Latin and Semi-Latin Factorizations of Complete Graphs and Support Sizes of Quadruple Systems *

S. Ajoodani-Namini

Institute for Studies in Theoretical Physics and Mathematics (IPM) P.O. Box 19395-1795, Tehran, Iran.

and

Department of Mathematics 253-37 California Institute of Technology Pasadena, CA 91125

Abstract

In this paper, we introduce the notions of Latin and semi-Latin factorizations of graphs and their support sizes. We essentially determine the set support sizes of Latin and semi-Latin factorizations of complete graphs. Utilizing these results we determine the set $QSS(8m, \lambda)$ of support sizes of quadruple systems of order 8m and index λ for $m \geq 6$ with at most 5 possible omissions for each $m \equiv 0 \pmod{3}$.

1 Introduction

Let X be a finite set and k be a positive integer. We denote by $P_k(X)$ the set of all k-subsets of X. Suppose that \mathcal{B}_1 and \mathcal{B}_2 are two collections of the elements of $P_k(X)$ and m is a positive integer. The collection of the elements of \mathcal{B}_1 and \mathcal{B}_2 will be denoted by $\mathcal{B}_1 + \mathcal{B}_2$ and m copies of \mathcal{B}_1 is denoted by $m\mathcal{B}_1$. The set of distinct elements of \mathcal{B}_1 is called the support of \mathcal{B}_1 and is denoted by \mathcal{B}_1^* . The number $b^* = |\mathcal{B}_1^*|$ is called the support size of \mathcal{B}_1 . Let X_1 and X_2

Australasian Journal of Combinatorics 12(1995), pp.37-58

^{*}This work was essentially carried out while the author was a member of Combinatorics and Computing Research Group at IPM and the final version of the manuscript was completed while he was at Caltech as a graduate student.

be two disjoint sets, and let k_1 and k_2 be two positive integers. Also, let \mathcal{B}_1 and \mathcal{B}_2 be two collections of the elements of $P_{k_1}(X_1)$ and $P_{k_2}(X_2)$, respectively. Then, we will adopt the following notation:

$$\mathcal{B}_1 * \mathcal{B}_2 = \{ A \cup B | A \in \mathcal{B}_1 \& B \in \mathcal{B}_2 \}.$$

Clearly $\mathcal{B}_1 * \mathcal{B}_2$ is a collection of the elements of $P_{k_1+k_2}(X_1 \cup X_2)$.

A quadruple system $QS(v,\lambda)$ of order v and index λ is an ordered pair $D = (X, \mathcal{B})$ in which X is a v-set and \mathcal{B} is a collection of the elements of $P_4(X)$ (called quadruples or blocks) such that every $A \in P_3(X)$ appears in exactly λ (not necessarily distinct) blocks. A $QS(v,\lambda)$ with no repeated blocks is called simple. A QS(v,1) is called a Steiner quadruple system of order v and will be denoted by SQS(v).

A λ -factor in a multigraph G is a submultigraph F which is spanning and λ -regular. A λ -factorization of a multigraph G is a partition of edges of G into λ -factors. For a simple graph G, the multigraph λG is obtained by repeating each edge λ times. Let G be a 1-factorable graph of degree d. An $m\lambda$ -factorization $\Gamma = \{F_1, \ldots, F_d\}$ of λG is called completely decomposable if there exist λ one-factorizations of G, e.g. $\Gamma_i = \{F_1^i, \ldots, F_d^i\}$, $1 \leq i \leq \lambda$, such that for every $1 \leq j \leq d$, F_j is the union of F_j^i 's $(1 \leq i \leq \lambda)$. The support size of a λ -factor is the number of distinct edges in the factor, and the support size of a λ -factorization is the sum of the support sizes of its factors. We denote by $CS(G,\lambda)$ the set of the support sizes of completely decompletely determined in $\{1,3\}$ and the main results are as follows.

• Given n and λ , $n \geq 5$,

$$C(n,\lambda) = \begin{cases} \{n^2, \dots, \min\{n,\lambda\}.n^2\} \setminus A, & \text{if } \lambda \neq n, \\ \{n^2, \dots, \min\{n,\lambda\}.n^2\} \setminus B, & \text{otherwise,} \end{cases}$$

where $A = \{n^2 + i | i = 1, 2, 3, 5\}$ and $B = \{n^2 + i, n^3 - i | i = 1, 2, 3, 5\}.$

• For given n and λ , $n \geq 4$,

$$CS(2n,\lambda) = \begin{cases} \{m,\ldots,M\} \setminus A, & \text{if } \lambda \neq 2n-1, \\ \{m,\ldots,M\} \setminus B, & \text{otherwise,} \end{cases}$$

where m = n(2n - 1), $M = \min\{2n - 1, \lambda\}$. m, $A = \{m + i | i = 1, 2, 3, 5\}$, $B = \{m + i, M - i | i = 1, 2, 3, 5\}$.

Let G be a d-regular graph on 2n vertices which is 1-factorable, and let $\psi(G, \lambda)$ be the set of all λ -factors of λG . A Latin λ -factorization of λG is a $d \times d$ matrix $F = (F_{ij})$ with entries in $\psi(G, \lambda)$ such that for every $1 \leq i \leq d$, $\mathcal{F}_i = \{F_{ij} \mid 1 \leq j \leq d\}$ and $\Gamma_i = \{F_{ji} \mid 1 \leq j \leq d\}$ are two λ -factorizations of λG . The support size of F is the sum of the support sizes of its entries. A Latin λ -factorization of λG is called completely decomposable if there exists λ Latin 1-factorizations of G, e.g. $F^l = (F_{ij}^l)$, $1 \leq l \leq \lambda$, such that $F_{ij} = \sum_{l=1}^{\lambda} F_{ij}^l$, for $1 \leq i, j \leq d$. The set of the support sizes of completely decomposable Latin λ -factorization of λG will be denoted by $LF(G, \lambda)$.

Let d be an odd integer and denote $d\Sigma 2 = \{ \{i,j\} \mid 1 \leq i,j \leq d+1 \}$. A semi-Latin λ -factorization of λG is a function $\mathcal{F} : d\Sigma 2 \to \psi(G, \lambda), \{i,j\} \to F_{\{i,j\}}$ such that for every $1 \leq i \leq d, \{F_T \mid i \in T \in d\Sigma 2\}$ is a λ -factorization of λG . For simplicity, $F_{\{i,j\}}$ will be denoted by F_{ij} . The support size of F is the sum of the support sizes of F_{ij} 's. The set of the support sizes of semi-Latin λ -factorization of λG will be denoted by $SLF(G, \lambda)$. For the sake of simplicity, we denote $SLF(K_{2n}, \lambda)$ by $SLF(2n, \lambda)$.

A (p,λ) -pattern is a $p \times p$ matrix with entries in nonnegative integers and with constant line sum λ . A (p,1)-pattern is called a permutation matrix. It is well known that every (p,λ) -pattern is a sum of λ (not necessarily distinct) permutation matrices. If $\{r_1, \ldots, r_n\}$ is any reordering of $\{1, \ldots, n\}$, then the permutation matrix $P = (\delta_{r,j})$ will be denoted by (r_1, \ldots, r_n) . Support size of a (p,λ) -pattern is the number of its nonzero entries. Let $S_p(p,\lambda)$ denote the set of possible support sizes for (p,λ) -patterns. In [3] it is proved that if $p \geq 3$, then

$$S_p(p,\lambda) = \left\{egin{array}{ll} \{p,\ldots,\min\{\lambda p,p^2\}\}\setminus\{p+1\} & ext{if }\lambda
eq p,\ \{p,\ldots,p^2\}\setminus\{p+1,p^2-1\} & ext{otherwise.} \end{array}
ight.$$

In this paper we intend to determine the set $QSS(v, \lambda)$ of support sizes of quadruple systems of order v and index λ . First, we mention some well known results. Colbourn and Hartman [2], and Hartman and Yehudai[4] have completely determined the set J(v) of possible intersections of two Steiner quadruple systems for $v \neq 14,26$. In this way they have essentially determined the set QSS(v,2) for $v \equiv 2$ or 4 (mod 6) with $v \neq 14,26$. Also in [2], the set of possible intersections for a special class of 3-wise balanced designs is completely determined, and utilizing this result they obtained some partial result concerning QSS(v,3) for $v \equiv 0$ (mod 6). In this paper we essentially determine $LF(K_{2n},\lambda), LF(K_{n,n},\lambda)$ and $SLF(K_{4n},\lambda)$ for $n \geq 12$ and then utilizing these results we essentially determine $QSS(v,\lambda)$ for $v \equiv 0$ (mod 8) with v > 48.

2 Latin Factorizations

In this section, we develop some recursive methods to construct Latin factorizations with different support sizes, and then utilizing them we completely determine $LS(K_{2n}, \lambda)$ and $LF(K_{n,n}, \lambda)$ for $n \geq 12$.

