disjoint

1-factors of GG, and consequently the support size of N;; is equal to nr_4.

The above considerations show that the support size of A is equal to

d m m m
r+Z Z ns; + E Zt;u4n=r+5kn+(kp~q)mn=b.
i=1 je=ddd t=d41 7=1

This proves (i).

To prove (ii), define m permutations oy,...,0,, by
oi(J) = ay, for 1<4,7 < m.

It is clear that for every 1 <1 < m, (La(;) is a Latin 1-factorization of G. Let

d+t
Ri; = Ni; + f_: Ly, for 14,5 <m.
I=d+1

Then R = (Ry;) is a completely decomposable (A + t)-factorization of (A + #)G. To complete
the proof of (ii), we have to show that the support size of R is equal to b + tnm?, and to do
this it suffices to show that for every ¢ and j (1 < ¢,7 < m) Ny; and NL= Tl Ly ()5 are
edge-disjoint. We consider the followoing three cases:

Case (i) 1 € i,j < d. In this case, we have N, = 70, Lj; = T, Fy = Gy On the
other hand, Ny; = M;; is a A-factor of AG;. Therefore N;; and N;;’ are edge-disjoint.

Case (i) 1<i<dandd+1< j<m. Forevery 1 <1< ), we have Nj; = 4, PLLy;.
Thus N}j is a subgraph of Zf,:l Ly; = }:f=1 L,,(i);- Hence, for every 1 <1 < A, ij and Ny’
are edge-disjoint. Consequently N;; = Zi\zl N}j and N;;' are edge-disjoint.
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Case (i) d+1 < i <mand 1 < j < m Foreveryl <1 < A we have N, =
E§=1 qfi—d)uL(wd)j' And by definition of A and Q%’s, we have

Ghiigy #0=>veE Bgll <I<d) e vtde{al <I<d)={oi)l1 <1< d}.

Thus for every 1 <1 < A, ij is a subgraph of mel L,,(iyj» and consequently ij and N;;’ are
edge-disjoint. Therefore Ni; = T N,-'J- and N;;’ are edge-disjoint.

These observations show that the support size of R is equal to b+ nm?. O

Lemma 2.4 Let G3 and G4 be two simple 1-factorable graph of the same degree d on two
disjoint sets of vertices. If r € CLF(G3,A)and s € CLF(G4,A), thenr+s € CLF(G3+Gy, ).
Proof. Proof is straightforward and so it is left. O

Lemma 2.5 Let G be a simple d-regular graph on 2n vertices which is 1-factorable. If
r € C(d,A), then rn € CLF(Gy, A).

Proof. Denote X; = {1,...,d} and X3 = {d+ 1,...,2d}. Let F = {Fy,...,F;} bea
completely decomposable A-factorization with support size 7 of AKy 4 on bipartition (X1, X»).
Since F is completely decomposable, we can find A 1-factorizations of K,4 on bipartition
(X1,X5), eg. F; = {F},...,Fi}, such that F; = 3\:21 F,»j, for 1 < i < d. Now, for every
1 <1 £ X F is a l-factorization of K44 on bipartition (X;,X3), thus there exists a Latin
square A = (a,fj) of order d such that

Fl={{djj+d}1<j<d}, 1<i<d
Now let {K4,..., K4} be any 1-factorization of G and for every 1 <[ < ), define
H{Ij:Ka‘. , 1<4,7<4d
3}

Now, by Lemma 2.1 for every 1 <[ < X\, H; = (Hfj) is a Latin 1-factorization of G. Thus if
we set

A

Hiy=) Hj 1<ij<d,

I=1

then H = (H;;) is a completely decomposable Latin A-factorization of AG, and it is easy to see

that its support size is rn. O

2.2 Necessary Conditions
In this section we obtain some necessary conditions on the support sizes of Latin A-

factorization. To do this, we first obtain some necessary conditions on the support sizes of
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M-factors and A-factorizations of AG, where G is a simple 1-factorable graph of degree d on 2n

vertices. The first lemma is trivial.

Lemma 2.6 Let F be a A-factor of AG with support size ¢, then t € {n,...,min{},d}.n}\
{n+1},and if A= d, then t # nd - 1. O

The following lemma is proved in [3].

Lemma 2.7 Let G be a simple d-regular graph on 2n vertices which is 1-factorable. Then
CS(G,A) € {m,...,.M}\ A, where m = nd and M = min{A\,d}.m and 4 = {m + 1,m +
2,m+3,m+5tifA#dand A={m+1m+2,m+3,m+5M—-1,M -2 M -3 M -5}

otherwise. O

Now, we deal with the Latin A-factorizations of AG. Our goal is to prove the following

lemma.

