




















and for 3 6 define Mij ::: Kij + K,,(i)j' and let 

Krll(i)j, 1 i,j 6, 

in which ::: ail. Now it is to check that [, ::: (Lij) is a completely decomposable Latin 

(.\ + u) -factorization with support size b of (.\ + u)G. 0 

Lemma 2.15 If n �~� 12, then A(n,6,A) AS(n,6,A). 

Proof. Denote Xl ::: {1, .. , n}, X 2 ::: {Xl, .. , An B 0. Denote m ::: n - 6. By 

�.�A�.�J�,�.�"�L�L�L�L�C�U�>�~� 2.13 and 2.14 we have 

k min{A,6}.9m} \ {41n + 4, 4ln-' �~� l 9 6)} c A(m, 6, A). 

In it is shown that 

228,230, ... ,235,237,431} C 6,2). 

it to show that 

-ill 7} l,l), �f�o�r�2�~�l� 5, 

... ,1295} A(6, 7, 7). 

the assertion is a straightforward consequence of Lemma 2.4. 0 

Proof of Theorem 1 In view of Lemma 2.10, it is easy to that if the assertion is true for 

d d1 d1 6 or d1 �~� 12) then it also true for dE ... ,4d1 I}, and by Lemma 

2.1.5 the assertion is true for d 6 and n 12. Now, the result follows by induction on d. 0 

Proof of Theorem 2 The assertion is a straightforward consequence of Lemmas 2.9, 2.12 

and Theorem 1. 0 

3 Semi-Latin Factorizations of Complete Graphs 

In this section, we develop some recursive methods to construct semi-Latin factorization 

with different support sizes, and then utilizing them, we essentially determine S LF(K4n1 A) 

for n �~� 6. 

Let k be a positive integer and k == 0 (mod 2). Let G be a simple (2k - 1)-regular graph 

on 2n vertices which is I-factorable. Let G1 be a k-regular subgraph of G such that both G1 

and G2 ::: G \ G1 are 1-factorable. 
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Lemma 3.1 If Tt, T2 E SLF( G21 A), 81 E LF(G2 , k - 1), r3 LF(G1 , A), 82 E LF(Gll A + 1), 

and b::::: 81 + (2k - l)(k - l)n + k2(k - l)n.Then 

(i) rl + r2 + r3 E SLF(G,A), 

(ii) b + nk2 E SLF(G,k), 

(iii) b + rl + r2 + 82 E SLF(G,k + A). 

Proof. Let F::::: (Fjj) and N ::::: (Nij) be two semi-Latin A-factorizations with support size rl 

and T2 of AG2,respectively. Let H (Hij) be a Latin (k - I)-factorization with support sizes 

81 of (k - 1)G2 , and let K ::::: (Kij) be a Latin A-factorization with support size T3 of AGI . Let 

L == (Lij) be a Latin (A + 1 )-factorization with support size 8'); of (A + 1 )G1 , and let M ::::: (Mij) 

be a Latin I-factorization of G I -

To prove (i), for every i and j, 1 ~ i,j k, let 

Aij :::: 

Ak+i,k+j Nij, 

Ai,k+j Kij. 

Then A = (Aij) is a semi-Latin A-factorization with support size 

(ii) Let 

::::: G}, 1 ~ i < j k, 

G2 ! 1 ~ j ~ 

Bi,k+1+j ::::: Hij, 

G21 

1 ~ i,j k - 1, 

k + 1 $; j 2k. 

ri of AG. 

Now if 1 ~ i s: k < j $; d, then is a (k - I)-factor of kG1 (and rnTI",,,,,nlu'ntllv 

otherwise it is a k-factor of kG'); (and consequently of Also, it is easy to check that 

2k 

and 
k-l k 

Thus, if we let 

={ 

for 1 ~ i ~ k, 

+ MiU- k ), if 1 ~ i s: k < j ~ 2k, 

otherwise, 
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then (Cij) would be a semi-Latin k-factorization with support size b + nk2 of kG. (Note that 

if 1 ::; i < k < j ::; 2k, then Hij is a subgraph of kG2, and consequently Bij and Mi(j-k) are 

edge-disjoint.) This proves (ii). 

