Latin and Semi-Latin Factorizations of
 Complete Graphs and Support Sizes of Quadruple Systems *

S. Ajoodani-Namini

Institute for Studies in Theoretical Physics and Mathematics (IPM)
P.O. Box 19395-1795, Tehran, Iran.
and
Department of Mathematics 253-37
California Institute of Technology
Pasadena, CA 91125

Abstract

In this paper, we introduce the notions of Latin and semi-Latin factorizations of graphs and their support sizes. We essentially determine the set support sizes of Latin and semi-Latin factorizations of complete graphs. Utilizing these results we determine the set $Q S S(8 m, \lambda)$ of support sizes of quadruple systems of order $8 m$ and index λ for $m \geq 6$ with at most 5 possible omissions for each $m \equiv 0(\bmod 3)$.

1 Introduction

Let X be a finite set and k be a positive integer. We denote by $P_{k}(X)$ the set of all k-subsets of X. Suppose that \mathcal{B}_{1} and \mathcal{B}_{2} are two collections of the elements of $P_{k}(X)$ and m is a positive integer. The collection of the elements of \mathcal{B}_{1} and \mathcal{B}_{2} will be denoted by $\mathcal{B}_{1}+\mathcal{B}_{2}$ and m copies of \mathcal{B}_{1} is denoted by $m B_{1}$. The set of distinct elements of \mathcal{B}_{1} is called the support of \mathcal{B}_{1} and is denoted by \mathcal{B}_{1}^{*}. The number $b^{*}=\left|\mathcal{B}_{1}^{*}\right|$ is called the support size of \mathcal{B}_{1}. Let X_{1} and X_{2}

[^0]be two disjoint sets, and let k_{1} and k_{2} be two positive integers. Also, let \mathcal{B}_{1} and \mathcal{B}_{2} be two collections of the elements of $P_{k_{1}}\left(X_{1}\right)$ and $P_{k_{2}}\left(X_{2}\right)$, respectively. Then, we will adopt the following notation:
$$
\mathcal{B}_{1} * \mathcal{B}_{2}=\left\{A \cup B \mid A \in \mathcal{B}_{1} \& B \in \mathcal{B}_{2}\right\}
$$

Clearly $\mathcal{B}_{1} * \mathcal{B}_{2}$ is a collection of the elements of $P_{k_{1}+k_{2}}\left(X_{1} \cup X_{2}\right)$.
A quadruple system $Q S(v, \lambda)$ of order v and index λ is an ordered pair $D=(X, \mathcal{B})$ in which X is a v-set and \mathcal{B} is a collection of the elements of $P_{4}(X)$ (called quadruples or blocks) such that every $A \in P_{3}(X)$ appears in exactly λ (not necessarily distinct) blocks. A $Q S(v, \lambda)$ with no repeated blocks is called simple. A $Q S(v, 1)$ is called a Steiner quadruple system of order v and will be denoted by $S Q S(v)$.

A λ-factor in a multigraph G is a submultigraph F which is spanning and λ-regular. A λ factorization of a multigraph G is a partition of edges of G into λ-factors. For a simple graph G, the multigraph λG is obtained by repeating each edge λ times. Let G be a 1 -factorable graph of degree d. An $m \lambda$-factorization $\Gamma=\left\{F_{1}, \ldots, F_{d}\right\}$ of λG is called completely decomposable if there exist λ one-factorizations of G, e.g. $\Gamma_{i}=\left\{F_{1}^{i}, \ldots, F_{d}^{i}\right\}, 1 \leq i \leq \lambda$, such that for every $1 \leq j \leq d, F_{j}$ is the union of F_{j}^{i} s $(1 \leq i \leq \lambda)$. The support size of a λ-factor is the number of distinct edges in the factor, and the support size of a λ-factorization is the sum of the support sizes of its factors. We denote by $C S(G, \lambda)$ the set of the support sizes of completely decomposable λ-factorizations of λG. For simplicity, $C S\left(K_{n}, \lambda\right)$, and $C S\left(K_{n, n}, \lambda\right)$ will be denoted by $C S(n, \lambda)$, and $C(n, \lambda)$, respectively. These sets have been completely determined in $[1,3]$ and the main results are as follows.

- Given n and $\lambda, n \geq 5$,

$$
C(n, \lambda)= \begin{cases}\left\{n^{2}, \ldots, \min \{n, \lambda\} \cdot n^{2}\right\} \backslash A, & \text { if } \lambda \neq n \\ \left\{n^{2}, \ldots, \min \{n, \lambda\} \cdot n^{2}\right\} \backslash B, & \text { otherwise }\end{cases}
$$

where $A=\left\{n^{2}+i \mid i=1,2,3,5\right\}$ and $B=\left\{n^{2}+i, n^{3}-i \mid i=1,2,3,5\right\}$.

- For given n and $\lambda, n \geq 4$,

$$
C S(2 n, \lambda)= \begin{cases}\{m, \ldots, M\} \backslash A, & \text { if } \lambda \neq 2 n-1 \\ \{m, \ldots, M\} \backslash B, & \text { otherwise }\end{cases}
$$

where $m=n(2 n-1), M=\min \{2 n-1, \lambda\} . m, A=\{m+i \mid i=1,2,3,5\}, B=\{m+$ $i, M-i \mid i=1,2,3,5\}$.

Let G be a d-regular graph on $2 n$ vertices which is 1 -factorable, and let $\psi(G, \lambda)$ be the set of all λ-factors of λG. A Latin λ-factorization of λG is a $d \times d$ matrix $F=\left(F_{i j}\right)$ with entries in $\psi(G, \lambda)$ such that for every $1 \leq i \leq d, \mathcal{F}_{i}=\left\{F_{i j} \mid 1 \leq j \leq d\right\}$ and $\Gamma_{i}=\left\{F_{j i} \mid 1 \leq j \leq d\right\}$ are two λ-factorizations of λG. The support size of F is the sum of the support sizes of its entries. A Latin λ-factorization of λG is called completely decomposable if there exists λ Latin 1-factorizations of G, e.g. $F^{l}=\left(F_{i j}^{l}\right), 1 \leq l \leq \lambda$, such that $F_{i j}=\sum_{l=1}^{\lambda} F_{i j}^{l}$, for $1 \leq i, j \leq d$. The set of the support sizes of completely decomposable Latin λ-factorization of λG will be denoted by $L F(G, \lambda)$.

Let d be an odd integer and denote $d \Sigma 2=\{\{i, j\} \mid 1 \leq i, j \leq d+1\}$. A semi-Latin λ-factorization of λG is a function $\mathcal{F}: d \Sigma 2 \rightarrow \psi(G, \lambda),\{i, j\} \rightarrow F_{\{i, j\}}$ such that for every $1 \leq i \leq d,\left\{F_{T} \mid i \in T \in d \Sigma 2\right\}$ is a λ-factorization of λG. For simplicity, $F_{\{i, j\}}$ will be denoted by $F_{i j}$. The support size of F is the sum of the support sizes of $F_{i j}$'s. The set of the support sizes of semi-Latin λ-factorization of λG will be denoted by $S L F(G, \lambda)$. For the sake of simplicity, we denote $S L F\left(K_{2 n}, \lambda\right)$ by $S L F(2 n, \lambda)$.

A (p, λ)-pattern is a $p \times p$ matrix with entries in nonnegative integers and with constant line sum λ. A $(p, 1)$-pattern is called a permutation matrix. It is well known that every (p, λ)-pattern is a sum of λ (not necessarily distinct) permutation matrices. If $\left\{r_{1}, \ldots, r_{n}\right\}$ is any reordering of $\{1, \ldots, n\}$, then the permutation matrix $P=\left(\delta_{r_{i} j}\right)$ will be denoted by $\left(r_{1}, \ldots, r_{n}\right)$. Support size of a (p, λ)-pattern is the number of its nonzero entries. Let $S_{p}(p, \lambda)$ denote the set of possible support sizes for (p, λ)-patterns. In [3] it is proved that if $p \geq 3$, then

$$
S_{p}(p, \lambda)= \begin{cases}\left\{p, \ldots, \min \left\{\lambda p, p^{2}\right\}\right\} \backslash\{p+1\} & \text { if } \lambda \neq p \\ \left\{p, \ldots, p^{2}\right\} \backslash\left\{p+1, p^{2}-1\right\} & \text { otherwise }\end{cases}
$$

In this paper we intend to determine the set $Q S S(v, \lambda)$ of support sizes of quadruple systems of order v and index λ. First, we mention some well known results. Colbourn and Hartman [2], and Hartman and Yehudai[4] have completely determined the set $J(v)$ of possible intersections of two Steiner quadruple systems for $v \neq 14,26$. In this way they have essentially determined the set $Q S S(v, 2)$ for $v \equiv 2$ or $4(\bmod 6)$ with $v \neq 14,26$. Also in [2], the set of possible intersections for a special class of 3 -wise balanced designs is completely determined, and utilizing this result they obtained some partial result concerning $Q S S(v, 3)$ for $v \equiv 0(\bmod 6)$. In this paper we essentially determine $L F\left(K_{2 n}, \lambda\right), L F\left(K_{n, n}, \lambda\right)$ and $S L F\left(K_{4 n}, \lambda\right)$ for $n \geq 12$ and then utilizing these results we essentially determine $Q S S(v, \lambda)$ for $v \equiv 0(\bmod 8)$ with $v>48$.

2 Latin Factorizations

In this section, we develop some recursive methods to construct Latin factorizations with different support sizes, and then utilizing them we completely determine $L S\left(K_{2 n}, \lambda\right)$ and $L F\left(K_{n, n}, \lambda\right)$ for $n \geq 12$.