Lemma 2.8 Let F = {Fy,...,Fy} be any Latin A-factorization of AG, and let r be its support
size. Then r € {d?n,...,min{A,d}.d*n}\{d*n +ili=1,...,7,9,10,11,13}, and if A = d, then
rg {#n—ili=1,...,7,9,10,11,13}.

Proof. By definition, forevery 1 <i<d, Fi={F;|1<j<d}and i ={F;|1<j<d}
are two A-factorizations of AG. For every 4,5, 1 < 4,5 < d, let r;; denote the support size

of F}; and let r; and s; denote the support sizes of F; and [';, respectively. Clearly, we have
r=Thiri=Thas = Dhimi i

By Lemma 2.6, we have n < ri; < min{A,d}.n, rij # n+1,and if A = d, then ry; # dn— 1,
and hence d’n < r < min{A,d}d?n. Let r # d?n, and hence for some i and j, r; > dn and
s; > dn. Without loss of generality, we can suppose that for some k,!, 1 < &,/ < d, we have
r; > dn if and only if ¢ < k, and s; > dn if and only if § < I. Alsolet A = { {,7} | ri; # n},
and m = |A|. Clearlyk > 2and > 2. Ifk=3or! - 3, then by Lemma 2.7, r > d*n <+ 12 and
r#dn+13. fk=1=2then A= {{1,1}, {1,2}, {2,1}, {2,2} }. Now, it is immediately
seen that ri3 = 717 = o1 = rog. Thus r = (d? — 4)n+ 47y, and since r1; > n+ 1, the assertion
holds. A similar argument shows that if A = d, then r ¢ {d°n ~i|i = 1,...,7,9,10,11,13}. O

2.3 Complete Graphs
Let A(n,d,)) denote the set of all integers k such that there exists a simple d-regular
bipartite graph G on 2n vertices which is 1-factorable and k € CLF(G, ), and let B(n,d,))
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denotes the set of all integers k such that there exists a simple d-regular graph G on 2n vertices
such that both G and G are 1-factorable, and k € CLF(G, ). In this section, we completely
determine A(n,d,\) and B(n,d, X) for d > 6.

For any three positive integers n,d, and A, define

{m,...,M}\ 4, if A #d,

AS(n,d, X)) =
(r.d,2) {{m,..,,M}\(AUB), otherwise,

where m = nd?, M = min(d,A)m, A = {m+ii e C}, B = {M-ii e C}, C =

{1,...,7,9,10,11,13}. The main results of this section are the two following theorems:

Theorem 1 Let n and d be two positive integers such that d < n. If d = 6 and 2d < n or
d > 12, then A(n,n,\) = AS(n,d, ).

Theorem 2 Let n and d be two positive integers such that d < 2n — 1. If 12 < d, then
B(n,d,\) = AS(n,d, ).

To prove these theorems, we develop some methods to determine A(n,d, ) and B(n,d, A)

from A(m,dy, ). In this way, the following lemma is our main tool.

Lemma 2.6 Let 4 and B be two disjoint n-set and let X = AU B. Let d < n and let
G be a simple d-regular bipartite graph on bipartition (A4, B) which is 1-factorable. Then (i)
K, \ G is 1-factorable, and (ii) if either d < norn=0 (mod 2), then G = K, \ G is also
1-factorable.

Proof.  Part (i) is an immediate consequence of the well known fact that every regular
bipartite graph is 1-factorable, and for part (i) note that if n = 0 (mod 2), then K, , is the
union of two vertex-disjoint copies of K, and se it is 1-factorable, and for odd = it is easy to
see that the complement of a (n — 1)-regular bipartite graph on 2n vertices (which is unique

up to isomorphism) is 1-factorable. O

Lemma 2.18 Let d, d; and m be three positive integers such that 4 < 2d; < d < m, and denote
k=d—dy. Hre A(m,dy,p), s € Sp(di, p), 2 < p < min(dy,p), and g € {0,...,k}\{1,k~1},
then 7 + skm + (kp — ¢)md + tmd? € A(m,d,p+t)fort =0,...,k.