2.1. Recursive Constructions

Throughout this section, we suppose that G is a simple m-regular graph on 2n vertices which is 1-factorable. Let G_1 be a subgraph of G such that both G_1 and $G_2 = G \setminus G_1$ are 1-factorable, and $deg(G_1) \leq m/2$. Denote $d = deg(G_1)$, and $k = deg(G_2)$, so m = d + k, and $d \leq k$. Our first task is to show that any Latin 1-factorization of G_1 can be embedded in a Latin 1-factorization of G. Let $\mathcal{H} = (H_{ij})$ be any Latin 1-factorization of G_1 , and let $A = (a_{ij})$ be any Latin square of order m such that $1 \leq a_{ij} \leq d$, for $1 \leq i, j \leq d$ (since $2d \leq m$ this is possible). Since both of G_1 and G_2 are 1-factorization of G_1 and $\{F_{d+1}, \ldots, F_m\}$ is a 1-factorization of G_2 . Define

$$L_{ij} = \left\{ egin{array}{cc} H_{ij}, & ext{if } 1 \leq i,j \leq d, \ F_{a_{ij}}, & ext{otherwise}. \end{array}
ight.$$

The proof of the following lemma is straightforward and so it is omitted.

Lemma 2.1 $\mathcal{L} = (L_{ij})$ is a Latin 1-factorization of G. \Box

Let σ be any permutation on $\{1, \ldots, d\}$ and let η be any permutation on $\{d + 1, \ldots, m\}$. Define

$$K_{ij}=\left\{egin{array}{ll} L_{ij}, & ext{if} \quad 1\leq i\leq d & ext{and} \quad 1\leq j\leq d, \ L_{\sigma(i)j}, & ext{if} \quad 1\leq i\leq d & ext{and} \quad d+1\leq j\leq m, \ L_{\eta(i)j}, & ext{if} \quad d+1\leq i\leq m & ext{and} \quad 1\leq j\leq m. \end{array}
ight.$$

The proof of the following lemma is straightforward.

Lemma 2.2 $\mathcal{K} = (K_{ij})$ is a Latin 1-factorization of G. \Box

Lemma 2.3 Let $\lambda \geq 2$. If $r \in CLF(G_1, \lambda)$, $s \in S_p(d, \lambda)$, $2 \leq p \leq \min\{d, \lambda\}$, and $q \in \{0, \ldots, k\} \setminus \{1, k-1\}$, then

(i) $b = r + skn + (kp - q)mn \in CLF(G, \lambda)$.

(ii) $b + tnm^2 \in CLF(G, \lambda + t)$, for $t = 1, \dots, k$.

Proof. Let $B = (b_{ij})$ be any $d \times k$ Latin rectangle whose first two rows are

if $q \notin \{0, k\}$ and

otherwise. Define λ permutation matrices Q^1,\ldots,Q^λ by

$$Q^{1} = \begin{cases} (1, \dots, k-1, k), & \text{if } q = 0, \\ (2, \dots, k, 1), & \text{if } q = k, \\ (2, \dots, q, 1, q+1, \dots, k-1, k), & \text{if } q \in \{2, \dots, k-2\} \end{cases}$$
$$Q^{l} = \begin{cases} (b_{l1}, \dots, b_{lk}), & \text{if } 2 \le l \le p, \\ (b_{p1}, \dots, b_{pk}), & \text{if } p < l \le \lambda. \end{cases}$$

Then $Q = \sum_{i=1}^{\lambda} Q^i$ is a (k, λ) -pattern with support size kp - q. Let $C = (c_{ij})$ be any Latin square of order d and define a $d \times m$ matrix $D = (d_{ij})$ by

$$d_{ij} = \left\{egin{array}{ll} c_{ij}, & ext{for } 1 \leq j \leq d, \ b_{i(j-d)}+d, & ext{for } d < j \leq m, \end{array}
ight.$$

Clearly *D* is a $d \times m$ Latin rectangle, and so it can be completed in a Latin square $A = (a_{ij})$ of order *m*. Let P^1, \ldots, P^{λ} be permutation matrices of order *d* such that $P = \sum_{i=1}^{\lambda} P^i$ has exactly *s* nonzero entries. Let $\mathcal{M} = (M_{ij})$ be a completely decomposable Latin λ -factorization with support size *r* of λG_1 . Since \mathcal{M} is completely decomposable, we can find λ Latin 1factorization of G_1 , e.g. $\mathcal{M}_l = (M_{ij}^l)$, $l = 1, \ldots, \lambda$, such that $M_{ij} = \sum_{l=1}^{\lambda} M_{ij}^l$, for $1 \leq i, j \leq d$. Define L_{ij} 's as in Lemma 2.1. For every $1 \leq l \leq \lambda$, denote $P^l = (p_{ij}^l)$ and $Q^l = (q_{ij}^l)$. Also denote $P = (p_{ij})$ and $Q = (q_{ij})$. For every $1 \leq l \leq \lambda$, define:

$$N_{ij}^{l} = \begin{cases} M_{ij}^{l} & \text{if } 1 \leq i \leq d & \text{and } 1 \leq j \leq d, \\ \sum_{\nu=1}^{d} p_{i\nu}^{l} L_{\nu j}, & \text{if } 1 \leq i \leq d & \text{and } d+1 \leq j \leq d, \\ \sum_{\nu=1}^{k} q_{(i-d)\nu}^{l} L_{(\nu+d)j}, & \text{if } d+1 \leq i \leq m & \text{and } 1 \leq j \leq m. \end{cases}$$

41

By Lemma 2.2, for every $1 \le l \le \lambda$, $\mathcal{N}_l = (N_{ij}^l)$ is a Latin 1-factorization of G. Thus if we put

$$N_{ij} = \sum_{l=1}^{\lambda} N_{ij}^l, \ 1 \le i, j \le m,$$

then $\mathcal{N} = (N_{ij})$ is a completely decomposable Latin λ -factorization of λG . To prove (i), we must show that the support size of \mathcal{N} is b. For every $1 \leq i \leq k$, we denote by r_i the number of nonzero entries of ith row of Q, and for every $1 \leq i \leq d$, we denote by s_i the number of nonzero entries of ith row of P. Clearly, we have $kp - q = \sum_{i=1}^{k} r_i$, and $s = \sum_{i=1}^{d} s_i$. Now we compute the support size of each of N_{ij} 's.

If $1 \leq i \leq d$, and $d+1 \leq j \leq m$, then the support of N_{ij} consists of s_i edge-disjoint 1-factors of G, and consequently the support size of N_{ij} is equal to ns_i .

If $d + 1 \leq i \leq m$, and $1 \leq j \leq m$, then the support of N_{ij} consist of r_{i-d} edge-disjoint 1-factors of G, and consequently the support size of N_{ij} is equal to nr_{i-d} .

The above considerations show that the support size of $\mathcal N$ is equal to

$$r + \sum_{i=1}^{d} \sum_{j=d+1}^{m} ns_i + \sum_{i=d+1}^{m} \sum_{j=1}^{m} t_{i-d}n = r + skn + (kp - q)mn = b.$$

This proves (i).

To prove (ii), define m permutations $\sigma_1, \ldots, \sigma_m$ by

$$\sigma_i(j) = a_{ij}, \text{ for } 1 \le i, j \le m.$$

It is clear that for every $1 \leq l \leq m$, $(L_{\sigma(l)j})$ is a Latin 1-factorization of G. Let

$$R_{ij} = N_{ij} + \sum_{l=d+1}^{d+t} L_{\sigma_l(i)j}, \text{ for } 1 \le i, j \le m.$$

Then $\mathcal{R} = (\mathcal{R}_{ij})$ is a completely decomposable $(\lambda + t)$ -factorization of $(\lambda + t)G$. To complete the proof of (ii), we have to show that the support size of \mathcal{R} is equal to $b + tnm^2$, and to do this it suffices to show that for every *i* and *j* $(1 \le i, j \le m) N_{ij}$ and $N'_{ij} = \sum_{l=d+1}^{m} L_{\sigma_l(i)j}$ are edge-disjoint. We consider the following three cases:

Case (i) $1 \le i, j \le d$. In this case, we have $N'_{ij} = \sum_{l=d+1}^{m} L_{lj} = \sum_{l=d+1}^{m} F_l = G_2$. On the other hand, $N_{ij} = M_{ij}$ is a λ -factor of λG_1 . Therefore N_{ij} and N_{ij} ' are edge-disjoint.