To Prove (iii), let 

{ 

Hij + Fij, 1::; i < j k, 

Dij Hij + Lij, 1 ::; k < j 2k, 

Hij + Gij, k < i < j ::; 2k 

Now, it is not difficult to see that (Dij) is a semi-Latin (k + '\)-factorization of (k + '\)G and 

its support size is 

IDijl L7,j:l(I Hijl + lFijl) + 

b+rl+rZ+s2· D 

Lemma 3.1 presents an inductive method to determine the spectrum of support sizes of 

semi-Latin factorizations of a multigraph G from the spectrum of its subgraphs. Thus, to 

apply this lemma, we need a partial determination of SLF(G,'\) for any simple 1-factorable 

graph G (of odd degree). The following lemma such a determination. 

Lemma 3.2 Let G2 be a simple (2k 

CS(Gz,'\,'\), then kr E SLF(G2,,\). 

graph which is 1-factorable. If r E 

Proof. Let {HI,"" H 2k-d be a '\-factorization with support size r of ,\G2 and let A (aij) 

be a symmetric Latin square of order 2k on {O, ... ,2k 1} such that ajj 0 for 0 ::; i ::; 2k - 1. 

For 1 i < j ::; 2k, let :::::: H ctij' It is easy to see that (Fij) is a semi-Latin ,\-factorization 

with support size kr of >.G2• 0 

Lemma 3.3 Let n be a positive integer such that n 

36n - i E A(n,6,2), then n3 (2n - 1) - iE SLF(K2n,n). 

o (mod 2) and n ~ 12. If 

Proof. Let G1 be a simple 6-regular bipartite graph on 2n vertices su-ch that 36n - i E 

CLF(G1,2). By Lemma 2.9, there exists a I-factorization {Ft, ... ,Fn,Hl, ... ,Hn-d of K 2n 

such that {Fll ... , Fe} is a 1-factorization of G1• Let 

G2 ::= Fj, G3 L?;;11 Fj, 

G4 = Hi, Gs == Li=l Hi, 

where Hn == Fn. Let A == (aij) be any Latin square of order n such that 1 ::; aij ::; 6 if 
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1 ~ i~j ~ 6. Define n permutations 01, .•• ,On by the following rule: 

Now, for every 1 i,j define 

Clearly, J( (Kij) and £ == (Lij) are two Latin I-factorizations of G'}, and Gs , respectively. Let 

N == (Nij) be any Latin 2-factorization with support size 36n - i of 2Gb and for 1 i,j ~ n, 

define 

Gij I:i::::3 LUj(i)j· 

if 1 ~ i,j 6, 

otherwise, 

Clearly, (Bij) is a Latin 2-factorization with support size 2n2 - of 2G2 , and (Gjj ) is a Latin 

(n - 2)-factorization with support size (n - 2)n2 of (n 2)G5• Now, we prove that for every 

1 ~ i,j ~ n, Bij and Gij are edge-disjoint. First note that {au/(i)j II$; In} == {I, .. ,n}. 

Choose k such that auk(i)j n. If k 2, then Gij is a subgraph of G4 while is a subgraph 

of 2G2 , alld if k ;;:: 3, then Bij is a of 2G3 while Gij is a of G4 • for 

every 1 ~ i,j n, Bij and Gij are edge-disjoint. Now, let (Dij) be any semi-Latin factorization 

with support size n2 (n - 1) of 2G4 , and let (Eij) be a semi-Latin (n with 

support size n( n 1)( n 2)/2 of (n - 2)G3 and define 

Mij == + 1 i < j ~ 
Mi(n+j) == Bij + Gij 1:5 i, j :5 n, 

M(n+i)(n+n == Mij, 1 :5 i < j :5 

It is straightforward to check that M == (Mij) is a semi-Latin n-fadorization with support size 

n3 (2n - 1) - i of nK2n • 0 

Now, we can prove our main result concerning semi-Latin factorizations. To do this, we need 

the following notation. For every nand >., define 

BS(m,>.) == { {m, ... ,M}\A, 
{m, ... M}\(AUB), 

if >. ::j: n - 1, 
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where m :::: n2(n - 1)/2, M :::: min{>., n - l}.m, A :::: {m + iii 1, ... ,7,9,10,11, 13}, and 

B={M-ili=l, .. ,7,9,10,1l,13}. 

Theorem 3 Un ~ 6, then BS(4n,A) ~ SLF(K4n, A). 