Proof. Denote A = {1,...,n} and B = {m +1,...,2m}. Let Gy be a simple 1-factorable
bipartite graph of degree d; on bipartition (A, B) such that r € CLF(G, p). Let {Fy,...,Fn}
be a 1-factorization of K m on bipartition (A, B) such that {Fy,..., Fy, } is a 1-factorization
of Gy. Let G = UL, Fi. Then G is a simple d-regular bipartite graph on bipartition (4, B),
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and G, is a subgraph of G, and both G; and G; = G\ Gy are 1-factorable. Now, the assertion
follows from Lemma 2.3. O

Lemma 2.11 Let d,d; and m be three positive integers such that 4 < 2d; < d < 2m — 1,
and denote k = d —d;. If r € A(m,dy,p), s € Sp{di,p), 2 < p £ min(dy, u), and ¢ €
{0,...,k}\ {1,k — 1}, then r + skm + (kp ~ q)md + tmd® € B(m,d,p+t) for t = 0,... k.
Proof. Proof of this lemma is essentially similar to the proof of Lemma 2.10 and so it is left.
a

In view of these two lemmas, to prove Theorems 1 and 2 we must partially determine

A(n,d, p) for small d’s. The following lemma is an immediate consequence of Lemma 2.4.
Lemma 2.12 If 1 € A(ny,d,A) and 75 € A(ng,d, )), then ry + 75 € A(ny + ng,d, A). O
Lemma 2.13 If n is a positive integer greater than 4, then

{4l|n <1 < min{2,A}n}\ {4n +4,8r — 4} C A(n,2,))

Proof. By Lemma 2.5 we have {8,16} C A(2,2,)) and {12,24} C A(3,2,)) for every 2 < X,

Now the result follows by induction on n (and utilizing Lemma 2.12). O

Lemma 2.14 Let n > 6. If ry € A(n,2,}), ro,73 € {4n,8n}, k € {0,2,4},and 0 < u < 4
then b= Y2 r; + 6(8 — k)n + 36un € A(n,6,) + u).

Proof. Denote A = {1,...,n} and B = {n+1,...,2n}. Let G; be a simple 2-regular
bipartite graph on bipartition (4, B) such that r € CLF(G1,4). Let {Fy,...,F,}} be a 1-
factorization of K, ., on bipartition (A, B) such that {Fy, F3} is a 1-factorization of G;. For
i=2,3,let Gi = Fy;1 + Fy;, and let G = Z?:l G;. We must show that b € CLF(G,A + u).

Let A = (a;;) be any Latin square of order 6 whose first two rows are

1

1 23 456

214365
and define K;; = F, ; for 1 < 4,7 < 6. It is not difficult to see that there exist a permutation
o on {1,...,2d} with exactly (2k + 2) fixed points such that o(1) = 1, 0(2) = 2, and o(i) €
{a1i,a2} for i = 1,...,2d. For 1 <[ < 3 let (ij) be a completely decomposable Latin
A-factorization with support size r; of AG|. Now for 1 < i < 2 define

My = NY, o ifj=2-1,
Nb, ifj=2,
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and for 3 <i < 6 define M;; = Kij + K,(;);- and let

U2
Hij= M+ Kny@j 1<4,5<6,
I=3

in which m(i) = a;. Now it is easy to check that £ = (L;;) is a completely decomposable Latin
(X + u) -factorization with support size b of (A + u)G. O

Lemma 2.15 If n > 12, then A(n,6,1) = AS(n,6,}).

Proof. Denote X; = {1,...,n}, X2 = {z1,...,2¢}. AN B = . Denote m = n —6. By

Lemmas 2.13 and 2.14 we have
{4k|9m < k < min{X,6}.9m}\ {4ln + 4, 4ln — 4|9 <1 < 9min(A,6)} C A(m,6,A).
In [2], it is shown that
(216,224,228, 230,. . ., 235,237,431} C A(6,6,2).
Also, it is easy to show that

{216l —i]1 < i < 7} C A(6,1,0), for2<1<35,
{1289,...,1295} C A(6,7,7).

Now, the assertion is a straightforward consequence of Lemma 2.4. O

Proof of Theorem 1 In view of Lemma 2.10, it is easy to see that if the assertion is true for
d = dy (where d; = 6 or d; > 12) then it is also true for d € {2ds,...,4d; — 1}, and by Lemma

2.15 the assertion is true for d = 6 and n > 12. Now, the result follows by induction on d. O

Proof of Theorem 2 The assertion is a straightforward consequence of Lemmas 2.9, 2.12
and Theorem 1. O

3 Semi-Latin Factorizations of Complete Graphs

In this section, we develop some recursive methods to construct semi-Latin factorization
with different support sizes, and then utilizing them, we essentially determine SLF(K 4y, A)
for n > 6.