2.1. Recursive Constructions

Throughout this section, we suppose that G is a simple m-regular graph on $2 n$ vertices which is 1 -factorable. Let G_{1} be a subgraph of G such that both G_{1} and $G_{2}=G \backslash G_{1}$ are 1 -factorable, and $\operatorname{deg}\left(G_{1}\right) \leq m / 2$. Denote $d=\operatorname{deg}\left(G_{1}\right)$, and $k=\operatorname{deg}\left(G_{2}\right)$, so $m=d+k$, and $d \leq k$. Our first task is to show that any Latin 1 -factorization of G_{1} can be embedded in a Latin 1-factorization of G. Let $\mathcal{H}=\left(H_{i j}\right)$ be any Latin 1 -factorization of G_{1}, and let $A=\left(a_{i j}\right)$ be any Latin square of order m such that $1 \leq a_{i j} \leq d$, for $1 \leq i, j \leq d$ (since $2 d \leq m$ this is possible). Since both of G_{1} and G_{2} are 1-factorable, we can form a 1-factorization $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ of G such that $\left\{F_{1}, \ldots, F_{d}\right\}$ is a 1-factorization of G_{1} and $\left\{F_{d+1}, \ldots, F_{m}\right\}$ is a 1-factorization of G_{2}. Define

$$
L_{i j}= \begin{cases}H_{i j}, & \text { if } 1 \leq i, j \leq d \\ F_{a_{i j}}, & \text { otherwise }\end{cases}
$$

The proof of the following lemma is straightforward and so it is omitted.
Lemma 2.1 $\mathcal{L}=\left(L_{i j}\right)$ is a Latin 1-factorization of G.
Let σ be any permutation on $\{1, \ldots, d\}$ and let η be any permutation on $\{d+1, \ldots, m\}$. Define

$$
K_{i j}=\left\{\begin{array}{lll}
L_{i j}, & \text { if } 1 \leq i \leq d \\
L_{\sigma(i) j}, & \text { if } 1 \leq i \leq d \\
L_{\eta(i) j}, & \text { if } d+1 \leq i \leq m & \text { and } 1 \leq j \leq d \\
\text { and } \quad d \leq j \leq j \leq m
\end{array}\right.
$$

The proof of the following lemma is straightforward.
Lemma 2.2 $\mathcal{K}=\left(K_{i j}\right)$ is a Latin 1-factorization of G.
Lemma 2.3 Let $\lambda \geq 2$. If $r \in C L F\left(G_{1}, \lambda\right), s \in S_{p}(d, \lambda), 2 \leq p \leq \min \{d, \lambda\}$, and $q \in$ $\{0, \ldots, k\} \backslash\{1, k-1\}$, then
(i) $b=r+s k n+(k p-q) m n \in C L F(G, \lambda)$.
(ii) $b+t n m^{2} \in C L F(G, \lambda+t)$, for $t=1, \ldots, k$.

Proof. Let $B=\left(b_{i j}\right)$ be any $d \times k$ Latin rectangle whose first two rows are

$$
\begin{array}{cccccccc}
1 & \ldots & q-1 & q & q+1 & \ldots & k-1 & k \\
2 & \ldots & q & 1 & q+2 & \ldots & k & q+1
\end{array}
$$

if $q \notin\{0, k\}$ and

$$
\begin{array}{llll}
1 & \ldots & k-1 & k \\
2 & \ldots & k & 1
\end{array}
$$

otherwise. Define λ permutation matrices $Q^{1}, \ldots, Q^{\lambda}$ by

$$
\begin{aligned}
& Q^{1}= \begin{cases}(1, \ldots, k-1, k), & \text { if } q=0, \\
(2, \ldots, k, 1), & \text { if } q=k, \\
(2, \ldots, q, 1, q+1, \ldots, k-1, k), & \text { if } q \in\{2, \ldots, k-2\}\end{cases} \\
& Q^{l}= \begin{cases}\left(b_{l 1}, \ldots, b_{l k}\right), & \text { if } 2 \leq l \leq p, \\
\left(b_{p 1}, \ldots, b_{p k}\right), & \text { if } p<l \leq \lambda .\end{cases}
\end{aligned}
$$

Then $Q=\sum_{i=1}^{\lambda} Q^{i}$ is a (k, λ)-pattern with support size $k p-q$. Let $C=\left(c_{i j}\right)$ be any Latin square of order d and define a $d \times m$ matrix $D=\left(d_{i j}\right)$ by

$$
d_{i j}=\left\{\begin{array}{ll}
c_{i j}, & \text { for } 1 \leq j \leq d, \\
b_{i(j-d)}+d, & \text { for } d<j \leq m,
\end{array} \quad 1 \leq i \leq d\right.
$$

Clearly D is a $d \times m$ Latin rectangle, and so it can be completed in a Latin square $A=\left(a_{i j}\right)$ of order m. Let $P^{1}, \ldots, P^{\lambda}$ be permutation matrices of order d such that $P=\sum_{i=1}^{\lambda} P^{i}$ has exactly s nonzero entries. Let $\mathcal{M}=\left(M_{i j}\right)$ be a completely decomposable Latin λ-factorization with support size r of λG_{1}. Since \mathcal{M} is completely decomposable, we can find λ Latin 1 factorization of G_{1}, e.g. $\mathcal{M}_{l}=\left(M_{i j}^{l}\right), l=1, \ldots, \lambda$, such that $M_{i j}=\sum_{i=1}^{\lambda} M_{i j}^{l}$, for $1 \leq i, j \leq d$. Define $L_{i j}$'s as in Lemma 2.1. For every $1 \leq l \leq \lambda$, denote $P^{l}=\left(p_{i j}^{l}\right)$ and $Q^{l}=\left(q_{i j}^{l}\right)$. Also denote $P=\left(p_{i j}\right)$ and $Q=\left(q_{i j}\right)$. For every $1 \leq l \leq \lambda$, define:

$$
N_{i j}^{l}=\left\{\begin{array}{lll}
M_{i j}^{l} & \text { if } 1 \leq i \leq d \quad & \text { and } \quad 1 \leq j \leq d \\
\sum_{v=1}^{d} p_{i L_{v j}}^{l} L_{v j}, & \text { if } 1 \leq i \leq d \quad \text { and } \quad d+1 \leq j \leq d \\
\sum_{v=1}^{k} q_{(i-d) v}^{l} L_{(v+d) j}, & \text { if } d+1 \leq i \leq m & \text { and } \quad 1 \leq j \leq m
\end{array}\right.
$$

By Lemma 2.2, for every $1 \leq l \leq \lambda, \mathcal{N}_{l}=\left(N_{i j}^{I}\right)$ is a Latin 1-factorization of G. Thus if we put

$$
N_{i j}=\sum_{l=1}^{\lambda} N_{i j}^{l}, 1 \leq i, j \leq m,
$$

then $\mathcal{N}=\left(N_{i j}\right)$ is a completely decomposable Latin λ-factorization of λG. To prove (i), we must show that the support size of \mathcal{N} is b. For every $1 \leq i \leq k$, we denote by r_{i} the number of nonzero entries of i th row of Q, and for every $1 \leq i \leq d$, we denote by s_{i} the number of nonzero entries of i th row of P. Clearly, we have $k p-q=\sum_{i=1}^{k} r_{i}$, and $s=\sum_{i=1}^{d} s_{i}$. Now we compute the support size of each of $N_{i j}$'s.

If $1 \leq i \leq d$, and $d+1 \leq j \leq m$, then the support of $N_{i j}$ consists of s_{i} edge-disjoint 1 -factors of G, and consequently the support size of $N_{i j}$ is equal to $n s_{i}$.

If $d+1 \leq i \leq m$, and $1 \leq j \leq m$, then the support of $N_{i j}$ consist of r_{i-d} edge-disjoint 1 -factors of G, and consequently the support size of $N_{i j}$ is equal to $n r_{i-d}$.

The above considerations show that the support size of \mathcal{N} is equal to

$$
r+\sum_{i=1}^{d} \sum_{j=d+1}^{m} n s_{i}+\sum_{i=d+1}^{m} \sum_{j=1}^{m} t_{i-d} n=r+s k n+(k p-q) m n=b
$$

This proves (i).
To prove (ii), define m permutations $\sigma_{1}, \ldots, \sigma_{m}$ by

$$
\sigma_{i}(j)=a_{i j}, \text { for } 1 \leq i, j \leq m
$$

It is clear that for every $1 \leq l \leq m,\left(L_{\sigma(l) j}\right)$ is a Latin 1-factorization of G. Let

$$
R_{i j}=N_{i j}+\sum_{l=d+1}^{d+t} L_{\sigma_{l}(i) j}, \text { for } 1 \leq i, j \leq m
$$

Then $\mathcal{R}=\left(R_{i j}\right)$ is a completely decomposable $(\lambda+t)$-factorization of $(\lambda+t) G$. To complete the proof of (ii), we have to show that the support size of \mathcal{R} is equal to $b+t n m^{2}$, and to do this it suffices to show that for every i and $j(1 \leq i, j \leq m) N_{i j}$ and $N_{i j}^{j}=\sum_{l=d+1}^{m} L_{\sigma_{l}(i) j}$ are edge-disjoint. We consider the followoing three cases:

Case (i) $1 \leq i, j \leq d$. In this case, we have $N_{i j}^{\prime}=\sum_{l=d+1}^{m} L_{l j}=\sum_{l=d+1}^{m} F_{l}=G_{2}$. On the other hand, $N_{i j}=M_{i j}$ is a λ-factor of λG_{1}. Therefore $N_{i j}$ and $N_{i j}$ ' are edge-disjoint.