Case (ii) $1 \leq i \leq d$ and $d+1 \leq j \leq m$. For every $1 \leq l \leq \lambda$, we have $N_{ij}^l = \sum_{\nu=1}^d P_{i\nu}^l L_{\nu j}$. Thus N_{ij}^l is a subgraph of $\sum_{\nu=1}^d L_{\nu j} = \sum_{l=1}^d L_{\sigma_l(i)j}$. Hence, for every $1 \leq l \leq \lambda$, N_{ij}^l and N_{ij} ' are edge-disjoint. Consequently $N_{ij} = \sum_{l=1}^{\lambda} N_{ij}^l$ and N_{ij} ' are edge-disjoint. Case (iii) $d + 1 \leq i \leq m$ and $1 \leq j \leq m$. For every $1 \leq l \leq \lambda$, we have $N_{ij}^l = \sum_{\nu=1}^k q_{(i-d)\nu}^l L_{(\nu+d)j}$. And by definition of A and Q^l 's, we have

$$q_{(i-d)v}^l \neq 0 \iff v \in \{b_{l(i-d)} | 1 \le l \le d\} \iff v+d \in \{a_{li} | 1 \le l \le d\} = \{\sigma_l(i) | 1 \le l \le d\}.$$

Thus for every $1 \leq l \leq \lambda$, N_{ij}^l is a subgraph of $\sum_{l=1}^d L_{\sigma_l(i)j}$, and consequently N_{ij}^l and N_{ij} ' are edge-disjoint. Therefore $N_{ij} = \sum_{l=1}^{\lambda} N_{ij}^l$ and N_{ij} ' are edge-disjoint.

These observations show that the support size of \mathcal{R} is equal to $b + nm^2$. \Box

Lemma 2.4 Let G_3 and G_4 be two simple 1-factorable graph of the same degree d on two disjoint sets of vertices. If $r \in CLF(G_3, \lambda)$ and $s \in CLF(G_4, \lambda)$, then $r+s \in CLF(G_3+G_4, \lambda)$. **Proof.** Proof is straightforward and so it is left. \Box

Lemma 2.5 Let G be a simple d-regular graph on 2n vertices which is 1-factorable. If $r \in C(d, \lambda)$, then $rn \in CLF(G_4, \lambda)$.

Proof. Denote $X_1 = \{1, \ldots, d\}$ and $X_2 = \{d + 1, \ldots, 2d\}$. Let $\mathcal{F} = \{F_1, \ldots, F_d\}$ be a completely decomposable λ -factorization with support size r of $\lambda K_{d,d}$ on bipartition (X_1, X_2) . Since \mathcal{F} is completely decomposable, we can find λ 1-factorizations of $K_{d,d}$ on bipartition (X_1, X_2) , e.g. $\mathcal{F}_i = \{F_1^i, \ldots, F_d^i\}$, such that $F_i = \sum_{j=1}^{\lambda} F_j^j$, for $1 \leq i \leq d$. Now, for every $1 \leq l \leq \lambda \mathcal{F}_l$ is a 1-factorization of $K_{d,d}$ on bipartition (X_1, X_2) , thus there exists a Latin square $A^l = (a_{ij}^l)$ of order d such that

$$F_i^l = \{\{a_{ij}^l, j+d\} | 1 \le j \le d\}, \ 1 \le i \le d.$$

Now let $\{K_1, \ldots, K_d\}$ be any 1-factorization of G and for every $1 \le l \le \lambda$, define

$$H_{ij}^l = K_{a_{ij}^l}, \quad 1 \le i, j \le d.$$

Now, by Lemma 2.1 for every $1 \le l \le \lambda$, $\mathcal{H}_l = (H_{ij}^l)$ is a Latin 1-factorization of G. Thus if we set

$$H_{ij} = \sum_{l=1}^{\lambda} H_{ij}^l, \quad 1 \leq i, j \leq d,$$

then $\mathcal{H} = (H_{ij})$ is a completely decomposable Latin λ -factorization of λG , and it is easy to see that its support size is rn. \Box

2.2 Necessary Conditions

In this section we obtain some necessary conditions on the support sizes of Latin λ -factorization. To do this, we first obtain some necessary conditions on the support sizes of

 λ -factors and λ -factorizations of λG , where G is a simple 1-factorable graph of degree d on 2n vertices. The first lemma is trivial.

Lemma 2.6 Let F be a λ -factor of λG with support size t, then $t \in \{n, \ldots, \min\{\lambda, d\}, n\} \setminus \{n+1\}$, and if $\lambda = d$, then $t \neq nd - 1$. \Box

The following lemma is proved in [3].

Lemma 2.7 Let G be a simple d-regular graph on 2n vertices which is 1-factorable. Then $CS(G,\lambda) \subseteq \{m,\ldots,M\} \setminus A$, where m = nd and $M = \min\{\lambda,d\}$.m and $A = \{m + 1, m + 2, m + 3, m + 5\}$ if $\lambda \neq d$ and $A = \{m + 1, m + 2, m + 3, m + 5, M - 1, M - 2, M - 3, M - 5\}$ otherwise. \Box

Now, we deal with the Latin λ -factorizations of λG . Our goal is to prove the following lemma.

Lemma 2.8 Let $\mathcal{F} = \{F_1, \ldots, F_d\}$ be any Latin λ -factorization of λG , and let r be its support size. Then $r \in \{d^2n, \ldots, \min\{\lambda, d\}, d^2n\} \setminus \{d^2n + i | i = 1, \ldots, 7, 9, 10, 11, 13\}$, and if $\lambda = d$, then $r \notin \{d^3n - i | i = 1, \ldots, 7, 9, 10, 11, 13\}$.

Proof. By definition, for every $1 \le i \le d$, $\mathcal{F}_i = \{F_{ij} \mid 1 \le j \le d\}$ and $\Gamma_i = \{F_{ij} \mid 1 \le j \le d\}$ are two λ -factorizations of λG . For every $i, j, 1 \le i, j \le d$, let r_{ij} denote the support size of F_{ij} and let r_i and s_j denote the support sizes of \mathcal{F}_i and Γ_j , respectively. Clearly, we have $r = \sum_{i=1}^d r_i = \sum_{j=1}^d s_j = \sum_{i,j=1}^d r_{ij}$.

By Lemma 2.6, we have $n \leq r_{ij} \leq \min\{\lambda, d\}.n$, $r_{ij} \neq n+1$, and if $\lambda = d$, then $r_{ij} \neq dn-1$, and hence $d^2n \leq r \leq \min\{\lambda, d\}d^2n$. Let $r \neq d^2n$, and hence for some i and j, $r_i > dn$ and $s_j > dn$. Without loss of generality, we can suppose that for some $k, l, 1 \leq k, l \leq d$, we have $r_i > dn$ if and only if $i \leq k$, and $s_j > dn$ if and only if $j \leq l$. Also let $A = \{\{i, j\} \mid r_{ij} \neq n\}$, and m = |A|. Clearly $k \geq 2$ and $l \geq 2$. If k = 3 or l = 3, then by Lemma 2.7, $r > d^2n + 12$ and $r \neq d^2n + 13$. If k = l = 2, then $A = \{\{1, 1\}, \{1, 2\}, \{2, 1\}, \{2, 2\}\}$. Now, it is immediately seen that $r_{11} = r_{12} = r_{21} = r_{22}$. Thus $r = (d^2 - 4)n + 4r_{11}$, and since $r_{11} > n + 1$, the assertion holds. A similar argument shows that if $\lambda = d$, then $r \notin \{d^3n - i|i = 1, \ldots, 7, 9, 10, 11, 13\}$. \Box

2.3 Complete Graphs

Let $A(n, d, \lambda)$ denote the set of all integers k such that there exists a simple d-regular bipartite graph G on 2n vertices which is 1-factorable and $k \in CLF(G, \lambda)$, and let $B(n, d, \lambda)$ denotes the set of all integers k such that there exists a simple d-regular graph G on 2n vertices such that both G and \overline{G} are 1-factorable, and $k \in CLF(G, \lambda)$. In this section, we completely determine $A(n, d, \lambda)$ and $B(n, d, \lambda)$ for $d \ge 6$.

For any three positive integers n, d, and λ , define

$$AS(n,d,\lambda) = \begin{cases} \{m,\ldots,M\} \setminus A, & \text{if } \lambda \neq d, \\ \{m,\ldots,M\} \setminus (A \cup B), & \text{otherwise,} \end{cases}$$

where $m = nd^2$, $M = \min(d,\lambda)m$, $A = \{m + i | i \in C\}$, $B = \{M - i | i \in C\}$, $C = \{1, \ldots, 7, 9, 10, 11, 13\}$. The main results of this section are the two following theorems:

Theorem 1 Let n and d be two positive integers such that $d \le n$. If d = 6 and $2d \le n$ or $d \ge 12$, then $A(n, n, \lambda) = AS(n, d, \lambda)$.

Theorem 2 Let n and d be two positive integers such that $d \leq 2n - 1$. If $12 \leq d$, then $B(n, d, \lambda) = AS(n, d, \lambda)$.

To prove these theorems, we develop some methods to determine $A(n, d, \lambda)$ and $B(n, d, \lambda)$ from $A(m, d_1, \mu)$. In this way, the following lemma is our main tool.