Let k be a positive integer and k =0 (mod 2). Let G be a simple (2k — 1)-regular graph
on 2n vertices which is 1-factorable. Let G be a k-regular subgraph of G such that both Gy
and Gy = G\ Gy are 1-factorable.
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Lemma 3.1 If ry,73 € SLF(Gq,)), 81 € LF(Gy,k-1), r3 € LF(Gy,X), 82 € LF(Gy,A+1),
and b = 81 + (2k - 1)(k — 1)n + k*(k ~ 1)n.Then
(i) ri+ re+rs € SLF(G,A),

(ii) b + nk? € SLF(G,k),

(iii) b+ r1 +ro+ 82 € SLF(Gk+ A).
Proof. Let F = (Fj;) and N = (N;;) be two semi-Latin A-factorizations with support size r,
and ry of AGa,respectively. Let H = (H;;) be a Latin (k — 1)-factorization with support sizes
8y of (k — 1)G2, and let K = (K;;) be a Latin A-factorization with support size r3 of AG. Let
L = (L;;) be a Latin (A+ 1)-factorization with support size s; of (A+ 1)Gy, and let M = (M;;)
be a Latin 1-factorization of (1.

To prove (i), for every i and j, 1 < 4,5 <k, let

Ay = Fy,
Akyikti = Nijy
Aitj = Kij.

Then A = (A;;) is a semi-Latin A-factorization with support size 53, ri of AG.
(i1) Let
Bij = Bigik+j = G1, 1<i<j<h,

Bj 41 = Ga, 1<j<k,
Bi kp145 = Hij, 1<4,j<k~1,
By ; = Gy, k41«35 <2k

Nowif 1 < i < k < j < d,then Bj is a (k — 1)-factor of kGy (and consequently of kG) and
otherwise it is a k-factor of kG, (and consequently of kG). Also, it is easy to check that

2k
S Bij=(k-1)Gi+kGy, forl<i<k,

=1

and
k-1

k
S ST Byl = (K +2k=1)(k—1)n+s = b.
i=] Fmidd

Thus, if we let
o = { Bij + My, i 1<i<k<j<2k,
L5 M

Bij, otherwise,
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then (Cj;) would be a semi-Latin k-factorization with support size b+ nk? of kG. (Note that
if 1 €i<k < j<2k, then B;; is a subgraph of kG2, and consequently Bj; and M;(;_y) are
edge-disjoint.) This proves (ii).
To Prove (iii), let
Bij+ Fj, 1<i<jsk,
Dij=1< By +Lij, 1<i<k<j <2k,

Bij +Gij, k<i<j<2k

Now, it is not difficult to see that (Dy;) is a semi-Latin (k + A)-factorization of (k + A)G and

its support size is

Tics 1Dl = T (B + 1 F51) + T T (B + 15D + Tecici<an(1B51 +1G71)
=b+rit+ratse. O

Lemma 3.1 presents an inductive method to determine the spectrum of support sizes of
semi-Latin factorizations of a multigraph G from the spectrum of its subgraphs. Thus, to
apply this lemma, we need a partial determination of SLF(G,A) for any simple 1-factorable
graph G (of odd degree). The following lemma gives such a determination.

Lemma 3.2 Let G, be a simple (2k — 1)-regular graph which is 1-factorable. If r €
C5(Ga, A A), then kr € SLF(G3, A).

Proof. Let {Hy,..., Hzk-1} be a A-factorization with support size r of AG3 and let 4 = (ai;)
be a symmetric Latin square of order 2k on {0,...,2k ~ 1} such that a;; = 0 for 0 < 4 < 2k - 1.
Forl1 <i<j<2k let F;=H
with support size kr of AG,. O

ai;- It is easy to see that (F};) is a semi-Latin A-factorization

Lemma 3.3 Let n be a positive integer such that n = 0 (mod 2) and n > 12. If
36n — i € A(n,6,2), then n®(2n — 1) = i € SLF(Kzn,n).

Proof. Let G; be a simple 6-regular bipartite graph on 2n vertices such that 36n -1 €
CLF(Gh1,2). By Lemma 2.9, there exists a 1-factorization {F1,...,Fn, H1,..., Hn-1} of Kon
such that {Fy,..., Fs} is a 1-factorization of Gy. Let

Ga = 2::;1 F, Gi=YlF,
G4 = ;—1 Hn G5 = Zi:l Hf,

where H, = F,. Let A = (ai;) be any Latin square of order n such that 1 < a;; < 6 if
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1 <1,7 £ 6. Define n permutations o4,...,0, by the following rule:
ai(j) = Qyj, 1 S iy] S n.
Now, for every 1 < ¢,j < n, define

K,'J‘ = Fa and L,'}‘ = Ha.j.

is

Clearly, £ = (Ki;) and £ = (L;;) are two Latin 1-factorizations of G; and Gs, respectively. Let
N = (N;;) be any Latin 2-factorization with support size 36n — i of 2G, and for 1 < i,j < n,
define
Ny, if1<14,57 <6,
Bij =
{ Ko (5); + Kop(i);, otherwise,