Proof. Denote Xl = {I, ... ,2n}, X 2 {Xl, .. ,X2n}, Xl n X 2 0, and X Xl U X 2 • We 

denote by G and G1 the complete graph K 4n on X and complete bipartite graph K 2n ,2n on 

bipartition (XI, X 2 ), respectively. Let k 2n, and :::: G \ G 1• Clearly, G 2 is the union of 

two copies of K2n on two disjoint set of vertices. Thus G2 is 1-factorable. Now, the assertion 

is a straightforward consequence of Lemmas 3.1,3.2, and 3.3 and Theorem 1. 0 

4 Support sizes of quadruple systems 

this section, we some recursive methods to construct quadruple systems with 

different support sizes, and then utilizing them we essentially determine the set Q S S( v, >.) for 

v == 0 (mod 8). Our main tools are some doubling constructions which enable us to construct 

a QS(2u, >.) from two QS( u, >.) on two disjoint sets of points. 

Letvbeanevenintegergreaterthan6. Let Xl {i,o",V}, X 2 {xt, ... ,xv },x1 nx2 :::: 

o and X :::: Xl U X 2• 

Lemma 4.1 Let I'll 1'2 E QSS( u, >.), and 1'3 E A). Then 1'j E QSS(2u, A). 

Proof. Let (X1,8I) and (X2,82 ) be two QSCU,A) with support sizes 1'1 and 1'2, respectively. 

Let (Fij) be a semi-Latin A-factorization with support size 1'3 of AKu on X 2, and let 

B:::: 8 1 + 8 2 + 

Then (X, B) is a QS(2u, A) with support size E7:1 rio 0 

Lemma 4.2 Let u be a positive integer such that u ~ 14. If 1'1 E SLF( u, A + 2), 1'2,1'3 E 

QSS(U,A), s E SLF(u,2), and 0 515 u/2, then 

(i) bI :::: u.m2u - u2(u 1) - 21u(u -1) + s E QSS(2u,u), 

(li) b2 :::: u.m2u - u2( u - 1) - 21u( u - 1) + rj E QSS(2u, u + A). 

Proof. Let (Xl, BI) and (X2' B2) be two QS( u, A) with support sizes 1'1 and 1'2, respectively. 

Let (Fij) be a semi-Latin (A + 2)-factorization with support size 1'3 of (A + 2)Ku and let (Gjj ) 
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be a semi-Latin 2-fadorization with support size s of 2Ku' Let 

Bo == P4(X) \ (P4(X1 ) u P4(X2 ) u P2(X1 ) '" P2(X2», 

B3 == Bo + 

'" 
Then (X, is a QS(2u, u) with support size u.m2u-u2( u-l)+s, and (X, is a 

with support size u.m2u - uZ(u - 1) + L~=l rio This proves the assertion for I O. To prove 

the assertion for I 0, let and (X2 ,C2 ) be two triple systems of order 

u and index 6 (since u ~ 14, this is possible), and let 

Now, it is easy to see that fl and fz are disjoint; the of occurences of T 

in 1\ and f2 are the same; and each quadruple of fl is a nonrepeated quadruple of both 

and 84. Thus B3 \ fl + QS(2u,u) with support size and B4 \ fl + is 

QS(2u,u + A) with support size b2• 0 

2 or 4 6). Let A be u 

subsquare of order 2. Without loss of af>",.,.,.",111rv we can suppose that ali:::: i, for i 

For every i and j, (1 ::s; i,j u) define 

It is easy to see that B == is also a Latin square of order u. Let 

quadruple system of order u, and for every 1::S; ::s; define 

T11. :::: 

B11. == Ru + Sv. + Tv.. 

Then (X, (1 ::s; u ::s; u) are u mutually disjoint Steiner '"''',.,,,..,, ...... ''' systems 

Thus, if we define 

then (X, f) is a simple QS(2u, u - 3) and P4(Xd U P4(X2) c f. 
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Lemma. 4.3 Let u == 2 or 4 (mod 6). If TlIT2 E QSS(u,u - 3), and 1 :$ k :$ min{/1,u}, 

then b == (u - 3)q:zu - 2(:) + Tl + r:z + k.q:zu E QSS(2u,u 3 + /1). 