Lemma 2.9 Let A and B be two disjoint n-set and let $X = A \cup B$. Let $d \leq n$ and let G be a simple d-regular bipartite graph on bipartition (A, B) which is 1-factorable. Then (i) $K_{n,n} \setminus G$ is 1-factorable, and (ii) if either d < n or $n \equiv 0 \pmod{2}$, then $\overline{G} = K_{2n} \setminus G$ is also 1-factorable.

Proof. Part (i) is an immediate consequence of the well known fact that every regular bipartite graph is 1-factorable, and for part (ii) note that if $n \equiv 0 \pmod{2}$, then $\overline{K_{n,n}}$ is the union of two vertex-disjoint copies of K_n and so it is 1-factorable, and for odd n it is easy to see that the complement of a (n-1)-regular bipartite graph on 2n vertices (which is unique up to isomorphism) is 1-factorable. \Box

Lemma 2.10 Let d, d_1 and m be three positive integers such that $4 \le 2d_1 \le d \le m$, and denote $k = d-d_1$. If $r \in A(m, d_1, \mu)$, $s \in S_p(d_1, \mu)$, $2 \le p \le \min(d_1, \mu)$, and $q \in \{0, \ldots, k\} \setminus \{1, k-1\}$, then $r + skm + (kp - q)md + tmd^2 \in A(m, d, \mu + t)$ for $t = 0, \ldots, k$.

Proof. Denote $A = \{1, ..., n\}$ and $B = \{m + 1, ..., 2m\}$. Let G_1 be a simple 1-factorable bipartite graph of degree d_1 on bipartition (A, B) such that $r \in CLF(G, \mu)$. Let $\{F_1, ..., F_m\}$ be a 1-factorization of $K_{m,m}$ on bipartition (A, B) such that $\{F_1, ..., F_{d_1}\}$ is a 1-factorization of G_1 . Let $G = \bigcup_{i=1}^d F_i$. Then G is a simple d-regular bipartite graph on bipartition (A, B),

and G_1 is a subgraph of G, and both G_1 and $G_2 = G \setminus G_1$ are 1-factorable. Now, the assertion follows from Lemma 2.3. \Box

Lemma 2.11 Let d, d_1 and m be three positive integers such that $4 \le 2d_1 \le d \le 2m - 1$, and denote $k = d - d_1$. If $r \in A(m, d_1, \mu)$, $s \in S_p(d_1, \mu)$, $2 \le p \le \min(d_1, \mu)$, and $q \in \{0, \ldots, k\} \setminus \{1, k - 1\}$, then $r + skm + (kp - q)md + tmd^2 \in B(m, d, \mu + t)$ for $t = 0, \ldots, k$. **Proof.** Proof of this lemma is essentially similar to the proof of Lemma 2.10 and so it is left. \Box

In view of these two lemmas, to prove Theorems 1 and 2 we must partially determine $A(n, d, \mu)$ for small d's. The following lemma is an immediate consequence of Lemma 2.4.

Lemma 2.12 If $r_1 \in A(n_1, d, \lambda)$ and $r_2 \in A(n_2, d, \lambda)$, then $r_1 + r_2 \in A(n_1 + n_2, d, \lambda)$. \Box

Lemma 2.13 If n is a positive integer greater than 4, then

$$\{4l|n \le l \le \min\{2,\lambda\}n\} \setminus \{4n+4,8n-4\} \subset A(n,2,\lambda)$$

Proof. By Lemma 2.5 we have $\{8, 16\} \subset A(2, 2, \lambda)$ and $\{12, 24\} \subset A(3, 2, \lambda)$ for every $2 \leq \lambda$. Now the result follows by induction on n (and utilizing Lemma 2.12). \Box

Lemma 2.14 Let $n \ge 6$. If $r_1 \in A(n,2,\lambda)$, $r_2, r_3 \in \{4n,8n\}$, $k \in \{0,2,4\}$, and $0 \le u \le 4$, then $b = \sum_{i=1}^{3} r_i + 6(8-k)n + 36un \in A(n,6,\lambda+u)$.

Proof. Denote $A = \{1, ..., n\}$ and $B = \{n + 1, ..., 2n\}$. Let G_1 be a simple 2-regular bipartite graph on bipartition (A, B) such that $r \in CLF(G_1, \lambda)$. Let $\{F_1, ..., F_n\}$ be a 1-factorization of $K_{n,n}$ on bipartition (A, B) such that $\{F_1, F_2\}$ is a 1-factorization of G_1 . For i = 2, 3, let $G_i = F_{2i-1} + F_{2i}$, and let $G = \sum_{i=1}^3 G_i$. We must show that $b \in CLF(G, \lambda + u)$. Let $A = (a_{ij})$ be any Latin square of order 6 whose first two rows are

and define $K_{ij} = F_{a_{ij}}$ for $1 \le i, j \le 6$. It is not difficult to see that there exist a permutation σ on $\{1, \ldots, 2d\}$ with exactly (2k+2) fixed points such that $\sigma(1) = 1$, $\sigma(2) = 2$, and $\sigma(i) \in \{a_{1i}, a_{2i}\}$ for $i = 1, \ldots, 2d$. For $1 \le l \le 3$ let (N_{ij}^l) be a completely decomposable Latin λ -factorization with support size τ_l of λG_l . Now for $1 \le i \le 2$ define

$$M_{ij} = \begin{cases} N_{i1}^{l}, & \text{if } j = 2l - 1, \\ N_{i2}^{l}, & \text{if } j = 2l, \end{cases}$$

and for $3 \leq i \leq 6$ define $M_{ij} = K_{ij} + K_{\sigma(i)j}$, and let

$$H_{ij} = M_{ij} + \sum_{l=3}^{u+2} K_{\eta_l(i)j}, \ 1 \le i, j \le 6,$$

in which $\eta_l(i) = a_{il}$. Now it is easy to check that $\mathcal{L} = (L_{ij})$ is a completely decomposable Latin $(\lambda + u)$ -factorization with support size b of $(\lambda + u)G$. \Box

Lemma 2.15 If $n \ge 12$, then $A(n, 6, \lambda) = AS(n, 6, \lambda)$. **Proof.** Denote $X_1 = \{1, ..., n\}, X_2 = \{x_1, ..., x_6\}, A \cap B = \emptyset$. Denote m = n - 6. By Lemmas 2.13 and 2.14 we have

 $\{4k|9m \leq k \leq \min\{\lambda, 6\}.9m\} \setminus \{4ln + 4, 4ln - 4|9 \leq l \leq 9\min(\lambda, 6)\} \subset A(m, 6, \lambda).$

In [2], it is shown that

$$\{216, 224, 228, 230, \dots, 235, 237, 431\} \subset A(6, 6, 2).$$

Also, it is easy to show that

$$\{216l - i | 1 \le i \le 7\} \subset A(6, l, l), \quad \text{for } 2 \le l \le 5, \\ \{1289, \dots, 1295\} \subset A(6, 7, 7).$$

Now, the assertion is a straightforward consequence of Lemma 2.4. \Box

Proof of Theorem 1 In view of Lemma 2.10, it is easy to see that if the assertion is true for $d = d_1$ (where $d_1 = 6$ or $d_1 \ge 12$) then it is also true for $d \in \{2d_1, \ldots, 4d_1 - 1\}$, and by Lemma 2.15 the assertion is true for d = 6 and $n \ge 12$. Now, the result follows by induction on d. \Box

Proof of Theorem 2 The assertion is a straightforward consequence of Lemmas 2.9, 2.12 and Theorem 1. \Box

3 Semi-Latin Factorizations of Complete Graphs

In this section, we develop some recursive methods to construct semi-Latin factorization with different support sizes, and then utilizing them, we essentially determine $SLF(K_{4n}, \lambda)$ for $n \geq 6$.

Let k be a positive integer and $k \equiv 0 \pmod{2}$. Let G be a simple (2k-1)-regular graph on 2n vertices which is 1-factorable. Let G_1 be a k-regular subgraph of G such that both G_1 and $G_2 = G \setminus G_1$ are 1-factorable.

47

Lemma 3.1 If $r_1, r_2 \in SLF(G_2, \lambda)$, $s_1 \in LF(G_2, k-1)$, $r_3 \in LF(G_1, \lambda)$, $s_2 \in LF(G_1, \lambda+1)$, and $b = s_1 + (2k-1)(k-1)n + k^2(k-1)n$. Then

- (i) $r_1 + r_2 + r_3 \in SLF(G, \lambda)$,
- (ii) $b + nk^2 \in SLF(G, k)$,
- (iii) $b + r_1 + r_2 + s_2 \in SLF(G, k + \lambda)$.

Proof. Let $F = (F_{ij})$ and $N = (N_{ij})$ be two semi-Latin λ -factorizations with support size r_1 and r_2 of λG_2 , respectively. Let $H = (H_{ij})$ be a Latin (k-1)-factorization with support sizes s_1 of $(k-1)G_2$, and let $K = (K_{ij})$ be a Latin λ -factorization with support size r_3 of λG_1 . Let $L = (L_{ij})$ be a Latin $(\lambda + 1)$ -factorization with support size s_2 of $(\lambda + 1)G_1$, and let $M = (M_{ij})$ be a Latin 1-factorization of G_1 .