Cij = Lla Loy
Clearly, (B;;) is a Latin 2-factorization with support size 2n% — i of 2G5, and (Cj;) is a Latin
(n — 2)-factorization with support size (n — 2)n? of (n — 2)Gs. Now, we prove that for every
1<14,j < n, By; and Cjj are edge-disjoint. First note that {aq@; 1 <1< n} ={1,...,n}.
Choose k such that a,, ;) = n. If k <2, then Cj; is a subgraph of G4 while B;; is a subgraph
of 2G3, and if k > 3, then Bj; is a subgraph of 2G5 while Cj; is a subgraph of 4. Therefore, for
every 1 <i4,j < n, By; and Cj; are edge-disjoint. Now, let (D;;) be any semi-Latin factorization
with support size n?(n — 1) of 2G4, and let (E;;) be a semi-Latin (n — 2)-factorization with
support size n(n — 1)(n — 2)/2 of (n — 2)G3 and define

Mij=Diyi+Eyj 1<i<j<nm,
Mitntj)= Bij+Cij 1<4,j<n,
Mntiyinas) = Mij, 1<i<j<n

It is straightforward to check that M = (M;;) is a semi-Latin n-factorization with support size
n3(2n — 1) — i of nKy,. O

Now, we can prove our main result concerning semi-Latin factorizations. To do this, we need

the following notation. For every n and J, define

{m,....,M}\ 4, fA#n-1,

BS(m,A) = { {m,...,M}\(AUB), otherwise,
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where m = n2(n - 1)/2, M = min{\,n — 1}.m, A = {m +ili = 1,...,7,9,10,11,13}, and
B={M-ili=1,...,7,9,10,11,13}.

Theorem 3 If n > 6, then BS(4n,A) C SLF(Ky4n, A).

Proof. Denote Xy = {1,...,2n}, X2 = {21,...,22:}, X1 NXz =0,and X = X; U X, We
denote by G and G the complete graph Ky, on X and complete bipartite graph Ko, 2, on
bipartition (X, X?), respectively. Let k = 2n, and G = G\ G;. Clearly, G; is the union of
two copies of K, on two disjoint set of vertices. Thus G; is 1-factorable. Now, the assertion

is a straightforward consequence of Lemmas 3.1, 3.2, and 3.3 and Theorem 1. O

4 Support sizes of quadruple systems

In this section, we develop some recursive methods to construct quadruple systems with
different support sizes, and then utilizing them we essentially determine the set Q55 (v, A) for
v=0 (mod 8). Our main tools are some doubling constructions which enable us to construct
a QS(2u, A) from two @S(u,)) on two disjoint sets of points.

Let v be an even integer greater than 6. Let X = {1,...,v}, X2 = {z1,...,24}, X1NXy =
$and X = X; UXs.

Lemma 4.1 Let 7,72 € QSS(u,A), and r3 € SLF(u,A). Then Y3, r: € QS5(2u, ).
Proof. Let (X1, B:) and (X2, B2) be two Q5(u, A) with support sizes ry and rg, respectively.
Let (F;;) be a semi-Latin A-factorization with support size r3 of AK, on X, and let

B=B+B:+ z: {i,j}*F“j.

1<i<i<u

Then (X,B) is a QS5(2u, \) with support size Yoy ;. O

Lemma 4.2 Let u be a positive integer such that u > 14. If r; € SLF(u, A + 2), 74,73 €
Q55(u, ), s € SLF(u,2),and 0 << u/f2, then

(i) by = vmgy — u(u— 1) = 2u(u — 1) + 5 € QSS(2u,u),

(ii) by = u.mgy — v(u — 1) = 2u(u — 1) + 0L, ri € QSS(2u,u+ ).
Proof. Let (Xy,B:) and (X2, B2) be two @ S5(u, ) with support sizes r; and ry, respectively.
Let (F};) be a semi-Latin () + 2)-factorization with support size r3 of (A +2) K, and let (Gij)
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be a semi-Latin 2-factorization with support size s of 2K,. Let

By = P4(X) \ (P4(X1) V] P4(X2) U Pz(X]) * PQ(X';)),
Bs = Bo + Licicicultri} * Gijs
By = Bo+ By + By + Ticici<ult 7} * Fij.

Then (X, Bs) is a Q 5(2u, u) with support size u.may—u?(u~1)+s, and (X, By) is a Q5(2u, u+ )
with support size u.mgy — w?(u — 1) + 30, . This proves the assertion for { = 0. To prove
the assertion for I > 0, let (X,,C;) and (X2,(C2) be two disjoint simple triple systems of order
u and index 6 (since u > 14, this is possible), and let

Ty = T4 {25} # G+ Thoi {25 — 1} + Ca,
Ty = Z§=1{2j -1} 0 + 25':1{21'} #Co.