Case (ii) $1 \leq i \leq d$ and $d+1 \leq j \leq m$. For every $1 \leq l \leq \lambda$, we have $N_{i j}^{l}=\sum_{v=1}^{d} P_{i v}^{l} L_{v j}$. Thus $N_{i j}^{l}$ is a subgraph of $\sum_{v=1}^{d} L_{v j}=\sum_{l=1}^{d} L_{\sigma_{l}(i) j}$. Hence, for every $1 \leq l \leq \lambda, N_{i j}^{l}$ and $N_{i j}$, are edge-disjoint. Consequently $N_{i j}=\sum_{l=1}^{\lambda} N_{i j}^{l}$ and $N_{i j}{ }^{\prime}$ are edge-disjoint.

Case (iii) $d+1 \leq i \leq m$ and $1 \leq j \leq m$. For every $1 \leq l \leq \lambda$, we have $N_{i j}^{l}=$ $\sum_{v=1}^{k} q_{(i-d) v}^{l} L_{(v+d) j}$. And by definition of A and Q^{l} 's, we have

$$
q_{(i-d) v}^{l} \neq 0 \Longleftrightarrow v \in\left\{b_{l(i-d)} \mid 1 \leq l \leq d\right\} \Longleftrightarrow v+d \in\left\{a_{l i} \mid 1 \leq l \leq d\right\}=\left\{\sigma_{l}(i) \mid 1 \leq l \leq d\right\}
$$

Thus for every $1 \leq l \leq \lambda, N_{i j}^{l}$ is a subgraph of $\sum_{l=1}^{d} L_{\sigma_{l}(i) j}$, and consequently $N_{i j}^{l}$ and $N_{i j}$ ' are edge-disjoint. Therefore $N_{i j}=\sum_{l=1}^{\lambda} N_{i j}^{l}$ and $N_{i j}{ }^{\prime}$ are edge-disjoint.

These observations show that the support size of \mathcal{R} is equal to $b+n m^{2}$.
Lemma 2.4 Let G_{3} and G_{4} be two simple 1-factorable graph of the same degree d on two disjoint sets of vertices. If $r \in C L F\left(G_{3}, \lambda\right)$ and $s \in C L F\left(G_{4}, \lambda\right)$, then $r+s \in C L F\left(G_{3}+G_{4}, \lambda\right)$. Proof. Proof is straightforward and so it is left.

Lemma 2.5 Let G be a simple d-regular graph on $2 n$ vertices which is 1 -factorable. If $r \in C(d, \lambda)$, then $r n \in C L F\left(G_{4}, \lambda\right)$.
Proof. Denote $X_{1}=\{1, \ldots, d\}$ and $X_{2}=\{d+1, \ldots, 2 d\}$. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{d}\right\}$ be a completely decomposable λ-factorization with support size r of $\lambda K_{d, d}$ on bipartition $\left(X_{1}, X_{2}\right)$. Since \mathcal{F} is completely decomposable, we can find $\lambda 1$-factorizations of $K_{d, d}$ on bipartition $\left(X_{1}, X_{2}\right)$, e.g. $\mathcal{F}_{i}=\left\{F_{1}^{i}, \ldots, F_{d}^{i}\right\}$, such that $F_{i}=\sum_{j=1}^{\lambda} F_{i}^{j}$, for $1 \leq i \leq d$. Now, for every $1 \leq l \leq \lambda \mathcal{F}_{l}$ is a 1 -factorization of $K_{d, d}$ on bipartition $\left(X_{1}, X_{2}\right)$, thus there exists a Latin square $A^{l}=\left(a_{i j}^{l}\right)$ of order d such that

$$
F_{i}^{l}=\left\{\left\{a_{i j}^{l}, j+d\right\} \mid 1 \leq j \leq d\right\}, \quad 1 \leq i \leq d .
$$

Now let $\left\{K_{1}, \ldots, K_{d}\right\}$ be any 1-factorization of G and for every $1 \leq l \leq \lambda$, define

$$
H_{i j}^{l}=K_{a i j}^{l}, \quad 1 \leq i, j \leq d
$$

Now, by Lemma 2.1 for every $1 \leq l \leq \lambda, \mathcal{H}_{l}=\left(H_{i j}^{l}\right)$ is a Latin 1 -factorization of G. Thus if we set

$$
H_{i j}=\sum_{l=1}^{\lambda} H_{i j}^{l}, \quad 1 \leq i, j \leq d
$$

then $H=\left(H_{i j}\right)$ is a completely decomposable Latin λ-factorization of λG, and it is easy to see that its support size is $r n$.

2.2 Necessary Conditions

In this section we obtain some necessary conditions on the support sizes of Latin λ factorization. To do this, we first obtain some necessary conditions on the support sizes of
λ-factors and λ-factorizations of λG, where G is a simple 1 -factorable graph of degree d on $2 n$ vertices. The first lemma is trivial.

Lemma 2.6 Let F be a λ-factor of λG with support size t, then $t \in\{n, \ldots, \min \{\lambda, d\} . n\} \backslash$ $\{n+1\}$, and if $\lambda=d$, then $t \neq n d-1$.

The following lemma is proved in [3].
Lemma 2.7 Let G be a simple d-regular graph on $2 n$ vertices which is 1 -factorable. Then $C S(G, \lambda) \subseteq\{m, \ldots, M\} \backslash A$, where $m=n d$ and $M=\min \{\lambda, d\} . m$ and $A=\{m+1, m+$ $2, m+3, m+5\}$ if $\lambda \neq d$ and $A=\{m+1, m+2, m+3, m+5, M-1, M-2, M-3, M-5\}$ otherwise.

Now, we deal with the Latin λ-factorizations of λG. Our goal is to prove the following lemma.

Lemma 2.8 Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{d}\right\}$ be any Latin λ-factorization of λG, and let r be its support size. Then $r \in\left\{d^{2} n, \ldots, \min \{\lambda, d\} \cdot d^{2} n\right\} \backslash\left\{d^{2} n+i \mid i=1, \ldots, 7,9,10,11,13\right\}$, and if $\lambda=d$, then $r \notin\left\{d^{3} n-i \mid i=1, \ldots, 7,9,10,11,13\right\}$.
Proof. By definition, for every $1 \leq i \leq d, \mathcal{F}_{i}=\left\{F_{i j} \mid 1 \leq j \leq d\right\}$ and $\Gamma_{i}=\left\{F_{i j} \mid 1 \leq j \leq d\right\}$ are two λ-factorizations of λG. For every $i, j, 1 \leq i, j \leq d$, let $r_{i j}$ denote the support size of $F_{i j}$ and let r_{i} and s_{j} denote the support sizes of \mathcal{F}_{i} and Γ_{j}, respectively. Clearly, we have $r=\sum_{i=1}^{d} r_{i}=\sum_{j=1}^{d} s_{j}=\sum_{i, j=1}^{d} r_{i j}$.

By Lemma 2.6, we have $n \leq r_{i j} \leq \min \{\lambda, d\} . n, r_{i j} \neq n+1$, and if $\lambda=d$, then $r_{i j} \neq d n-1$, and hence $d^{2} n \leq r \leq \min \{\lambda, d\} d^{2} n$. Let $r \neq d^{2} n$, and hence for some i and $j, r_{i}>d n$ and $s_{j}>d n$. Without loss of generality, we can suppose that for some $k, l, 1 \leq k, l \leq d$, we have $r_{i}>d n$ if and only if $i \leq k$, and $s_{j}>d n$ if and only if $j \leq l$. Also let $A=\left\{\{i, j\} \mid r_{i j} \neq n\right\}$, and $m=|A|$. Clearly $k \geq 2$ and $l \geq 2$. If $k=3$ or $l=3$, then by Lemma $2.7, r>d^{2} n+12$ and $r \neq d^{2} n+13$. If $k=l=2$, then $A=\{\{1,1\},\{1,2\},\{2,1\},\{2,2\}\}$. Now, it is immediately seen that $r_{11}=r_{12}=r_{21}=r_{22}$. Thus $r=\left(d^{2}-4\right) n+4 r_{11}$, and since $r_{11}>n+1$, the assertion holds. A similar argument shows that if $\lambda=d$, then $r \notin\left\{d^{3} n-i \mid i=1, \ldots, 7,9,10,11,13\right\}$.

2.3 Complete Graphs

Let $A(n, d, \lambda)$ denote the set of all integers k such that there exists a simple d-regular bipartite graph G on $2 n$ vertices which is 1 -factorable and $k \in C L F(G, \lambda)$, and let $B(n, d, \lambda)$
denotes the set of all integers k such that there exists a simple d-regular graph G on $2 n$ vertices such that both G and \bar{G} are 1-factorable, and $k \in C L F(G, \lambda)$. In this section, we completely determine $A(n, d, \lambda)$ and $B(n, d, \lambda)$ for $d \geq 6$.

For any three positive integers n, d, and λ, define

$$
A S(n, d, \lambda)= \begin{cases}\{m, \ldots, M\} \backslash A, & \text { if } \lambda \neq d \\ \{m, \ldots, M\} \backslash(A \cup B), & \text { otherwise }\end{cases}
$$

where $m=n d^{2}, M=\min (d, \lambda) m, A=\{m+i \mid i \in C\}, B=\{M-i \mid i \in C\}, C=$ $\{1, \ldots, 7,9,10,11,13\}$. The main results of this section are the two following theorems:

Theorem 1 Let n and d be two positive integers such that $d \leq n$. If $d=6$ and $2 d \leq n$ or $d \geq 12$, then $A(n, n, \lambda)=A S(n, d, \lambda)$.

Theorem 2 Let n and d be two positive integers such that $d \leq 2 n-1$. If $12 \leq d$, then $B(n, d, \lambda)=A S(n, d, \lambda)$.

To prove these theorems, we develop some methods to determine $A(n, d, \lambda)$ and $B(n, d, \lambda)$ from $A\left(m, d_{1}, \mu\right)$. In this way, the following lemma is our main tool.