Proof. Let (Xl! r I ) and (X2' r 2 ) be two QS( U , ul - 3) with support sizes rl and r:z, respec

tively. Let 

rs == r \ (P4(Xd u P4(X2)), 

B ri + It:l Bi + (/1- k)Bk • 

Then (X,8) is a QS(2u,u - 3 + /1) with support size b. 0 

Let Y = {I, ... , 8}. We define a I-factorization of Kg on Y as follows: 

~l = {{1,2}{3,7},{4,8},{5,6}} 
~2 = {{1,3}{2,7},{4,6},{5,8}} 
~3 = {{1,4}{2,6},{3,8},{5,7}} 
~4 {{1,5}{2,8},{3,6},{4,7}} 
~5 = {{1,6}{2,5},{3,4},{7,8}} 
Fe = {{1,7}{2,4},{3,5},{6,8}} 
F1 = {{1,8}{2,3}, {4,5}, {6, 7}} . 

Since u ~ 16, there exists a1-factorizations {GI,'" ,Gu-d such that ~i C Gi, for i = 1, ... ,7 

[6]. For every 1 ::; i :$ u - 1 define 

Clearly, {Kt, ... , Ku-d is a 1-factorization of Ku on X 2• Let 

Li == { Ki + Ki+1 for 1 ::; i :$ u - 2, 

K u-1 + K 1 for i == u - 1. 

Then, {Lb ... , Lu-d is a 2-factorization of 2Ku on X 2• Let 

u-1 

C = P4(X) \ ( Xl '" P3(X2) + X:z '" P3(Xt} + L Gi '" Li). 
i=l 

Now, it is easy to check that (X,C) is a simple QS(2u, u 3) which contains P4 (X 1) U P4(X2 ). 

Let (Xt, B) be a Steiner quadruple system and define 

Bl = {{i,j, Ie, Xl}, {Xi, Xj, Xk, 1}I{i,j, k, I} E B} U {{i,j, Xi, Xj }II :$ i < j ::; u}. 
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Then, it is easy to see that (X,81 ) is a Steiner quadruple system of order 2u and 8 1 n C 0. 
Let 

r1 :::: C U Bb 

r2 P4(X) \ rl. 
Trivially, (X, fd and (X, r 2 ) are QS(2u, 2) and u- respectively. By 

applying trade-off method on these two simple we can obtain some new values in 

QSS(2u, u - 2) and QSS(2u, u 1) which are not obtained from Lemmas 4.2, and 4.3. 

Lemma 4.4 If u 16, then {( u - 2)qu - iii:::: 1, .. , 13} u-

Proof. For 1 

following table: 

4, we define two disjoint subsets Til and Ti2 of ac(:or'UlTI./:'! to the 

Til 

1 36xIX2 36x4Xg 37xIX4 

56xIX4 56x:zxg 57xIX2 

2 24x:zxs 24x3X4 25x2X3 

34X2X3 34x4XS 35x2XS 

3 23xIX7 23x6Xg 24xIX6 

35xIX6 35xiXS 45xIX7 

4 1234 1256 

2348 2568 3578 

37x2Xg 

57x4XS 

25x4XS 

35X3X4 

24x7XS 

45x6XS 

1467 

4678 

36xIX4 

56xIX2 

24x2X3 

34x2XS 

23xIX6 

35xIX7 

1235 

2358 

1246 1347 

2468 3478 

1567 

5678 
~~----------,--------------~------------------------

It is an easy exercise to check that (i) if ( i, j) 

the number of occurences of each T E P3(X) in 

1 ::; i ::; 4, Til C fl while 

n 

Hence, if we let :Fo :::: r 1 and 

:F1 :::: + Tn, 

:F2 :::: + T22, 

:F3 = (:F1 \ T21 ) + T22 , 

:::: \ T31) + Tn, 
:::: (:Fj-8 \ T41 ) + T42 , 

and 

1 ::; 

... ,7 

8 j:$ 14 

for 

same, 

then for every 1 :$ j::; 14 (X,:Fj) is a QS(2u,u - 2) with support size (u-
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Lemma 4.5 Ifu ~ 16, then {(u-1)qu - iii == 1, ... ,13} C QSS(2u,u 1). 