Now, it is easy to see that I'y and I'; are disjoint; the number of occurences of each 7' € P5(X)
in T'y and I'; are the same; and each quadruple of I'y is a nonrepeated quadruple of both of B
and B,. Thus (X,B3\ Ty + I'g) is a Q5(2u,u) with support size by, and (X, B4 \T1 +Ty) isa
QS5(2u,u + X) with support size b,. O

Letu=2o0r4 (mod 6). Let A = (a;;) be any Latin square of order u which has no Latin
subsquare of order 2. Without loss of generality, we can suppose that ay; = i, for i = 1,...,u.
For every 7 and j, (1 €1,7 < u) define

bi; = k <= aik = 4.

It is easy to see that B = (b;;) is also a Latin square of order u. Let {Xy, B) be any Steiner
quadruple system of order «, and for every 1 < « < u define

Ry = {{isjakuxbm} | {iwjvkal} € B},
Su = {{zi,zj,2k, 0} | {i,5,k,1} € B},
Ty = {{aui’auj’xhzj} [ 1€4,5< u}a
By = Ry + Su+ Tu.

Then (X,B,)’s (1 < » < u) are u mutually disjoint Steiner quadruple systems of order 2u [5].
Thus, if we define
I = Py(X)\ (U1 Bi)s

then (X,T) is a simple @5(2u,u — 3) and Py(X;) U Py(X,) C T.
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Lemma 4.3 Let u = 20r4 (mod 6). If ri,ry € Q5S(u,u — 3), and 1 < k < min{p,u},

then b = (u — 3)gau — 2(§) + 1+ r2 + k.q2u € Q5 5(2u,u ~ 3 + p).

Proof. Let (X;,T;) and (X, T';) be two QS5(u,ul — 3) with support sizes r; and rq, respec-

tively. Let

T3 = T'\ (Po(X1) U Py(X3)),

B = Ty Tit T B+ (4 - K)By.
Then (X, B) is a QS(2u,u — 3 + p) with support size b. O

Let Y = {1,...,8}. We define a 1-factorization of K on Y as follows:

Fy = {{1,2}{3,7},{4,8}, {5,6}}
F2 = {{1,3}{2,7},{4,6}, {5,8}}
= {{1$4}{2v6}v{378}3{577}}
Fy={{1,5}{2,8},{3,6},{4,7}}
Fy = {{1,6}{2,5},{3,4},{7,8}}
Fg = {{1,7}{2,4},{3,5}, {6,8}}
Fr = {{1,81{2,3},{4,5},{6,7}} .

Since u > 16, there exists a 1-factorizations {G1,...,Gy—1} such that F; C Gy, fori =1,...

[6]. For every 1 < i < u — 1 define

Ki = { {z,z1} l{k,1} € Gi}.

Clearly, {K1, ..., Ky~1} is a 1-factorization of K, on X3. Let

L {Ki+K;+1 for1<i<u~2,
i:

Ky 14Ky foriz=u-1.
Then, {L1,...,Ly-1) is a 2-factorization of 2K, on X;. Let
u—~1

C = Py(X)\ ( X1 # Ps(X2) + Xox Ps(X1) + D Gi* Ly).

=1

Now, it is easy to check that (X,C) is a simple Q 5(2u,u —~ 3) which contains Py(X1) U Py(X2).

Let (X1, B) be a Steiner quadruple system and define

By = {{iuj’ks xl}?{zﬁzi»zk’l}l{ivj:ka I} e B}U {{iaj,a’i’zj}’l <i<j<Lul
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Then, it is easy to see that (X, B;) is a Steiner quadruple system of order 2u and By NC = 0.

Let
Iy =CUBy,

'y = Py(X)\ Ty
Trivially, (X, T1) and (X,T;) are simple QS(2u,% — 2) and QS(2u,u — 1), respectively. By
applying trade-off method on these two simple designs we can obtain some new values in
Q55(2u,u — 2) and Q55(2u,u ~ 1) which are not obtained from Lemmas 4.1, 4.2, and 4.3.