Lemma 2.9 Let A and B be two disjoint n-set and let $X=A \cup B$. Let $d \leq n$ and let G be a simple d-regular bipartite graph on bipartition (A, B) which is 1 -factorable. Then (i) $K_{n, n} \backslash G$ is 1 -factorable, and (ii) if either $d<n$ or $n \equiv 0(\bmod 2)$, then $\bar{G}=K_{2 n} \backslash G$ is also 1-factorable.
Proof. Part (i) is an immediate consequence of the well known fact that every regular bipartite graph is 1 -factorable, and for part (ii) note that if $n \equiv 0(\bmod 2)$, then $\overline{K_{n, n}}$ is the union of two vertex-disjoint copies of K_{n} and so it is 1 -factorable, and for odd n it is easy to see that the complement of a $(n-1)$-regular bipartite graph on $2 n$ vertices (which is unique up to isomorphism) is 1 -factorable.

Lemma 2.10 Let d, d_{1} and m be three positive integers such that $4 \leq 2 d_{1} \leq d \leq m$, and denote $k=d-d_{1}$. If $r \in A\left(m, d_{1}, \mu\right), s \in S_{p}\left(d_{1}, \mu\right), 2 \leq p \leq \min \left(d_{1}, \mu\right)$, and $q \in\{0, \ldots, k\} \backslash\{1, k-1\}$, then $r+s k m+(k p-q) m d+t m d^{2} \in A(m, d, \mu+t)$ for $t=0, \ldots, k$.
Proof. Denote $A=\{1, \ldots, n\}$ and $B=\{m+1, \ldots, 2 m\}$. Let G_{1} be a simple 1 -factorable bipartite graph of degree d_{1} on bipartition (A, B) such that $r \in C L F(G, \mu)$. Let $\left\{F_{1}, \ldots, F_{m}\right\}$ be a 1-factorization of $K_{m, m}$ on bipartition (A, B) such that $\left\{F_{1}, \ldots, F_{d_{1}}\right\}$ is a 1-factorization of G_{1}. Let $G=\cup_{i=1}^{d} F_{i}$. Then G is a simple d-regular bipartite graph on bipartition (A, B),
and G_{1} is a subgraph of G, and both G_{1} and $G_{2}=G \backslash G_{1}$ are 1-factorable. Now, the assertion follows from Lemma 2.3.

Lemma 2.11 Let d, d_{1} and m be three positive integers such that $4 \leq 2 d_{1} \leq d \leq 2 m-1$, and denote $k=d-d_{1}$. If $r \in A\left(m, d_{1}, \mu\right), s \in S_{p}\left(d_{1}, \mu\right), 2 \leq p \leq \min \left(d_{1}, \mu\right)$, and $q \in$ $\{0, \ldots, k\} \backslash\{1, k-1\}$, then $r+s k m+(k p-q) m d+t m d^{2} \in B(m, d, \mu+t)$ for $t=0, \ldots, k$.
Proof. Proof of this lemma is essentially similar to the proof of Lemma 2.10 and so it is left.

In view of these two lemmas, to prove Theorems 1 and 2 we must partially determine $A(n, d, \mu)$ for small d 's. The following lemma is an immediate consequence of Lemma 2.4.

Lemma 2.12 If $r_{1} \in A\left(n_{1}, d, \lambda\right)$ and $r_{2} \in A\left(n_{2}, d, \lambda\right)$, then $r_{1}+r_{2} \in A\left(n_{1}+n_{2}, d, \lambda\right)$.
Lemma 2.13 If n is a positive integer greater than 4 , then

$$
\{4 l \mid n \leq l \leq \min \{2, \lambda\} n\} \backslash\{4 n+4,8 n-4\} \subset A(n, 2, \lambda)
$$

Proof. By Lemma 2.5 we have $\{8,16\} \subset A(2,2, \lambda)$ and $\{12,24\} \subset A(3,2, \lambda)$ for every $2 \leq \lambda$. Now the result follows by induction on n (and utilizing Lemma 2.12).

Lemma 2.14 Let $n \geq 6$. If $r_{1} \in A(n, 2, \lambda), r_{2}, r_{3} \in\{4 n, 8 n\}, k \in\{0,2,4\}$, and $0 \leq u \leq 4$, then $b=\sum_{i=1}^{3} r_{i}+6(8-k) n+36 u n \in A(n, 6, \lambda+u)$.
Proof. Denote $A=\{1, \ldots, n\}$ and $B=\{n+1, \ldots, 2 n\}$. Let G_{1} be a simple 2-regular bipartite graph on bipartition (A, B) such that $r \in C L F\left(G_{1}, \lambda\right)$. Let $\left.\left\{F_{1}, \ldots, F_{n}\right\}\right\}$ be a 1 factorization of $K_{n, n}$ on bipartition (A, B) such that $\left\{F_{1}, F_{2}\right\}$ is a 1 -factorization of G_{1}. For $i=2,3$, let $G_{i}=F_{2 i-1}+F_{2 i}$, and let $G=\sum_{i=1}^{3} G_{i}$. We must show that $b \in C L F(G, \lambda+u)$. Let $A=\left(a_{i j}\right)$ be any Latin square of order 6 whose first two rows are

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 3 & 6 & 5
\end{array}
$$

and define $K_{i j}=F_{a_{i j}}$ for $1 \leq i, j \leq 6$. It is not difficult to see that there exist a permutation σ on $\{1, \ldots, 2 d\}$ with exactly $(2 k+2)$ fixed points such that $\sigma(1)=1, \sigma(2)=2$, and $\sigma(i) \in$ $\left\{a_{1 i}, a_{2 i}\right\}$ for $i=1, \ldots, 2 d$. For $1 \leq l \leq 3$ let $\left(N_{i j}^{l}\right)$ be a completely decomposable Latin λ-factorization with support size r_{l} of λG_{l}. Now for $1 \leq i \leq 2$ define

$$
M_{i j}= \begin{cases}N_{i 1}^{l}, & \text { if } j=2 l-1 \\ N_{i 2}^{l}, & \text { if } j=2 l\end{cases}
$$

and for $3 \leq i \leq 6$ define $M_{i j}=K_{i j}+K_{\sigma(i) j}$. and let

$$
H_{i j}=M_{i j}+\sum_{l=3}^{u+2} K_{\eta_{l}(i) j}, \quad 1 \leq i, j \leq 6,
$$

in which $\eta_{l l}(i)=a_{i l}$. Now it is easy to check that $\mathcal{L}=\left(L_{i j}\right)$ is a completely decomposable Latin $(\lambda+u)$-factorization with support size b of $(\lambda+u) G$.

Lemma 2.15 If $n \geq 12$, then $A(n, 6, \lambda)=A S(n, 6, \lambda)$.
Proof. Denote $X_{1}=\{1, \ldots, n\}, X_{2}=\left\{x_{1}, \ldots, x_{6}\right\}$. $A \cap B=\emptyset$. Denote $m=n-6$. By Lemmas 2.13 and 2.14 we have

$$
\{4 k \mid 9 m \leq k \leq \min \{\lambda, 6\} .9 m\} \backslash\{4 l n+4,4 l n-4 \mid 9 \leq l \leq 9 \min (\lambda, 6)\} \subset A(m, 6, \lambda)
$$

In [2], it is shown that

$$
\{216,224,228,230, \ldots, 235,237,431\} \subset A(6,6,2)
$$

Also, it is easy to show that

$$
\begin{gathered}
\{216 l-i \mid 1 \leq i \leq 7\} \subset A(6, l, l), \quad \text { for } 2 \leq l \leq 5 \\
\{1289, \ldots, 1295\} \subset A(6,7,7)
\end{gathered}
$$

Now, the assertion is a straightforward consequence of Lemma 2.4.
Proof of Theorem 1 In view of Lemma 2.10, it is easy to see that if the assertion is true for $d=d_{1}$ (where $d_{1}=6$ or $d_{1} \geq 12$) then it is also true for $d \in\left\{2 d_{1}, \ldots, 4 d_{1}-1\right\}$, and by Lemma 2.15 the assertion is true for $d=6$ and $n \geq 12$. Now, the result follows by induction on d.

Proof of Theorem 2 The assertion is a straightforward consequence of Lemmas 2.9, 2.12 and Theorem 1.

3 Semi-Latin Factorizations of Complete Graphs

In this section, we develop some recursive methods to construct semi-Latin factorization with different support sizes, and then utilizing them, we essentially determine $S L F\left(K_{4 n}, \lambda\right)$ for $n \geq 6$.

Let k be a positive integer and $k \equiv 0(\bmod 2)$. Let G be a simple $(2 k-1)$-regular graph on $2 n$ vertices which is 1 -factorable. Let G_{1} be a k-regular subgraph of G such that both G_{1} and $G_{2}=G \backslash G_{1}$ are 1-factorable.

Lemma 3.1 If $r_{1}, r_{2} \in S L F\left(G_{2}, \lambda\right), s_{1} \in L F\left(G_{2}, k-1\right), r_{3} \in L F\left(G_{1}, \lambda\right), s_{2} \in L F\left(G_{1}, \lambda+1\right)$, and $b=s_{1}+(2 k-1)(k-1) n+k^{2}(k-1) n$.Then
(i) $r_{1}+r_{2}+r_{3} \in S L F(G, \lambda)$,
(ii) $b+n k^{2} \in S L F(G, k)$,
(iii) $b+r_{1}+r_{2}+s_{2} \in S L F(G, k+\lambda)$.