Proof. For 1 ~ i ~ 6, we define two disjoint subsets Til and Til of P4(X) according to the 

following table: 

i Til Til 

1 12x IX3 12xsX8 14xIXS 14x3XS 12xIXS 12x3Xg 14xIX3 14xsxg 

26xIXS 26x3Xg 46xIX3 46xsxg 26xIX3 26xsxg 46xIXS 46x3Xg 

2 37xlXr 37x4XS 38xlXS 38X4X7 37x2XS 37X4X7 38X2X7 38x4X6 

57X2X6 57X4X7 58xlX7 58x4XS 57X2X7 57x4XS 58X2X6 58x4X7 

3 24X2X3 24x4XS 25X2X4 25x3XS 24x2X4 24x3XS 25X2X3 25x4XS 

34X2X4 34x3XS 35X2X3 35x4XS 34x2X3 34x4XS 35x2X4 35x3XS 

4 16xIX7 16xsxg 17xIXg 17xsX7 16xIXg 16xsX7 17xIX7 17xsxg 

68xIXg 68x6X7 78xIX7 78x6Xg 68xIX7 68x6XS 78xIXg 78x6X7 

5 16X2X4 16x3xs 17x2XS 17x4XS 16x2XS 16x4XS 17x2x4 17x3XS 

68 X2X3 68x4XS 78 X2X4 78x3XS 68x2X4 68x3XS 78X2X3 78x4XS 

6 24xIX8 24X6X7 25xIX7 25X6X8 24xIX7 24X6X8 25xIX8 25X6X7 

34x IX7 34x6XS 35xIXg 35xoX7 34xIXg 34x6X7 35xIX7 35x6XS 

It is an easy exercise to check that (i) if (i, j) :f:. (k, 1), then Tij n Tkl == 0, (ii) for every 1 :::; i ~ 6 

the number of occurences of each T E P3 (X) in Til and Ti2 are the same, and (iii) for every 

1 :::; i ~ 6, Til C r 2 while 

ITI2 n r21 == ITzz n rzl == 1, 

IT32 n rzl == IT42 n rzl == 2, 

ITsz n r21 == IT6z n rzl == 4. 

Hence, if we let :F = r 2 and 

:F1 := (:F \ Tn) + Tll, 

:Fz == (.ri \ T21 ) + Tn, 

:Fj = (:Fj-Z \ T31 ) + T32 , 

:Fj := (:Fj-4 \ TS1 ) + Tsz, 

:Fj == (:Fj-4 \ T6l) + T6Z1 

:Fj = (:Fj-Z \ T4l ) + T4z , 

j = 3,4, 

5:::; j:::; 8, 

9:::; j :::; 12, 

13:::; j :::; 14. 

Then for every 1 :::; j :::; 14 (X,:Fj) is a QS(2u,u - 1) with support size (u - 1)qu - j. 0 
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In view of Lemmas 4.1-4.5, in order to determine QSS(2u, A) we only need a partial de

termination of QSS(u,>.) for all >.. It is well known that if v == 4 or 8 (mod 12), then v/2 

mutually disjoint Steiner quadruple systems exist [5] and if v == 0 (mod 6) then a large setof 

disjoint QS( v, 3)'s exists[8]. Utilizing these facts one can easily establish two following lemmas. 

Lemma 4.6 If u == 0 (mod 6) and>' == 0 (mod 3), then {3jQui1 j ~ min{t, (u - 3)/3)} C 

QSS(u,3t).O 

Lemma 4.7 If u == 4 or 8 (mod 12), then {jQui1 S; j $ min{t,u - 3}} C QSS(u,t). 0 

To apply Lemma 4.3 we need a partial determination for QS( v, v - 3) for all v == 4 or 8 

(mod 12). 

Lemma 4.8 If u 2 or 4 (mod 6) and u 2: 28, then {(~) - ii14 S; i ~ qu} c QSS(u,u - 3). 

Proof. Let 14 S; i S; qu and let (Y, 8 1 ) and (Y,82) be two Steiner quadruple systems of order 

u intersecting in i quadruples, and let 8 = P4(Y) \ 8 1 + 82. Then (Y, 8) is a QS( u, u - 3) with 

support size (:) - i. 0 

Lemma 4.9 Let u == 4 or 8 (mod 12), and u 2: 24. If 1 S; k S; u/4 and 1 S; I S; (u - 8)/4, 

then (~) - kl E QSS( u, u - 3). 