To prove (i), for every i and j, $1 \le i, j \le k$, let

$$A_{ij} = F_{ij},$$

$$A_{k+i,k+j} = N_{ij},$$

$$A_{i,k+j} = K_{ij}.$$

Then $A = (A_{ij})$ is a semi-Latin λ -factorization with support size $\sum_{i=1}^{3} r_i$ of λG . (ii) Let

$$\begin{array}{ll} B_{ij} = B_{k+i,k+j} = G_1, & 1 \le i < j \le k, \\ B_{j,k+1} = G_2, & 1 \le j \le k, \\ B_{i,k+1+j} = H_{ij}, & 1 \le i, j \le k-1, \\ B_{k,j} = G_2, & k+1 \le j \le 2k. \end{array}$$

Now if $1 \le i \le k < j \le d$, then B_{ij} is a (k-1)-factor of kG_1 (and consequently of kG) and otherwise it is a k-factor of kG_2 (and consequently of kG). Also, it is easy to check that

$$\sum_{j=1}^{2k} B_{ij} = (k-1)G_1 + kG_2, \quad \text{for } 1 \le i \le k,$$

and

$$\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} |B_{ij}^*| = (k^2 + 2k - 1)(k - 1)n + s_1 = b.$$

Thus, if we let

$$C_{ij} = \begin{cases} B_{ij} + M_{i(j-k)}, & \text{if } 1 \le i \le k < j \le 2k, \\ B_{ij}, & \text{otherwise,} \end{cases}$$

then (C_{ij}) would be a semi-Latin k-factorization with support size $b + nk^2$ of kG. (Note that if $1 \le i < k < j \le 2k$, then B_{ij} is a subgraph of kG_2 , and consequently B_{ij} and $M_{i(j-k)}$ are edge-disjoint.) This proves (ii).

To Prove (iii), let

$$D_{ij} = \begin{cases} B_{ij} + F_{ij}, & 1 \le i < j \le k, \\ B_{ij} + L_{ij}, & 1 \le i \le k < j \le 2k, \\ B_{ij} + G_{ij}, & k < i < j \le 2k \end{cases}$$

Now, it is not difficult to see that (D_{ij}) is a semi-Latin $(k + \lambda)$ -factorization of $(k + \lambda)G$ and its support size is

$$\sum_{i < j} |D_{ij}^*| = \sum_{i,j=1}^k (|B_{ij}^*| + |F_{ij}^*|) + \sum_{i=1}^k \sum_{j=k+1}^{2k} (|B_{ij}^*| + |L_{ij}^*|) + \sum_{k < i < j \le 2k} (|B_{ij}^*| + |G_{ij}^*|)$$
$$= b + r_1 + r_2 + s_2. \quad \Box$$

Lemma 3.1 presents an inductive method to determine the spectrum of support sizes of semi-Latin factorizations of a multigraph G from the spectrum of its subgraphs. Thus, to apply this lemma, we need a partial determination of $SLF(G, \lambda)$ for any simple 1-factorable graph G (of odd degree). The following lemma gives such a determination.

Lemma 3.2 Let G_2 be a simple (2k - 1)-regular graph which is 1-factorable. If $r \in CS(G_2, \lambda, \lambda)$, then $kr \in SLF(G_2, \lambda)$.

Proof. Let $\{H_1, \ldots, H_{2k-1}\}$ be a λ -factorization with support size r of λG_2 and let $A = (a_{ij})$ be a symmetric Latin square of order 2k on $\{0, \ldots, 2k-1\}$ such that $a_{ii} = 0$ for $0 \le i \le 2k-1$. For $1 \le i < j \le 2k$, let $F_{ij} = H_{a_{ij}}$. It is easy to see that (F_{ij}) is a semi-Latin λ -factorization with support size kr of λG_2 . \Box

Lemma 3.3 Let n be a positive integer such that $n \equiv 0 \pmod{2}$ and $n \geq 12$. If $36n - i \in A(n, 6, 2)$, then $n^3(2n - 1) - i \in SLF(K_{2n}, n)$.

Proof. Let G_1 be a simple 6-regular bipartite graph on 2n vertices such that $36n - i \in CLF(G_1, 2)$. By Lemma 2.9, there exists a 1-factorization $\{F_1, \ldots, F_n, H_1, \ldots, H_{n-1}\}$ of K_{2n} such that $\{F_1, \ldots, F_6\}$ is a 1-factorization of G_1 . Let

$$G_2 = \sum_{i=1}^{n} F_i, \quad G_3 = \sum_{i=1}^{n-1} F_i, \\ G_4 = \sum_{i=1}^{n-1} H_i, \quad G_5 = \sum_{i=1}^{n} H_i,$$

where $H_n = F_n$. Let $A = (a_{ij})$ be any Latin square of order n such that $1 \le a_{ij} \le 6$ if

 $1 \leq i, j \leq 6$. Define *n* permutations $\sigma_1, \ldots, \sigma_n$ by the following rule:

$$\sigma_i(j) = a_{ij}, \ 1 \leq i,j \leq n.$$

Now, for every $1 \leq i, j \leq n$, define

$$K_{ij} = F_{a_{ij}}$$
 and $L_{ij} = H_{a_{ij}}$.

Clearly, $\mathcal{K} = (K_{ij})$ and $\mathcal{L} = (L_{ij})$ are two Latin 1-factorizations of G_2 and G_5 , respectively. Let $\mathcal{N} = (N_{ij})$ be any Latin 2-factorization with support size 36n - i of $2G_1$, and for $1 \le i, j \le n$, define

$$B_{ij} = \begin{cases} N_{ij}, & \text{if } 1 \le i, j \le 6, \\ K_{\sigma_1(i)j} + K_{\sigma_2(i)j}, & \text{otherwise}, \end{cases}$$
$$C_{ij} = \sum_{l=3}^n L_{\sigma_l(i)j}.$$

Clearly, (B_{ij}) is a Latin 2-factorization with support size $2n^2 - i$ of $2G_2$, and (C_{ij}) is a Latin (n-2)-factorization with support size $(n-2)n^2$ of $(n-2)G_5$. Now, we prove that for every $1 \le i, j \le n$, B_{ij} and C_{ij} are edge-disjoint. First note that $\{a_{\sigma_l(i)j} \mid 1 \le l \le n\} = \{1, \ldots, n\}$. Choose k such that $a_{\sigma_k(i)j} = n$. If $k \le 2$, then C_{ij} is a subgraph of G_4 while B_{ij} is a subgraph of $2G_2$, and if $k \ge 3$, then B_{ij} is a subgraph of $2G_3$ while C_{ij} is a subgraph of G_4 . Therefore, for every $1 \le i, j \le n$, B_{ij} and C_{ij} are edge-disjoint. Now, let (D_{ij}) be any semi-Latin factorization with support size $n^2(n-1)$ of $2G_4$, and let (E_{ij}) be a semi-Latin (n-2)-factorization with support size n(n-1)(n-2)/2 of $(n-2)G_3$ and define

$$M_{ij} = D_{ij} + E_{ij} \quad 1 \le i < j \le n,$$

$$M_{i(n+j)} = B_{ij} + C_{ij} \quad 1 \le i, \ j \le n,$$

$$M_{(n+i)(n+i)} = M_{ij}, \qquad 1 \le i < j < n.$$

It is straightforward to check that $\mathcal{M} = (M_{ij})$ is a semi-Latin *n*-factorization with support size $n^3(2n-1) - i$ of nK_{2n} . \Box

Now, we can prove our main result concerning semi-Latin factorizations. To do this, we need the following notation. For every n and λ , define

$$BS(m,\lambda) = \begin{cases} \{m,\ldots,M\} \setminus A, & \text{if } \lambda \neq n-1, \\ \{m,\ldots,M\} \setminus (A \cup B), & \text{otherwise,} \end{cases}$$

where $m = n^2(n-1)/2$, $M = \min\{\lambda, n-1\}.m$, $A = \{m+i | i = 1, ..., 7, 9, 10, 11, 13\}$, and $B = \{M - i | i = 1, ..., 7, 9, 10, 11, 13\}.$

Theorem 3 If $n \ge 6$, then $BS(4n, \lambda) \subseteq SLF(K_{4n}, \lambda)$.