Proof. Let $F=\left(F_{i j}\right)$ and $N=\left(N_{i j}\right)$ be two semi-Latin λ-factorizations with support size r_{1} and r_{2} of λG_{2}, respectively. Let $H=\left(H_{i j}\right)$ be a Latin $(k-1)$-factorization with support sizes s_{1} of $(k-1) G_{2}$, and let $K=\left(K_{i j}\right)$ be a Latin λ-factorization with support size r_{3} of λG_{1}. Let $L=\left(L_{i j}\right)$ be a Latin $(\lambda+1)$-factorization with support size s_{2} of $(\lambda+1) G_{i}$, and let $M=\left(M_{i j}\right)$ be a Latin 1 -factorization of G_{1}.

To prove (i), for every i and $j, 1 \leq i, j \leq k$, let

$$
\begin{aligned}
A_{i j} & =F_{i j}, \\
A_{k+i, k+j} & =N_{i j}, \\
A_{i, k+j} & =K_{i j} .
\end{aligned}
$$

Then $A=\left(A_{i j}\right)$ is a semi-Latin λ-factorization with support size $\sum_{i=1}^{3} r_{i}$ of λG.
(ii) Let

$$
\begin{array}{ll}
B_{i j}=B_{k+i, k+j}=G_{1}, & 1 \leq i<j \leq k \\
B_{j, k+1}=G_{2}, & 1 \leq j \leq k \\
B_{i, k+1+j}=H_{i j}, & 1 \leq i, j \leq k-1, \\
B_{k, j}=G_{2}, & k+1 \leq j \leq 2 k
\end{array}
$$

Now if $1 \leq i \leq k<j \leq d$, then $B_{i j}$ is a $(k-1)$-factor of $k G_{1}$ (and consequently of $k G$) and otherwise it is a k-factor of $k G_{2}$ (and consequently of $k G$). Also, it is easy to check that

$$
\sum_{j=1}^{2 k} B_{i j}=(k-1) G_{1}+k G_{2}, \quad \text { for } 1 \leq i \leq k
$$

and

$$
\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left|B_{i j}^{*}\right|=\left(k^{2}+2 k-1\right)(k-1) n+s_{1}=b
$$

Thus, if we let

$$
C_{i j}= \begin{cases}B_{i j}+M_{i(j-k)}, & \text { if } 1 \leq i \leq k<j \leq 2 k \\ B_{i j}, & \text { otherwise }\end{cases}
$$

then $\left(C_{i j}\right)$ would be a semi-Latin k-factorization with support size $b+n k^{2}$ of $k G$. (Note that if $1 \leq i<k<j \leq 2 k$, then $B_{i j}$ is a subgraph of $k G_{2}$, and consequently $B_{i j}$ and $M_{i(j-k)}$ are edge-disjoint.) This proves (ii).

To Prove (iii), let

$$
D_{i j}= \begin{cases}B_{i j}+F_{i j}, & 1 \leq i<j \leq k \\ B_{i j}+L_{i j}, & 1 \leq i \leq k<j \leq 2 k \\ B_{i j}+G_{i j}, & k<i<j \leq 2 k\end{cases}
$$

Now, it is not difficult to see that $\left(D_{i j}\right)$ is a semi-Latin $(k+\lambda)$-factorization of $(k+\lambda) G$ and its support size is

$$
\begin{aligned}
\sum_{i<j}\left|D_{i j}^{*}\right| & =\sum_{i, j=1}^{k}\left(\left|B_{i j}^{*}\right|+\left|F_{i j}^{*}\right|\right)+\sum_{i=1}^{k} \sum_{j=k+1}^{2 k}\left(\left|B_{i j}^{*}\right|+\left|L_{i j}^{*}\right|\right)+\sum_{k<i<j \leq 2 k}\left(\left|B_{i j}^{*}\right|+\left|G_{i j}^{*}\right|\right) \\
& =b+r_{1}+r_{2}+s_{2} .
\end{aligned}
$$

Lemma 3.1 presents an inductive method to determine the spectrum of support sizes of semi-Latin factorizations of a multigraph G from the spectrum of its subgraphs. Thus, to apply this lemma, we need a partial determination of $\operatorname{SLF}(G, \lambda)$ for any simple 1 -factorable graph G (of odd degree). The following lemma gives such a determination.

Lemma 3.2 Let G_{2} be a simple ($2 k-1$)-regular graph which is 1 -factorable. If $r \in$ $C S\left(G_{2}, \lambda, \lambda\right)$, then $k r \in S L F\left(G_{2}, \lambda\right)$.
Proof. Let $\left\{H_{1}, \ldots, H_{2 k-1}\right\}$ be a λ-factorization with support size r of λG_{2} and let $A=\left(a_{i j}\right)$ be a symmetric Latin square of order $2 k$ on $\{0, \ldots, 2 k-1\}$ such that $a_{i i}=0$ for $0 \leq i \leq 2 k-1$. For $1 \leq i<j \leq 2 k$, let $F_{i j}=H_{a_{i j}}$. It is easy to see that $\left(F_{i j}\right)$ is a semi-Latin λ-factorization with support size $k r$ of λG_{2}.

Lemma 3.3 Let n be a positive integer such that $n \equiv 0(\bmod 2)$ and $n \geq 12$. If $36 n-i \in A(n, 6,2)$, then $n^{3}(2 n-1)-i \in S L F\left(K_{2 n}, n\right)$.
Proof. Let G_{1} be a simple 6 -regular bipartite graph on $2 n$ vertices such that $36 n-i \in$ $\operatorname{CLF}\left(G_{1}, 2\right)$. By Lemma 2.9, there exists a 1-factorization $\left\{F_{1}, \ldots, F_{n}, H_{1}, \ldots, H_{n-1}\right\}$ of $K_{2 n}$ such that $\left\{F_{1}, \ldots, F_{6}\right\}$ is a 1-factorization of G_{1}. Let

$$
\begin{array}{ll}
G_{2}=\sum_{i=1}^{n} F_{i}, & G_{3}=\sum_{i=1}^{n-1} F_{i} \\
G_{4}=\sum_{i=1}^{n-1} H_{i}, & G_{5}=\sum_{i=1}^{n} H_{i}
\end{array}
$$

where $H_{n}=F_{n}$. Let $A=\left(a_{i j}\right)$ be any Latin square of order n such that $1 \leq a_{i j} \leq 6$ if
$1 \leq i, j \leq 6$. Define n permutations $\sigma_{1}, \ldots, \sigma_{n}$ by the following rule:

$$
\sigma_{i}(j)=a_{i j}, 1 \leq i, j \leq n .
$$

Now, for every $1 \leq i, j \leq n$, define

$$
K_{i j}=F_{a_{i j}} \text { and } L_{i j}=H_{a_{i j}} .
$$

Clearly, $\mathcal{K}=\left(K_{i j}\right)$ and $\mathcal{L}=\left(L_{i j}\right)$ are two Latin 1 -factorizations of G_{2} and G_{5}, respectively. Let $\mathcal{N}=\left(N_{i j}\right)$ be any Latin 2 -factorization with support size $36 n-i$ of $2 G_{1}$, and for $1 \leq i, j \leq n$, define

$$
\begin{aligned}
& B_{i j}= \begin{cases}N_{i j}, & \text { if } 1 \leq i, j \leq 6, \\
K_{\sigma_{1}(i) j}+K_{\sigma_{2}(i) j}, & \text { otherwise },\end{cases} \\
& C_{i j}=\sum_{l=3}^{n} L_{\sigma_{l}(i) j} .
\end{aligned}
$$

Clearly, $\left(B_{i j}\right)$ is a Latin 2-factorization with support size $2 n^{2}-i$ of $2 G_{2}$, and $\left(C_{i j}\right)$ is a Latin $(n-2)$-factorization with support size $(n-2) n^{2}$ of $(n-2) G_{5}$. Now, we prove that for every $1 \leq i, j \leq n, B_{i j}$ and $C_{i j}$ are edge-disjoint. First note that $\left\{a_{\sigma_{l}(i) j} \mid 1 \leq l \leq n\right\}=\{1, \ldots, n\}$. Choose k such that $a_{\sigma_{k}(i) j}=n$. If $k \leq 2$, then $C_{i j}$ is a subgraph of G_{4} while $B_{i j}$ is a subgraph of $2 G_{2}$, and if $k \geq 3$, then $B_{i j}$ is a subgraph of $2 G_{3}$ while $C_{i j}$ is a subgraph of G_{4}. Therefore, for every $1 \leq i, j \leq n, B_{i j}$ and $C_{i j}$ are edge-disjoint. Now, let $\left(D_{i j}\right)$ be any semi-Latin factorization with support size $n^{2}(n-1)$ of $2 G_{4}$, and let $\left(E_{i j}\right)$ be a semi-Latin $(n-2)$-factorization with support size $n(n-1)(n-2) / 2$ of $(n-2) G_{3}$ and define

$$
\begin{aligned}
M_{i j} & =D_{i j}+E_{i j} & & 1 \leq i<j \leq n, \\
M_{i(n+j)} & =B_{i j}+C_{i j} & & 1 \leq i, j \leq n, \\
M_{(n+i)(n+j)} & =M_{i j}, & & 1 \leq i<j \leq n .
\end{aligned}
$$

It is straightforward to check that $\mathcal{M}=\left(M_{i j}\right)$ is a semi-Latin n-factorization with support size $n^{3}(2 n-1)-i$ of $n K_{2 n}$.

Now, we can prove our main result concerning semi-Latin factorizations. To do this, we need the following notation. For every n and λ, define

$$
B S(m, \lambda)= \begin{cases}\{m, \ldots, M\} \backslash A, & \text { if } \lambda \neq n-1 \\ \{m, \ldots, M\} \backslash(A \cup B), & \text { otherwise }\end{cases}
$$

where $m=n^{2}(n-1) / 2, M=\min \{\lambda, n-1\} . m, A=\{m+i \mid i=1, \ldots, 7,9,10,11,13\}$, and $B=\{M-i \mid i=1, \ldots, 7,9,10,11,13\}$.