Lemma 4.4 If v > 16, then {(u~ 2)qu —3ji =1,...,13} C Q55(2u,u — 2).
Proof. For 1 < i < 4, we define two disjoint subsets Ti; and Tj; of Py(X) according to the
following table:

i Tgl Ti2

1 36.’1:112 361‘41‘3 37119:4 37272278 361’1&74 36!172:1:3 37231.’1:2 372:4255

561‘1@4 561‘21’3 573}11‘2 573}4273 5631222 561‘47)3 571’11‘4 571‘223

2 24.’1:2&5 24131’4 25:&72.’!:3 252‘42:5 241‘23}3 24:84:55 251’2.’1:5 253}33&'4
342}2273 341415 35222‘5 35$324' 3422225 343’32‘4 35221‘3 35224:7:5

3 | 237127  23zexe 247176 243928 | 2321xe  23xyzs 24377 247628
352126 3bz7xs 45z127 45z62s | 352127  35zezs 45T1Z6 4528
4| 1234 1256 1357 1467 1235 1246 1347 1567
2348 2568 3578 4678 2358 2468 3478 5678

It is an easy exercise to check that (i)if (3,7) # (k, 1), then Tj;NTy = @, (ii) forevery 1 < i < 4
the number of occurences of each T' € P3(X) in T3y and T}, are the same, and (iii) for every
1<i<4, Ty C Ty while

[TaNTy] =271 for 1 << 4.

Hence, if we let 3 = I'; and

Fy = (Fo\Tu) + Tha,
Fa = (Fo\Tar) + Tay,
Fz = (F1\Tn) + Tz,
Fi = (Fiea\Ts1) + Ts2, j=4,...,7
Fi=(Fi-s\Ta) + Tuz, 8<j<14

then for every 1 < 7 < 14 (X, ;) is a QS(2u,u — 2) with support size (u — 2)g, — j. O
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Lemma 4.5 If u > 16, then {{(u~ 1)g, —i|i=1,...,13} C @5S5(2u,u - 1).
Proof. For 1 < i < 6, we define two disjoint subsets T}y and Tz of Py(X) according to the
following table:

i T; Ty

11122123 12zs78 l4zy7s 142378 | 122125 122378 ldziz3  ldzs1s

26z125 26x31s 467123 46zs28 | 262113 267578 462175 4673238

2| 3Tz9z7 372426 38z2z¢ 38z4z7 | 3Tzaze 372477 38Tox7 3Bryze

57x9ze 57z4z7 58T2z7 58z4zg | STxazr 5Tz4%6 58zyxe 58477

3| 242923  24x4zs 251974 25z3xs | 24x9%4  24r3rs 25xom3  25x475

3427224 341’31’5 3512153 35$4.’E5 341’2273 3427415 352’}214 3523.’55

4| 162127 16z6zg 1Tz128 172627 | 162178 167627 172127 1T7z6T8

6821$3 683362)7 78131327 782@223 58Z1$7 68I6x3 783:13:3 781‘6I7

51 16z9z4 16z3z5 170235 1Tzezs | 162923 162475 172974 17z325

68r9r3 68xz4zs T8x2x4 T8xars | 68zyz4 68x3zs T8zar3  T8z42s

6 | 24z,z8 24zez7 251177 25z62s | 24z127 24z6T8 252178 257627
34.’01167 341‘6.13 35231373 35.’53.’57 343:1$3 34336177 352719:7 351}62’8

It is an easy exercise to check that (i} if (i,5) # (k,1), then T;;NTx = @, (ii) forevery 1 < i< 6
the number of occurences of each T € P3(X) in T, and T2 are the same, and (iii) for every
1<i<6, Ty C Ty while

|[Ti2N Ty = |TeanTy| =1,

[Tsa N T2l = [Ty N Ty} = 2,

|Tsy NT2| = [Tea NI = 4.

Hence, if we let F = I'; and

Fi=(F\Tn2) +T11,

Fy = (Fi\Tn) + Tz,

Fi=(Fi2\Ta1) + Ts2,  J=3,4,
Fj=(Fj-a\Ts1) +Ts2, 5<j<8,
Fj= (Fjea \Ter) + T2, 9<j<12,
Fi=(Fj2\Ta) + Tz, 13<j< 14,

Then for every 1 < j < 14 (X, F;) is a Q5(2u,u — 1) with support size (u ~ 1)gy — j. O
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In view of Lemmas 4.1-4.5, in order to determine QS55(2u,A) we only need a partial de-
termination of @55(u, A) for all A. It is well known that if v =4 or 8 (mod 12), then v/2
mutually disjoint Steiner quadruple systems exist [5] and if v =0 (mod 6) then a large set of

disjoint Q5(v, 3)’s exists[8]. Utilizing these facts one can easily establish two following lemmas.