Proof. Denote $X_1 = \{1, \ldots, 2n\}$, $X_2 = \{x_1, \ldots, x_{2n}\}$, $X_1 \cap X_2 = \emptyset$, and $X = X_1 \cup X_2$. We denote by G and G_1 the complete graph K_{4n} on X and complete bipartite graph $K_{2n,2n}$ on bipartition (X_1, X_2) , respectively. Let k = 2n, and $G_2 = G \setminus G_1$. Clearly, G_2 is the union of two copies of K_{2n} on two disjoint set of vertices. Thus G_2 is 1-factorable. Now, the assertion is a straightforward consequence of Lemmas 3.1, 3.2, and 3.3 and Theorem 1. \Box

4 Support sizes of quadruple systems

In this section, we develop some recursive methods to construct quadruple systems with different support sizes, and then utilizing them we essentially determine the set $QSS(v, \lambda)$ for $v \equiv 0 \pmod{8}$. Our main tools are some doubling constructions which enable us to construct a $QS(2u, \lambda)$ from two $QS(u, \lambda)$ on two disjoint sets of points.

Let v be an even integer greater than 6. Let $X_1 = \{1, \ldots, v\}, X_2 = \{x_1, \ldots, x_v\}, X_1 \cap X_2 = \emptyset$ and $X = X_1 \cup X_2$.

Lemma 4.1 Let $r_1, r_2 \in QSS(u, \lambda)$, and $r_3 \in SLF(u, \lambda)$. Then $\sum_{i=1}^{3} r_i \in QSS(2u, \lambda)$. **Proof.** Let (X_1, \mathcal{B}_1) and (X_2, \mathcal{B}_2) be two $QS(u, \lambda)$ with support sizes r_1 and r_2 , respectively. Let (F_{ij}) be a semi-Latin λ -factorization with support size r_3 of λK_u on X_2 , and let

$$\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2 + \sum_{1 \leq i < j \leq u} \{i, j\} * F_{ij}.$$

Then (X, \mathcal{B}) is a $QS(2u, \lambda)$ with support size $\sum_{i=1}^{3} r_i$. \Box

Lemma 4.2 Let u be a positive integer such that $u \ge 14$. If $r_1 \in SLF(u, \lambda + 2)$, $r_2, r_3 \in QSS(u, \lambda)$, $s \in SLF(u, 2)$, and $0 \le l \le u/2$, then

(i) $b_1 = u \cdot m_{2u} - u^2(u-1) - 2lu(u-1) + s \in QSS(2u, u),$

(ii) $b_2 = u \cdot m_{2u} - u^2(u-1) - 2lu(u-1) + \sum_{i=1}^3 r_i \in QSS(2u, u+\lambda).$

Proof. Let (X_1, \mathcal{B}_1) and (X_2, \mathcal{B}_2) be two $QS(u, \lambda)$ with support sizes r_1 and r_2 , respectively. Let (F_{ij}) be a semi-Latin $(\lambda + 2)$ -factorization with support size r_3 of $(\lambda + 2)K_u$ and let (G_{ij}) be a semi-Latin 2-factorization with support size s of $2K_u$. Let

$$B_0 = P_4(X) \setminus (P_4(X_1) \cup P_4(X_2) \cup P_2(X_1) * P_2(X_2)),$$

$$B_3 = B_0 + \sum_{1 \le i < j \le u} \{i, j\} * G_{ij},$$

$$B_4 = B_0 + B_1 + B_2 + \sum_{1 \le i < j \le u} \{i, j\} * F_{ij}.$$

Then (X, \mathcal{B}_3) is a QS(2u, u) with support size $u.m_{2u}-u^2(u-1)+s$, and (X, \mathcal{B}_4) is a $QS(2u, u+\lambda)$ with support size $u.m_{2u} - u^2(u-1) + \sum_{i=1}^3 r_i$. This proves the assertion for l = 0. To prove the assertion for l > 0, let (X_2, \mathcal{C}_1) and (X_2, \mathcal{C}_2) be two disjoint simple triple systems of order u and index 6 (since $u \ge 14$, this is possible), and let

$$\begin{split} \Gamma_1 &= \sum_{j=1}^l \{2j\} * \mathcal{C}_1 + \sum_{j=1}^l \{2j-1\} * \mathcal{C}_2, \\ \Gamma_2 &= \sum_{j=1}^l \{2j-1\} * \mathcal{C}_1 + \sum_{j=1}^l \{2j\} * \mathcal{C}_2. \end{split}$$

Now, it is easy to see that Γ_1 and Γ_2 are disjoint; the number of occurences of each $T \in P_3(X)$ in Γ_1 and Γ_2 are the same; and each quadruple of Γ_1 is a nonrepeated quadruple of both of \mathcal{B}_3 and \mathcal{B}_4 . Thus $(X, \mathcal{B}_3 \setminus \Gamma_1 + \Gamma_2)$ is a QS(2u, u) with support size b_1 , and $(X, \mathcal{B}_4 \setminus \Gamma_1 + \Gamma_2)$ is a $QS(2u, u + \lambda)$ with support size b_2 . \Box

Let $u \equiv 2$ or $4 \pmod{6}$. Let $A = (a_{ij})$ be any Latin square of order u which has no Latin subsquare of order 2. Without loss of generality, we can suppose that $a_{1i} = i$, for $i = 1, \ldots, u$. For every i and j, $(1 \le i, j \le u)$ define

$$b_{ij} = k \iff a_{ik} = j.$$

It is easy to see that $B = (b_{ij})$ is also a Latin square of order u. Let (X_1, B) be any Steiner quadruple system of order u, and for every $1 \le u \le u$ define

$$\begin{aligned} R_{u} &= \{\{i, j, k, x_{b_{ul}}\} \mid \{i, j, k, l\} \in \mathcal{B}\},\\ S_{u} &= \{\{x_{i}, x_{j}, x_{k}, a_{ul}\} \mid \{i, j, k, l\} \in \mathcal{B}\},\\ T_{u} &= \{\{a_{ui}, a_{uj}, x_{i}, x_{j}\} \mid 1 \leq i, j \leq u\},\\ \mathcal{B}_{u} &= R_{u} + S_{u} + T_{u}. \end{aligned}$$

Then (X, \mathcal{B}_u) 's $(1 \le u \le u)$ are u mutually disjoint Steiner quadruple systems of order 2u [5]. Thus, if we define

$$\Gamma = P_4(X) \setminus (\cup_{i=1}^u \mathcal{B}_i),$$

then (X, Γ) is a simple QS(2u, u-3) and $P_4(X_1) \cup P_4(X_2) \subset \Gamma$.

Lemma 4.3 Let $u \equiv 2$ or 4 (mod 6). If $r_1, r_2 \in QSS(u, u-3)$, and $1 \leq k \leq \min\{\mu, u\}$, then $b = (u-3)q_{2u} - 2\binom{u}{4} + r_1 + r_2 + k \cdot q_{2u} \in QSS(2u, u-3+\mu)$.

Proof. Let (X_1, Γ_1) and (X_2, Γ_2) be two QS(u, ul - 3) with support sizes r_1 and r_2 , respectively. Let

$$\Gamma_3 = \Gamma \setminus (P_4(X_1) \cup P_4(X_2)), \mathcal{B} = \sum_{i=1}^3 \Gamma_i + \sum_{i=1}^k \mathcal{B}_i + (\mu - k)\mathcal{B}_k.$$

Then (X, \mathcal{B}) is a $QS(2u, u - 3 + \mu)$ with support size b. \Box

Let $Y = \{1, ..., 8\}$. We define a 1-factorization of K_8 on Y as follows:

$$F_{1} = \{\{1,2\}\{3,7\},\{4,8\},\{5,6\}\}$$

$$F_{2} = \{\{1,3\}\{2,7\},\{4,6\},\{5,8\}\}$$

$$F_{3} = \{\{1,4\}\{2,6\},\{3,8\},\{5,7\}\}$$

$$F_{4} = \{\{1,5\}\{2,8\},\{3,6\},\{4,7\}\}$$

$$F_{5} = \{\{1,6\}\{2,5\},\{3,4\},\{7,8\}\}$$

$$F_{6} = \{\{1,7\}\{2,4\},\{3,5\},\{6,8\}\}$$

$$F_{7} = \{\{1,8\}\{2,3\},\{4,5\},\{6,7\}\}$$

Since $u \ge 16$, there exists a 1-factorizations $\{G_1, \ldots, G_{u-1}\}$ such that $F_i \subset G_i$, for $i = 1, \ldots, 7$ [6]. For every $1 \le i \le u - 1$ define

$$K_i = \{ \{x_k, x_l\} | \{k, l\} \in G_i \}.$$

Clearly, $\{K_1, \ldots, K_{u-1}\}$ is a 1-factorization of K_u on X_2 . Let

$$L_{i} = \begin{cases} K_{i} + K_{i+1} & \text{for } 1 \le i \le u-2, \\ K_{u-1} + K_{1} & \text{for } i = u-1. \end{cases}$$

Then, $\{L_1, \ldots, L_{u-1}\}$ is a 2-factorization of $2K_u$ on X_2 . Let

$$\mathcal{C} = P_4(X) \setminus (X_1 * P_3(X_2) + X_2 * P_3(X_1) + \sum_{i=1}^{u-1} G_i * L_i).$$

Now, it is easy to check that (X, C) is a simple QS(2u, u-3) which contains $P_4(X_1) \cup P_4(X_2)$. Let (X_1, B) be a Steiner quadruple system and define

$$\mathcal{B}_1 = \{\{i, j, k, x_l\}, \{x_i, x_j, x_k, l\} | \{i, j, k, l\} \in \mathcal{B}\} \cup \{\{i, j, x_i, x_j\} | 1 \le i < j \le u\}.$$

Then, it is easy to see that (X, \mathcal{B}_1) is a Steiner quadruple system of order 2u and $\mathcal{B}_1 \cap \mathcal{C} = \emptyset$. Let

$$\Gamma_1 = \mathcal{C} \cup \mathcal{B}_1,$$

$$\Gamma_2 = \mathcal{P}_4(X) \setminus \Gamma_1$$

Trivially, (X, Γ_1) and (X, Γ_2) are simple QS(2u, u-2) and QS(2u, u-1), respectively. By applying trade-off method on these two simple designs we can obtain some new values in QSS(2u, u-2) and QSS(2u, u-1) which are not obtained from Lemmas 4.1, 4.2, and 4.3.