Theorem 3 If $n \geq 6$, then $B S(4 n, \lambda) \subseteq S L F\left(K_{4 n}, \lambda\right)$.
Proof. Denote $X_{1}=\{1, \ldots, 2 n\}, X_{2}=\left\{x_{1}, \ldots, x_{2 \pi}\right\}, X_{1} \cap X_{2}=\emptyset$, and $X=X_{1} \cup X_{2}$. We denote by G and G_{1} the complete graph $K_{4 n}$ on X and complete bipartite graph $K_{2 n, 2 n}$ on bipartition (X_{1}, X_{2}), respectively. Let $k=2 n$, and $G_{2}=G \backslash G_{1}$. Clearly, G_{2} is the union of two copies of $K_{2 n}$ on two disjoint set of vertices. Thus G_{2} is 1 -factorable. Now, the assertion is a straightforward consequence of Lemmas $3.1,3.2$, and 3.3 and Theorem 1.

4 Support sizes of quadruple systems

In this section, we develop some recursive methods to construct quadruple systems with different support sizes, and then utilizing them we essentially determine the set $Q S S(v, \lambda)$ for $v \equiv 0 \quad(\bmod 8)$. Our main tools are some doubling constructions which enable us to construct a $Q S(2 u, \lambda)$ from two $Q S(u, \lambda)$ on two disjoint sets of points.

Let v be an even integer greater than 6. Let $X_{1}=\{1, \ldots, v\}, X_{2}=\left\{x_{1}, \ldots, x_{v}\right\}, X_{1} \cap X_{2}=$ \emptyset and $X=X_{1} \cup X_{2}$.

Lemma 4.1 Let $r_{1}, r_{2} \in Q S S(u, \lambda)$, and $r_{3} \in S L F(u, \lambda)$. Then $\sum_{i=1}^{3} r_{i} \in Q S S(2 u, \lambda)$.
Proof. Let $\left(X_{1}, \mathcal{B}_{1}\right)$ and $\left(X_{2}, \mathcal{B}_{2}\right)$ be two $Q S(u, \lambda)$ with support sizes r_{1} and r_{2}, respectively. Let $\left(F_{i j}\right)$ be a semi-Latin λ-factorization with support size r_{3} of λK_{u} on X_{2}, and let

$$
\mathcal{B}=\mathcal{B}_{1}+\mathcal{B}_{2}+\sum_{1 \leq i<j \leq u}\{i, j\} * F_{i j}
$$

Then (X, B) is a $Q S(2 u, \lambda)$ with support size $\sum_{i=1}^{3} r_{i}$.

Lemma 4.2 Let u be a positive integer such that $u \geq 14$. If $r_{1} \in S L F(u, \lambda+2), r_{2}, r_{3} \in$ $Q S S(u, \lambda), s \in S L F(u, 2)$, and $0 \leq l \leq u / 2$, then
(i) $b_{1}=u . m_{2 u}-u^{2}(u-1)-2 l u(u-1)+s \in Q S S(2 u, u)$,
(ii) $b_{2}=u . m_{2 u}-u^{2}(u-1)-2 l u(u-1)+\sum_{i=1}^{3} r_{i} \in Q S S(2 u, u+\lambda)$.

Proof. Let $\left(X_{1}, \mathcal{B}_{1}\right)$ and $\left(X_{2}, \mathcal{B}_{2}\right)$ be two $Q S(u, \lambda)$ with support sizes r_{1} and r_{2}, respectively. Let $\left(F_{i j}\right)$ be a semi-Latin $(\lambda+2)$-factorization with support size r_{3} of $(\lambda+2) K_{u}$ and let $\left(G_{i j}\right)$
be a semi-Latin 2 -factorization with support size s of $2 K_{u}$. Let

$$
\begin{aligned}
& \mathcal{B}_{0}=P_{4}(X) \backslash\left(P_{4}\left(X_{1}\right) \cup P_{4}\left(X_{2}\right) \cup P_{2}\left(X_{1}\right) * P_{2}\left(X_{2}\right)\right), \\
& \mathcal{B}_{3}=\mathcal{B}_{0}+\sum_{1 \leq i<j \leq u}\{i, j\} * G_{i j}, \\
& \mathcal{B}_{4}=\mathcal{B}_{0}+\mathcal{B}_{1}+\mathcal{B}_{2}+\sum_{1 \leq i<j \leq u}\{i, j\} * F_{i j} .
\end{aligned}
$$

Then $\left(X, \mathcal{B}_{3}\right)$ is a $Q S(2 u, u)$ with support size $u . m_{2 u}-u^{2}(u-1)+s$, and $\left(X, \mathcal{B}_{4}\right)$ is a $Q S(2 u, u+\lambda)$ with support size $u . m_{2 u}-u^{2}(u-1)+\sum_{i=1}^{3} r_{i}$. This proves the assertion for $l=0$. To prove the assertion for $l>0$, let $\left(X_{2}, \mathcal{C}_{1}\right)$ and $\left(X_{2}, \mathcal{C}_{2}\right)$ be two disjoint simple triple systems of order u and index 6 (since $u \geq 14$, this is possible), and let

$$
\begin{aligned}
& \Gamma_{1}=\sum_{j=1}^{l}\{2 j\} * \mathcal{C}_{1}+\sum_{j=1}^{l}\{2 j-1\} * \mathcal{C}_{2}, \\
& \Gamma_{2}=\sum_{j=1}^{l}\{2 j-1\} * \mathcal{C}_{1}+\sum_{j=1}^{l}\{2 j\} * \mathcal{C}_{2} .
\end{aligned}
$$

Now, it is easy to see that Γ_{1} and Γ_{2} are disjoint; the number of occurences of each $T \in P_{3}(X)$ in Γ_{1} and Γ_{2} are the same; and each quadruple of Γ_{1} is a nonrepeated quadruple of both of \mathcal{B}_{3} and B_{4}. Thus $\left(X, B_{3} \backslash \Gamma_{1}+\Gamma_{2}\right)$ is a $Q S(2 u, u)$ with support size b_{1}, and $\left(X, \mathcal{B}_{4} \backslash \Gamma_{1}+\Gamma_{2}\right)$ is a $Q S(2 u, u+\lambda)$ with support size b_{2}.

Let $u \equiv 2$ or $4(\bmod 6)$. Let $A=\left(a_{i j}\right)$ be any Latin square of order u which has no Latin subsquare of order 2. Without loss of generality, we can suppose that $a_{1 i}=i$, for $i=1, \ldots, u$. For every i and $j,(1 \leq i, j \leq u)$ define

$$
b_{i j}=k \Longleftrightarrow a_{i k}=j .
$$

It is easy to see that $B=\left(b_{i j}\right)$ is also a Latin square of order u. Let $\left(X_{1}, B\right)$ be any Steiner quadruple system of order u, and for every $1 \leq u \leq u$ define

$$
\begin{aligned}
& R_{u}=\left\{\left\{i, j, k, x_{b_{u l}}\right\} \mid\{i, j, k, l\} \in B\right\}, \\
& S_{u}=\left\{\left\{x_{i}, x_{j}, x_{k}, a_{u l}\right\} \mid\{i, j, k, l\} \in B\right\}, \\
& T_{u}=\left\{\left\{a_{u i}, a_{u j}, x_{i}, x_{j}\right\} \mid 1 \leq i, j \leq u\right\} \\
& \mathcal{B}_{u}=R_{u}+S_{u}+T_{u} .
\end{aligned}
$$

Then (X, \mathcal{B}_{u})'s ($1 \leq u \leq u$) are u mutually disjoint Steiner quadruple systems of order $2 u[5]$. Thus, if we define

$$
\Gamma=P_{4}(X) \backslash\left(\cup_{i=1}^{u} \mathcal{B}_{i}\right)
$$

then (X, Γ) is a simple $Q S(2 u, u-3)$ and $P_{4}\left(X_{1}\right) \cup P_{4}\left(X_{2}\right) \subset \Gamma$.

Lemma 4.3 Let $u \equiv 2$ or $4(\bmod 6)$. If $r_{1}, r_{2} \in Q S S(u, u-3)$, and $1 \leq k \leq \min \{\mu, u\}$, then $b=(u-3) q_{2 u}-2\binom{u}{4}+r_{1}+r_{2}+k \cdot q_{2 u} \in Q S S(2 u, u-3+\mu)$.
Proof. Let $\left(X_{1}, \Gamma_{1}\right)$ and $\left(X_{2}, \Gamma_{2}\right)$ be two $Q S(u, u l-3)$ with support sizes r_{1} and r_{2}, respectively. Let

$$
\begin{aligned}
& \Gamma_{3}=\Gamma \backslash\left(P_{4}\left(X_{1}\right) \cup P_{4}\left(X_{2}\right)\right) \\
& \mathcal{B}=\sum_{i=1}^{3} \Gamma_{i}+\sum_{i=1}^{k} B_{i}+(\mu-k) \mathcal{B}_{k} .
\end{aligned}
$$

Then (X, \mathcal{B}) is a $Q S(2 u, u-3+\mu)$ with support size b.