Lemma 4.6 Ifu=0 (mod 6)and A=0 (mod 3), then {3jgu|1 < 7 < min{t,(u~3)/3}} C
QSS(u,3t). 0

Lemma 4.7 Ifu=40r 8 (mod 12), then {jg,|l < j < min{t,uv - 3}} C Q55(u,t). O

To apply Lemma 4.3 we need a partial determination for QS(v,v — 3) for all v = 4 or 8
(mod 12).
Lemma 4.8 Ifu=2o0r4 (mod 6)and u> 28, then {(}) — |14 < i < .} C Q5S(u,u —3).
Proof. Let 14 < i < g, and let (Y, By) and (Y, B2) be two Steiner quadruple systems of order
u intersecting in ¢ quadruples, and let B = Py(Y)\ By + Ba. Then (Y, B) is a QS (u, u~ 3) with
support size () —1i. O

Lemma 4.8 Letu=40r8 (mod12),andu>24. f1<k<u/d4dandl<!< (u~8)/4,
then (3) — ki € QS5S(u,u - 3).

Proof, Let u = 2n, X1 ={1,...,n}, Xoa={z1,...,22}, XiN X2 = P and X = X1 U X,. Let
Y = {z2,...,2,}. Let (¥,B;) and (¥, 52) be two disjoint simple T'S(n,1)’s and define

k k k k
B=Py(X)\(Q_(2)%Bi+ 3 (2= 1)« Ba)+ D (20) * B+ Y (2i — 1)+ By.
i=1 i=1

i=1 i=1

Then (X, B) is a Q5(u,u — 3) with desired support size. O

The following lemma is proved in [2}1.
Lemma 4.10 fv=0 (mod 6), and v > 24, then

{tu, 1y + 8,1y + 12,8y + 14,...,0(v — 1)(v — 2)/12} C @SS5(v,3). O

Now, we state and prove our main results concerning Q55(v,A). let v =0 (mod 2), and
let A, = ged(v—3,12), ¢, = v(v—1)(v~2)/12, t, = v(v* —3v+42)/6, M, = min{),v - 3.1,}
and A = {1,...,7,9,10,11,13}. If there exists no quadruple system of order v and index ),

56



the set PS(v,A) of possible support sizes of @S(v,A)’s is empty; and otherwise except for
A =1 — 3, we define PS(v, A) according to the following table

v (mod 6) PS(v,\)
0 {to,..., My} \ {t. +i|i € A}
2,4 {gvs-- s M} \ {gv +ili € A}

For A = v - 3, PS(v, ) is defined similarly, only with the omission of {M, —i|i € A}.

Theorem 4 Ifv=0 (mod8),and v > 48, then PS5(v,\) C Q5S5(v, A).

Proof. Let u=1v/2,and r € P§(v,)). If either r < (u—2)qy—2¢qy or r < {(u—1)qy —4qu — 14
and A > u— 1, then due to Lemma 4.1, 7 € @SS(v,A). If r > (u — 2)qy — 2¢u and A > u, then
due to Lemma 4.2 7 € QS5S5(v, ). If either (2 ~2)gy —2¢y <7 < (u=-2)gy~14and A=u~—2
or (4=~ 1)gy —4qy — 14 <7 < (u -~ 1)gy — 4¢y and A = u — 1 (note that in both cases we have
wv=4or8 (mod 12)), then due to Lemma 4.3 r € QSS(v,A). Finally if A € {u—2,u -1}
and Agy — 14 < r < Aqy, then due to Lemmas 4.5 and 4.6 7 € Q55(v, A). O

Concluding Remarks
1. Simple counting arguments show that there is no (3,4,v) trade of volume i for i €
{1,...,7,9,10,11,13}, which in turn implies there exist no @S(v,v —~ 3) with support size
rforr € {1,...,7,9,10,11,13}.
2. Let v=2o0r4 (mod 6), and let (X, B) be a Q5(v,A) with support size b > ¢,. Fori € X,
let

B; = {B\ {i}li € Be B},

then for i € X (X \ {i},B:) is a triple system of order v — 1 and index A. Let b; = |B}|. Then
b= (Tiex bi)/4. It is well known that b; > my—y = (v —1)(v - 2)/6 and b; ¢ {m.—1 +ili =
1,2,3,5}. Also if either b; = m,_; + 4 or b; = m,..; + 6, then one can easily determine the
structure of blocks of frequency less than A up to isomorphism (in first case it is unique, and in
the second case there are two possibilities). Putting these results together it is strightforward
but tedious to show that

b {g+ili=1,...,7,9,10,11,13}.
Therefore for v = 8 or 16 (mod 24) we have

Q5S(v,A) = PS(v,A).
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3. Let v=0 (mod 24), and let (X,B) be a @QS(v, A) with support size b. It is well known
that b > t,, and again applying well known results on the support sizes of triple systems on
derived designs one can show that b & {tu+ili=1,...,5}. On the other hand it can be shown
that ¢, + 6 € @SS(v, A). Therefore Theorem 4 determines Q55(v, A) with at least one and at

most 6 possible omissions.
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