Lemma 4.4 If $u \ge 16$, then $\{(u-2)q_u - i | i = 1, ..., 13\} \subset QSS(2u, u-2)$.

Proof. For $1 \le i \le 4$, we define two disjoint subsets T_{i1} and T_{i2} of $P_4(X)$ according to the following table:

i		I	i1		T_{i2}			
1	$36x_1x_2$	$36x_4x_8$	$37x_1x_4$	$37x_2x_8$	$36x_1x_4$	$36x_2x_8$ $37x_1x_2$	$37x_4x_8$	
	$56x_1x_4$	$56x_{2}x_{8}$	$57x_{1}x_{2}$	$57x_{4}x_{8}$	$56x_1x_2$	$56x_4x_8$ $57x_1x_4$	$57x_{2}x_{8}$	
2	$24x_2x_5$	$24x_3x_4$	$25x_2x_3$	$25x_4x_5$	$24x_2x_3$	$24x_4x_5$ $25x_2x_5$	$25x_{3}x_{4}$	
	$34x_2x_3$	$34x_4x_5$	$35x_{2}x_{5}$	$35x_3x_4$	$34x_{2}x_{5}$	$34x_3x_4$ $35x_2x_3$	$35x_4x_5$	
3	$23x_1x_7$	$23x_{6}x_{8}$	$24x_{1}x_{6}$	$24x_7x_8$	$23x_1x_6$	$23x_7x_8$ $24x_1x_7$	$24x_6x_8$	
	$35x_1x_6$	$35x_7x_8$	$45x_1x_7$	$45x_{6}x_{8}$	$35x_1x_7$	$35x_6x_8$ $45x_1x_6$	$45x_7x_8$	
4	1234	1256	1357	1467	1235	1246 1347	1567	
	2348	2568	3578	4678	2358	2468 3478	5678	

It is an easy exercise to check that (i) if $(i, j) \neq (k, l)$, then $T_{ij} \cap T_{kl} = \emptyset$, (ii) for every $1 \le i \le 4$ the number of occurences of each $T \in P_3(X)$ in T_{i1} and T_{i2} are the same, and (iii) for every $1 \le i \le 4$, $T_{i1} \subset \Gamma_1$ while

$$|T_{i2} \cap \Gamma_1| = 2^{i-1}$$
, for $1 \le i \le 4$.

Hence, if we let $\mathcal{F}_0 = \Gamma_1$ and

$$\begin{aligned} \mathcal{F}_{1} &= (\mathcal{F}_{0} \setminus T_{11}) + T_{12}, \\ \mathcal{F}_{2} &= (\mathcal{F}_{0} \setminus T_{21}) + T_{22}, \\ \mathcal{F}_{3} &= (\mathcal{F}_{1} \setminus T_{21}) + T_{22}, \\ \mathcal{F}_{j} &= (\mathcal{F}_{j-4} \setminus T_{31}) + T_{32}, \qquad j = 4, \dots, 7 \\ \mathcal{F}_{j} &= (\mathcal{F}_{j-8} \setminus T_{41}) + T_{42}, \qquad 8 \le j \le 14 \end{aligned}$$

then for every $1 \le j \le 14$ (X, \mathcal{F}_j) is a QS(2u, u-2) with support size $(u-2)q_u - j$. \Box

Lemma 4.5 If $u \ge 16$, then $\{(u-1)q_u - i | i = 1, ..., 13\} \subset QSS(2u, u-1)$.

Proof. For $1 \le i \le 6$, we define two disjoint subsets T_{i1} and T_{i2} of $P_4(X)$ according to the following table:

i		T	i1		T_{i2}			
1	$12x_1x_3$	$12x_5x_8$	$14x_1x_5$	$14x_{3}x_{8}$	$12x_1x_5$	$12x_{3}x_{8}$	$14x_1x_3$	$14x_5x_8$
	$26x_1x_5$	$26x_3x_8$	$46x_{1}x_{3}$	$46x_5x_8$	$26x_1x_3$	$26x_5x_8$	$46x_{1}x_{5}$	$46x_{3}x_{8}$
2	$37x_2x_7$	$37x_4x_6$	$38x_2x_6$	$38x_4x_7$	$37x_2x_6$	$37x_{4}x_{7}$	$38x_2x_7$	$38x_4x_6$
	$57x_2x_6$	$57x_{4}x_{7}$	$58x_{2}x_{7}$	$58x_{4}x_{6}$	$57x_2x_7$	$57x_4x_6$	$58x_{2}x_{6}$	$58x_{4}x_{7}$
3	$24x_2x_3$	$24x_4x_5$	$25x_2x_4$	$25x_{3}x_{5}$	$24x_2x_4$	$24x_3x_5$	$25x_{2}x_{3}$	$25x_{4}x_{5}$
	$34x_2x_4$	$34x_3x_5$	$35x_2x_3$	$35x_4x_5$	$34x_2x_3$	$34x_{4}x_{5}$	$35x_{2}x_{4}$	$35x_3x_5$
4	$16x_1x_7$	$16x_6x_8$	$17x_1x_8$	$17x_6x_7$	$16x_1x_8$	$16x_6x_7$	$17x_1x_7$	$17x_6x_8$
	$68x_1x_8$	$68x_6x_7$	$78x_1x_7$	$78x_6x_8$	$68x_1x_7$	$68x_6x_8$	$78x_{1}x_{8}$	$78x_6x_7$
5	$16x_2x_4$	$16x_3x_5$	$17x_2x_3$	$17x_4x_5$	$16x_2x_3$	$16x_{4}x_{5}$	$17x_2x_4$	$17x_3x_5$
	$68x_{2}x_{3}$	$68x_4x_5$	$78x_2x_4$	$78x_3x_5$	$68x_2x_4$	$68x_3x_5$	$78x_2x_3$	$78x_{4}x_{5}$
6	$24x_1x_8$	$24x_6x_7$	$25x_1x_7$	$25x_6x_8$	$24x_1x_7$	$24x_6x_8$	$25x_1x_8$	$25x_6x_7$
	$34x_1x_7$	$34x_6x_8$	$35x_{1}x_{8}$	$35x_6x_7$	$34x_1x_8$	$34x_{6}x_{7}$	$35x_1x_7$	$35x_{6}x_{8}$

It is an easy exercise to check that (i) if $(i, j) \neq (k, l)$, then $T_{ij} \cap T_{kl} = \emptyset$, (ii) for every $1 \le i \le 6$ the number of occurences of each $T \in P_3(X)$ in T_{i1} and T_{i2} are the same, and (iii) for every $1 \le i \le 6$, $T_{i1} \subset \Gamma_2$ while

$$\begin{aligned} |T_{12} \cap \Gamma_2| &= |T_{22} \cap \Gamma_2| = 1, \\ |T_{32} \cap \Gamma_2| &= |T_{42} \cap \Gamma_2| = 2, \\ |T_{52} \cap \Gamma_2| &= |T_{62} \cap \Gamma_2| = 4. \end{aligned}$$

Hence, if we let $\mathcal{F} = \Gamma_2$ and

$$\begin{aligned} \mathcal{F}_{1} &= (\mathcal{F} \setminus T_{12}) + T11, \\ \mathcal{F}_{2} &= (\mathcal{F}_{1} \setminus T_{21}) + T_{22}, \\ \mathcal{F}_{j} &= (\mathcal{F}_{j-2} \setminus T_{31}) + T_{32}, \quad j = 3, 4, \\ \mathcal{F}_{j} &= (\mathcal{F}_{j-4} \setminus T_{51}) + T_{52}, \quad 5 \leq j \leq 8, \\ \mathcal{F}_{j} &= (\mathcal{F}_{j-4} \setminus T_{61}) + T_{62}, \quad 9 \leq j \leq 12, \\ \mathcal{F}_{i} &= (\mathcal{F}_{i-2} \setminus T_{41}) + T_{42}, \quad 13 \leq j \leq 14 \end{aligned}$$

Then for every $1 \leq j \leq 14$ (X, \mathcal{F}_j) is a QS(2u, u-1) with support size $(u-1)q_u - j$. \Box

In view of Lemmas 4.1-4.5, in order to determine $QSS(2u, \lambda)$ we only need a partial determination of $QSS(u, \lambda)$ for all λ . It is well known that if $v \equiv 4$ or 8 (mod 12), then v/2mutually disjoint Steiner quadruple systems exist [5] and if $v \equiv 0 \pmod{6}$ then a large set of disjoint QS(v, 3)'s exists[8]. Utilizing these facts one can easily establish two following lemmas.