Let $Y=\{1, \ldots, 8\}$. We define a 1-factorization of K_{8} on Y as follows:

$$
\begin{aligned}
& F_{1}=\{\{1,2\}\{3,7\},\{4,8\},\{5,6\}\} \\
& F_{2}=\{\{1,3\}\{2,7\},\{4,6\},\{5,8\}\} \\
& F_{3}=\{\{1,4\}\{2,6\},\{3,8\},\{5,7\}\} \\
& F_{4}=\{\{1,5\}\{2,8\},\{3,6\},\{4,7\}\} \\
& F_{5}=\{\{1,6\}\{2,5\},\{3,4\},\{7,8\}\} \\
& F_{6}=\{\{1,7\}\{2,4\},\{3,5\},\{6,8\}\} \\
& F_{7}=\{\{1,8\}\{2,3\},\{4,5\},\{6,7\}\} .
\end{aligned}
$$

Since $u \geq 16$, there exists a 1 -factorizations $\left\{G_{1}, \ldots, G_{u-1}\right\}$ such that $F_{i} \subset G_{i}$, for $i=1, \ldots, 7$ [6]. For every $1 \leq i \leq u-1$ define

$$
K_{i}=\left\{\left\{x_{k}, x_{l}\right\} \mid\{k, l\} \in G_{i}\right\}
$$

Clearly, $\left\{K_{1}, \ldots, K_{u-1}\right\}$ is a 1-factorization of K_{u} on X_{2}. Let

$$
L_{i}= \begin{cases}K_{i}+K_{i+1} & \text { for } 1 \leq i \leq u-2 \\ K_{u-1}+K_{1} & \text { for } i=u-1\end{cases}
$$

Then, $\left\{L_{1}, \ldots, L_{u-1}\right)$ is a 2-factorization of $2 K_{u}$ on X_{2}. Let

$$
\mathcal{C}=P_{4}(X) \backslash\left(X_{1} * P_{3}\left(X_{2}\right)+X_{2} * P_{3}\left(X_{1}\right)+\sum_{i=1}^{u-1} G_{i} * L_{i}\right)
$$

Now, it is easy to check that (X, \mathcal{C}) is a simple $Q S(2 u, u-3)$ which contains $P_{4}\left(X_{1}\right) \cup P_{4}\left(X_{2}\right)$. Let $\left(X_{1}, \mathcal{B}\right)$ be a Steiner quadruple system and define

$$
\mathcal{B}_{1}=\left\{\left\{i, j, k, x_{l}\right\},\left\{x_{i}, x_{j}, x_{k}, l\right\} \mid\{i, j, k, l\} \in \mathcal{B}\right\} \cup\left\{\left\{i, j, x_{i}, x_{j}\right\} \mid 1 \leq i<j \leq u\right\}
$$

Then, it is easy to see that $\left(X, B_{1}\right)$ is a Steiner quadruple system of order $2 u$ and $\mathcal{B}_{1} \cap \mathcal{C}=\emptyset$. Let

$$
\begin{aligned}
& \Gamma_{1}=\mathcal{C} \cup \mathcal{B}_{1} \\
& \Gamma_{2}=P_{4}(X) \backslash \Gamma_{1} .
\end{aligned}
$$

Trivially, $\left(X, \Gamma_{1}\right)$ and $\left(X, \Gamma_{2}\right)$ are simple $Q S(2 u, u-2)$ and $Q S(2 u, u-1)$, respectively. By applying trade-off method on these two simple designs we can obtain some new values in $Q S S(2 u, u-2)$ and $Q S S(2 u, u-1)$ which are not obtained from Lemmas 4.1, 4.2, and 4.3.

Lemma 4.4 If $u \geq 16$, then $\left\{(u-2) q_{u}-i \mid i=1, \ldots, 13\right\} \subset \operatorname{QSS}(2 u, u-2)$.
Proof. For $1 \leq i \leq 4$, we define two disjoint subsets $T_{i 1}$ and $T_{i 2}$ of $P_{4}(X)$ according to the following table:

i	$T_{i 1}$					$T_{i 2}$			
1	$36 x_{1} x_{2}$	$36 x_{4} x_{8}$	$37 x_{1} x_{4}$	$37 x_{2} x_{8}$	$36 x_{1} x_{4}$	$36 x_{2} x_{8}$	$37 x_{1} x_{2}$	$37 x_{4} x_{8}$	
	$56 x_{1} x_{4}$	$56 x_{2} x_{8}$	$57 x_{1} x_{2}$	$57 x_{4} x_{8}$	$56 x_{1} x_{2}$	$56 x_{4} x_{8}$	$57 x_{1} x_{4}$	$57 x_{2} x_{8}$	
2	$24 x_{2} x_{5}$	$24 x_{3} x_{4}$	$25 x_{2} x_{3}$	$25 x_{4} x_{5}$	$24 x_{2} x_{3}$	$24 x_{4} x_{5}$	$25 x_{2} x_{5}$	$25 x_{3} x_{4}$	
	$34 x_{2} x_{3}$	$34 x_{4} x_{5}$	$35 x_{2} x_{5}$	$35 x_{3} x_{4}$	$34 x_{2} x_{5}$	$34 x_{3} x_{4}$	$35 x_{2} x_{3}$	$35 x_{4} x_{5}$	
3	$23 x_{1} x_{7}$	$23 x_{6} x_{8}$	$24 x_{1} x_{6}$	$24 x_{7} x_{8}$	$23 x_{1} x_{6}$	$23 x_{7} x_{8}$	$24 x_{1} x_{7}$	$24 x_{6} x_{8}$	
	$35 x_{1} x_{6}$	$35 x_{7} x_{8}$	$45 x_{1} x_{7}$	$45 x_{6} x_{8}$	$35 x_{1} x_{7}$	$35 x_{6} x_{8}$	$45 x_{1} x_{6}$	$45 x_{7} x_{8}$	
4	1234	1256	1357	1467	1235	1246	1347	1567	
	2348	2568	3578	4678	2358	2468	3478	5678	

It is an easy exercise to check that (i) if $(i, j) \neq(k, l)$, then $T_{i j} \cap T_{k l}=\emptyset$, (ii) for every $1 \leq i \leq 4$ the number of occurences of each $T \in P_{3}(X)$ in $T_{i 1}$ and $T_{i 2}$ are the same, and (iii) for every $1 \leq i \leq 4, T_{i 1} \subset \Gamma_{1}$ while

$$
\left|T_{i 2} \cap \Gamma_{1}\right|=2^{i-1}, \text { for } 1 \leq i \leq 4
$$

Hence, if we let $\mathcal{F}_{0}=\Gamma_{1}$ and

$$
\begin{array}{ll}
\mathcal{F}_{1}=\left(\mathcal{F}_{0} \backslash T_{11}\right)+T_{12}, & \\
\mathcal{F}_{2}=\left(\mathcal{F}_{0} \backslash T_{21}\right)+T_{22}, \\
\mathcal{F}_{3}=\left(\mathcal{F}_{1} \backslash T_{21}\right)+T_{22}, \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-4} \backslash T_{31}\right)+T_{32}, \quad j=4, \ldots, 7 \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-8} \backslash T_{41}\right)+T_{42}, \quad 8 \leq j \leq 14
\end{array}
$$

then for every $1 \leq j \leq 14\left(X, \mathcal{F}_{j}\right)$ is a $Q S(2 u, u-2)$ with support size $(u-2) q_{u}-j$.

Lemma 4.5 If $u \geq 16$, then $\left\{(u-1) q_{u}-i \mid i=1, \ldots, 13\right\} \subset Q S S(2 u, u-1)$.
Proof. For $1 \leq i \leq 6$, we define two disjoint subsets $T_{i 1}$ and $T_{i 2}$ of $P_{4}(X)$ according to the following table:

i	$T_{i 1}$				$T_{i 2}$			
1	$12 x_{1} x_{3}$	$12 x_{5} x_{8}$	$14 x_{1} x_{5}$	$14 x_{3} x_{8}$	$12 x_{1} x_{5}$	$12 x_{3} x_{8}$	$14 x_{1} x_{3}$	$14 x_{5} x_{8}$
	$26 x_{1} x_{5}$	$26 x_{3} x_{8}$	$46 x_{1} x_{3}$	$46 x_{5} x_{8}$	$26 x_{1} x_{3}$	$26 x_{5} x_{8}$	$46 x_{1} x_{5}$	$46 x_{3} x_{8}$
2	$37 x_{2} x_{7}$	$37 x_{4} x_{6}$	$38 x_{2} x_{6}$	$38 x_{4} x_{7}$	$37 x_{2} x_{6}$	$37 x_{4} x_{7}$	$38 x_{2} x_{7}$	$38 x_{4} x_{6}$
	$57 x_{2} x_{6}$	$57 x_{4} x_{7}$	$58 x_{2} x_{7}$	$58 x_{4} x_{6}$	$57 x_{2} x_{7}$	$57 x_{4} x_{6}$	$58 x_{2} x_{6}$	$58 x_{4} x_{7}$
3	$24 x_{2} x_{3}$	$24 x_{4} x_{5}$	$25 x_{2} x_{4}$	$25 x_{3} x_{5}$	$24 x_{2} x_{4}$	$24 x_{3} x_{5}$	$25 x_{2} x_{3}$	$25 x_{4} x_{5}$
	$34 x_{2} x_{4}$	$34 x_{3} x_{5}$	$35 x_{2} x_{3}$	$35 x_{4} x_{5}$	$34 x_{2} x_{3}$	$34 x_{4} x_{5}$	$35 x_{2} x_{4}$	$35 x_{3} x_{5}$
4	$16 x_{1} x_{7}$	$16 x_{6} x_{8}$	$17 x_{1} x_{8}$	$17 x_{6} x_{7}$	$16 x_{1} x_{8}$	$16 x_{6} x_{7}$	$17 x_{1} x_{7}$	$17 x_{6} x_{8}$
	$68 x_{1} x_{8}$	$68 x_{6} x_{7}$	$78 x_{1} x_{7}$	$78 x_{6} x_{8}$	$68 x_{1} x_{7}$	$68 x_{6} x_{8}$	$78 x_{1} x_{8}$	$78 x_{6} x_{7}$
5	$16 x_{2} x_{4}$	$16 x_{3} x_{5}$	$17 x_{2} x_{3}$	$17 x_{4} x_{5}$	$16 x_{2} x_{3}$	$16 x_{4} x_{5}$	$17 x_{2} x_{4}$	$17 x_{3} x_{5}$
	$68 x_{2} x_{3}$	$68 x_{4} x_{5}$	$78 x_{2} x_{4}$	$78 x_{3} x_{5}$	$68 x_{2} x_{4}$	$68 x_{3} x_{5}$	$78 x_{2} x_{3}$	$78 x_{4} x_{5}$
6	$24 x_{1} x_{8}$	$24 x_{6} x_{7}$	$25 x_{1} x_{7}$	$25 x_{6} x_{8}$	$24 x_{1} x_{7}$	$24 x_{6} x_{8}$	$25 x_{1} x_{8}$	$25 x_{6} x_{7}$
	$34 x_{1} x_{7}$	$34 x_{6} x_{8}$	$35 x_{1} x_{8}$	$35 x_{6} x_{7}$	$34 x_{1} x_{8}$	$34 x_{6} x_{7}$	$35 x_{1} x_{7}$	$35 x_{6} x_{8}$