Proof. Let u = 2n, Xl = {l, ... ,n}, X2 = {XI, ... ,Xn }, X1nX2 = 0 and X = XIUX2. Let 

Y = {X2, ••• ,Xn }. Let (Y,8t) and (Y,B2 ) be two disjoint simple TS(n,I)'s and define 

k k k k 

8 = P4(X) \ C[)2i) >I< 8 1 + l)2i - 1) * 8 2 ) + 2:(2i) * 8 2 + I)2i - 1) * 8 1 . 

i=l i=l i=l i=l 

Then (X,8) is a QS(u,u - 3) with desired support size. 0 

The following lemma is proved in [2]~ 

Lemma 4.10 If v == 0 (mod 6), and v 2: 24, then 

{tv, tv + 8, tv + 12, tv + 14, ... ,v( v - 1)( v - 2)/12} C Q SSe v, 3). 0 

Now, we state and prove our main results concerning QSS( v, >.). let v == 0 (mod 2), and 

let Av = gcd(v- 3, 12), qv = v(v-1)(v-2)/12, tv = v(v2 -3v+42)/6, Mv = min{>.,v - 3.tv} 

and A = {I, ... , 7,9, 10, 11, 13}. If there exists no quadruple system of order v and index >., 
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the set PS(V,A) of possible support sizes of QS(V,A)'S is empty; and otherwise except for 

A v 3, we define P S( v, A) according to the following table 

v (mod 6) 

o 
2,4 

PS(V,A) 

{tv, ... ,Mv} \ {tv + iii E A} 

{qv, ... , Mv} \ {qv + iii E A} 

For>. 3, PS(V,A) is defined similarly, only with the omission of {Mv - iii E A}. 

Theorem 4 Ifv 0 (mod 8), and v 48, then PS(V,A) C QSS(V,A). 

Proof. Let u:::: and r E PS( v, A). If either r ::; (u 2)qv - 2qu or r ::; (u -1)qv 4qu 14 

and A U 1, then due to Lemma 4.1, r E QSS(v, >..). If r ~ (u - 2)qv - 2qu and A ~ u, then 

due to Lemma 4.2 r E QSS( v, A). If either (u 2)qv 2qu r (u - 2)qv - 14 and>" :::: u 2 

or (u l)qv 4qu - 14 ::; r (u l)qu - 4qu and>" :::: u - 1 (note that in both cases we have 

U 4 or 8 (mod then due to Lemma 4.3 r E QSS(v,>..). Finally if A E {u - 2,u -1} 

and Aqv 14::;; r >..qu, then due to Lemmas 4.5 and 4.6 r E QSS(V,A). 0 

'\..J'L'U'.AU,Ul.l .. JIt. Remarks 
1. Simple counting arguments show that there is no (3,4, v) trade of volume i for i E 

{1, .. ,7,9,10,1l,13}, which in turn implies there exist no QS(v,v - 3) with support size 

r for r E ... ,7,9,10,11, 13}. 

2. Let v == 2 or 4 (mod 6), and let (X, 8) be a QS( v, >..) with support size b > qv' For i EX, 

let 

then for i E X (X \ {i}, Bd is a triple system of order v - 1 and index A. Let bi :::: 18i I. Then 

b:::: (LiEXbi)/4. It well known that bi ~ mV-l (v -l)(v - 2)/6 and bi f/. {mv-l + iii:::: 
1,2,3,5}. Also if either bi :::: mv-l + 4 or bi :::: mv-l + 6, then one can easily determine the 

structure of blocks of frequency less than A up to isomorphism (in first case it is unique, and in 

the second case there are two possibilities). Putting these results together it is strightforward 

but tedious to show that 

bf/.{qv+ili 1, .. ,7,9,10,1l,13}. 

Therefore for v == 8 or 16 (mod 24) we have 

QSS(v, A):::: PS(v,>..). 
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3. Let v 0 (mod 24), and let (X,S) be a QS(v, A) with support size b. It is well known 

that b 2: tv, and again applying well known results on the support sizes of triple systems on 

derived one can show that b rt {tv+ili = 1, .. ,5}. On the other hand it can be shown 

that tv + 6 E QSS(v, A). Therefore Theorem 4 determines QSS(v,.x) with at least one and at 

most 6 possible omissions. 
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