Lemma 4.6 If $u \equiv 0 \pmod{6}$ and $\lambda \equiv 0 \pmod{3}$, then $\{3jq_u | 1 \le j \le \min\{t, (u-3)/3\}\} \subset QSS(u, 3t)$. \Box

Lemma 4.7 If $u \equiv 4$ or 8 (mod 12), then $\{jq_u | 1 \leq j \leq \min\{t, u-3\}\} \subset QSS(u, t)$. \Box

To apply Lemma 4.3 we need a partial determination for QS(v, v - 3) for all $v \equiv 4$ or 8 (mod 12).

Lemma 4.8 If $u \equiv 2$ or 4 (mod 6) and $u \ge 28$, then $\{\binom{u}{4} - i | 14 \le i \le q_u\} \subset QSS(u, u - 3)$. **Proof.** Let $14 \le i \le q_u$ and let (Y, \mathcal{B}_1) and (Y, \mathcal{B}_2) be two Steiner quadruple systems of order u intersecting in i quadruples, and let $\mathcal{B} = P_4(Y) \setminus \mathcal{B}_1 + \mathcal{B}_2$. Then (Y, \mathcal{B}) is a QS(u, u - 3) with support size $\binom{u}{4} - i$. \Box

Lemma 4.9 Let $u \equiv 4$ or 8 (mod 12), and $u \ge 24$. If $1 \le k \le u/4$ and $1 \le l \le (u-8)/4$, then $\binom{u}{4} - kl \in QSS(u, u-3)$.

Proof. Let u = 2n, $X_1 = \{1, ..., n\}$, $X_2 = \{x_1, ..., x_n\}$, $X_1 \cap X_2 = \emptyset$ and $X = X_1 \cup X_2$. Let $Y = \{x_2, ..., x_n\}$. Let (Y, \mathcal{B}_1) and (Y, \mathcal{B}_2) be two disjoint simple TS(n, l)'s and define

$$\mathcal{B} = P_4(X) \setminus \left(\sum_{i=1}^k (2i) * \mathcal{B}_1 + \sum_{i=1}^k (2i-1) * \mathcal{B}_2\right) + \sum_{i=1}^k (2i) * \mathcal{B}_2 + \sum_{i=1}^k (2i-1) * \mathcal{B}_1.$$

Then (X, \mathcal{B}) is a QS(u, u-3) with desired support size. \Box

The following lemma is proved in [2]. Lemma 4.10 If $v \equiv 0 \pmod{6}$, and $v \ge 24$, then

 $\{t_v, t_v + 8, t_v + 12, t_v + 14, \dots, v(v-1)(v-2)/12\} \subset QSS(v,3). \Box$

Now, we state and prove our main results concerning $QSS(v, \lambda)$. let $v \equiv 0 \pmod{2}$, and let $\lambda_v = \gcd(v-3, 12), q_v = v(v-1)(v-2)/12, t_v = v(v^2-3v+42)/6, M_v = \min\{\lambda, v-3.t_v\}$ and $A = \{1, \ldots, 7, 9, 10, 11, 13\}$. If there exists no quadruple system of order v and index λ ,

the set $PS(v,\lambda)$ of possible support sizes of $QS(v,\lambda)$'s is empty; and otherwise except for $\lambda = v - 3$, we define $PS(v,\lambda)$ according to the following table

$$\begin{array}{ll} v \pmod{6} & PS(v,\lambda) \\ 0 & \{t_v,\ldots,M_v\} \setminus \{t_v+i | i \in A\} \\ 2,4 & \{q_v,\ldots,M_v\} \setminus \{q_v+i | i \in A\} \end{array}$$

For $\lambda = v - 3$, $PS(v, \lambda)$ is defined similarly, only with the omission of $\{M_v - i | i \in A\}$.

Theorem 4 If $v \equiv 0 \pmod{8}$, and $v \geq 48$, then $PS(v, \lambda) \subset QSS(v, \lambda)$.

Proof. Let u = v/2, and $r \in PS(v, \lambda)$. If either $r \leq (u-2)q_v - 2q_u$ or $r \leq (u-1)q_v - 4q_u - 14$ and $\lambda \geq u - 1$, then due to Lemma 4.1, $r \in QSS(v, \lambda)$. If $r \geq (u-2)q_v - 2q_u$ and $\lambda \geq u$, then due to Lemma 4.2 $r \in QSS(v, \lambda)$. If either $(u-2)q_v - 2q_u \leq r \leq (u-2)q_v - 14$ and $\lambda = u - 2$ or $(u-1)q_v - 4q_u - 14 \leq r \leq (u-1)q_v - 4q_u$ and $\lambda = u - 1$ (note that in both cases we have $u \equiv 4$ or 8 (mod 12)), then due to Lemma 4.3 $r \in QSS(v, \lambda)$. Finally if $\lambda \in \{u-2, u-1\}$ and $\lambda q_v - 14 \leq r \leq \lambda q_v$, then due to Lemmas 4.5 and 4.6 $r \in QSS(v, \lambda)$. \Box

Concluding Remarks

1. Simple counting arguments show that there is no (3,4,v) trade of volume *i* for $i \in \{1,\ldots,7,9,10,11,13\}$, which in turn implies there exist no QS(v,v-3) with support size *r* for $r \in \{1,\ldots,7,9,10,11,13\}$.

2. Let $v \equiv 2 \text{ or } 4 \pmod{6}$, and let (X, \mathcal{B}) be a $QS(v, \lambda)$ with support size $b > q_v$. For $i \in X$, let

$$\mathcal{B}_i = \{B \setminus \{i\} | i \in B \in \mathcal{B}\},\$$

then for $i \in X$ $(X \setminus \{i\}, \mathcal{B}_i)$ is a triple system of order v - 1 and index λ . Let $b_i = |\mathcal{B}_i^*|$. Then $b = (\sum_{i \in X} b_i)/4$. It is well known that $b_i \ge m_{v-1} = (v-1)(v-2)/6$ and $b_i \notin \{m_{v-1} + i|i = 1, 2, 3, 5\}$. Also if either $b_i = m_{v-1} + 4$ or $b_i = m_{v-1} + 6$, then one can easily determine the structure of blocks of frequency less than λ up to isomorphism (in first case it is unique, and in the second case there are two possibilities). Putting these results together it is strightforward but tedious to show that

$$b \notin \{q_v + i | i = 1, \dots, 7, 9, 10, 11, 13\}.$$

Therefore for $v \equiv 8 \text{ or } 16 \pmod{24}$ we have

$$QSS(v,\lambda) = PS(v,\lambda).$$

3. Let $v \equiv 0 \pmod{24}$, and let (X, \mathcal{B}) be a $QS(v, \lambda)$ with support size b. It is well known that $b \geq t_v$, and again applying well known results on the support sizes of triple systems on derived designs one can show that $b \notin \{t_v + i | i = 1, ..., 5\}$. On the other hand it can be shown that $t_v + 6 \in QSS(v, \lambda)$. Therefore Theorem 4 determines $QSS(v, \lambda)$ with at least one and at most 6 possible omissions.

References

- 1. S. Ajoodani-Namini, On the factorizations of complete graphs, submitted to Journal of Combin. Math. and Combin. Computing.
- C.J. Colbourn and A. Hartman, Intersections and supports of quadruple systems, Disc. Math. 97(1991)119-137.
- 3. C.J. Colbourn and A. Rosa, Support sizes of λ -factorizations, Proc. Int. Conf. on Incidence Geometries and Combinatorial Structures, 1991.
- A. Hartman and Z. Yehudai, Intersections of Steiner quadruple systems, Disc. Math. 104(1991) 227-244.
- 5. C.C. Lindner, A note on disjoint Steiner quadruple systems, Ars Combinatoria 3(1977) 271-276.
- C.C. Lindner, E. Mendelsohn, and A. Rosa, On the number of 1-factorizations of complete graphs, J. Combin. Theory, Ser. B, 20(1976) 265-282.
- 7. W.H. Mills, On the covering of triples by quadruples, Proc. Fifth Southeastern Conf. Combinatorics, Graph Theory and Computing, 1978, pp. 559-687.
- 8. L.Teirlinck, On large sets of disjoint quadruple systems, Ars Combinatoria, 17(1984) 119-137.

(Received 29/6/94)