It is an easy exercise to check that (i) if $(i, j) \neq(k, l)$, then $T_{i j} \cap T_{k l}=\emptyset$, (ii) for every $1 \leq i \leq 6$ the number of occurences of each $T \in P_{3}(X)$ in $T_{i 1}$ and $T_{i 2}$ are the same, and (iii) for every $1 \leq i \leq 6, T_{i 1} \subset \Gamma_{2}$ while

$$
\begin{aligned}
& \left|T_{12} \cap \Gamma_{2}\right|=\left|T_{22} \cap \Gamma_{2}\right|=1, \\
& \left|T_{32} \cap \Gamma_{2}\right|=\left|T_{42} \cap \Gamma_{2}\right|=2, \\
& \left|T_{52} \cap \Gamma_{2}\right|=\left|T_{62} \cap \Gamma_{2}\right|=4
\end{aligned}
$$

Hence, if we let $\mathcal{F}=\Gamma_{2}$ and

$$
\begin{array}{ll}
\mathcal{F}_{1}=\left(\mathcal{F} \backslash T_{12}\right)+T 11, & \\
\mathcal{F}_{2}=\left(\mathcal{F}_{1} \backslash T_{21}\right)+T_{22}, & \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-2} \backslash T_{31}\right)+T_{32}, & j=3,4, \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-4} \backslash T_{51}\right)+T_{52}, & 5 \leq j \leq 8, \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-4} \backslash T_{61}\right)+T_{62}, & 9 \leq j \leq 12, \\
\mathcal{F}_{j}=\left(\mathcal{F}_{j-2} \backslash T_{41}\right)+T_{42}, & 13 \leq j \leq 14 .
\end{array}
$$

Then for every $1 \leq j \leq 14\left(X, \mathcal{F}_{j}\right)$ is a $Q S(2 u, u-1)$ with support size $(u-1) q_{u}-j$.

In view of Lemmas 4.1-4.5, in order to determine $Q S S(2 u, \lambda)$ we only need a partial determination of $Q S S(u, \lambda)$ for all λ. It is well known that if $v \equiv 4$ or $8(\bmod 12)$, then $v / 2$ mutually disjoint Steiner quadruple systems exist [5] and if $v \equiv 0(\bmod 6)$ then a large set of disjoint $Q S(v, 3)$'s exists[8]. Utilizing these facts one can easily establish two following lemmas.

Lemma 4.6 If $u \equiv 0(\bmod 6)$ and $\lambda \equiv 0(\bmod 3)$, then $\left\{3 j q_{u} \mid 1 \leq j \leq \min \{t,(u-3) / 3\}\right\} \subset$ $Q S S(u, 3 t)$.

Lemma 4.7 If $u \equiv 4$ or $8(\bmod 12)$, then $\left\{j q_{u} \mid 1 \leq j \leq \min \{t, u-3\}\right\} \subset Q S S(u, t)$.
To apply Lemma 4.3 we need a partial determination for $Q S(v, v-3)$ for all $v \equiv 4$ or 8 $(\bmod 12)$.
Lemma 4.8 If $u \equiv 2$ or $4(\bmod 6)$ and $u \geq 28$, then $\left.\left.\left\{\begin{array}{l}u \\ 4\end{array}\right)-i \right\rvert\, 14 \leq i \leq q_{u}\right\} \subset Q S S(u, u-3)$. Proof. Let $14 \leq i \leq q_{u}$ and let $\left(Y, \mathcal{B}_{1}\right)$ and $\left(Y, \mathcal{B}_{2}\right)$ be two Steiner quadruple systems of order u intersecting in i quadruples, and let $\mathcal{B}=P_{4}(Y) \backslash \mathcal{B}_{1}+\mathcal{B}_{2}$. Then (Y, \mathcal{B}) is a $Q S(u, u-3)$ with support size $\binom{u}{4}-i$.

Lemma 4.9 Let $u \equiv 4$ or $8 \quad(\bmod 12)$, and $u \geq 24$. If $1 \leq k \leq u / 4$ and $1 \leq l \leq(u-8) / 4$, then $\binom{u}{4}-k l \in Q S S(u, u-3)$.
Proof. Let $u=2 n, X_{1}=\{1, \ldots, n\}, X_{2}=\left\{x_{1}, \ldots, x_{n}\right\}, X_{1} \cap X_{2}=\emptyset$ and $X=X_{1} \cup X_{2}$. Let $Y=\left\{x_{2}, \ldots, x_{n}\right\}$. Let $\left(Y, \mathcal{B}_{1}\right)$ and $\left(Y, \mathcal{B}_{2}\right)$ be two disjoint simple $T S(n, l)$'s and define

$$
\mathcal{B}=P_{4}(X) \backslash\left(\sum_{i=1}^{k}(2 i) * \mathcal{B}_{1}+\sum_{i=1}^{k}(2 i-1) * \mathcal{B}_{2}\right)+\sum_{i=1}^{k}(2 i) * \mathcal{B}_{2}+\sum_{i=1}^{k}(2 i-1) * \mathcal{B}_{1}
$$

Then (X, \mathcal{B}) is a $Q S(u, u-3)$ with desired support size.

The following lemma is proved in [2].
Lemma 4.10 If $v \equiv 0(\bmod 6)$, and $v \geq 24$, then

$$
\left\{t_{v}, t_{v}+8, t_{v}+12, t_{v}+14, \ldots, v(v-1)(v-2) / 12\right\} \subset Q S S(v, 3)
$$

Now, we state and prove our main results concerning $Q S S(v, \lambda)$. let $v \equiv 0(\bmod 2)$, and let $\lambda_{v}=\operatorname{gcd}(v-3,12), q_{v}=v(v-1)(v-2) / 12, t_{v}=v\left(v^{2}-3 v+42\right) / 6, M_{v}=\min \left\{\lambda, v-3 . t_{v}\right\}$ and $A=\{1, \ldots, 7,9,10,11,13\}$. If there exists no quadruple system of order v and index λ,
the set $P S(v, \lambda)$ of possible support sizes of $Q S(v, \lambda)$'s is empty; and otherwise except for $\lambda=v-3$, we define $P S(v, \lambda)$ according to the following table

$v(\bmod 6)$	$P S(v, \lambda)$
0	$\left\{t_{v}, \ldots, M_{v}\right\} \backslash\left\{t_{v}+i \mid i \in A\right\}$
2,4	$\left\{q_{v}, \ldots, M_{v}\right\} \backslash\left\{q_{v}+i \mid i \in A\right\}$

For $\lambda=v-3, P S(v, \lambda)$ is defined similarly, only with the omission of $\left\{M_{v}-i \mid i \in A\right\}$.

Theorem 4 If $v \equiv 0(\bmod 8)$, and $v \geq 48$, then $P S(v, \lambda) \subset Q S S(v, \lambda)$.
Proof. Let $u=v / 2$, and $r \in P S(v, \lambda)$. If either $r \leq(u-2) q_{v}-2 q_{u}$ or $r \leq(u-1) q_{v}-4 q_{u}-14$ and $\lambda \geq u-1$, then due to Lemma 4.1, $r \in Q S S(v, \lambda)$. If $r \geq(u-2) q_{v}-2 q_{u}$ and $\lambda \geq u$, then due to Lemma $4.2 r \in Q S S(v, \lambda)$. If either $(u-2) q_{v}-2 q_{u} \leq r \leq(u-2) q_{v}-14$ and $\lambda=u-2$ or $(u-1) q_{v}-4 q_{u}-14 \leq r \leq(u-1) q_{v}-4 q_{u}$ and $\lambda=u-1$ (note that in both cases we have $u \equiv 4$ or $8(\bmod 12))$, then due to Lemma $4.3 r \in Q S S(v, \lambda)$. Finally if $\lambda \in\{u-2, u-1\}$ and $\lambda q_{v}-14 \leq r \leq \lambda q_{v}$, then due to Lemmas 4.5 and $4.6 r \in Q S S(v, \lambda)$.

Concluding Remarks

1. Simple counting arguments show that there is no $(3,4, v)$ trade of volume i for $i \in$ $\{1, \ldots, 7,9,10,11,13\}$, which in turn implies there exist no $Q S(v, v-3)$ with support size r for $r \in\{1, \ldots, 7,9,10,11,13\}$.
2. Let $v \equiv 2$ or $4(\bmod 6)$, and let (X, \mathcal{B}) be a $Q S(v, \lambda)$ with support size $b>q_{v}$. For $i \in X$, let

$$
\mathcal{B}_{i}=\{B \backslash\{i\} \mid i \in B \in \mathcal{B}\}
$$

then for $i \in X\left(X \backslash\{i\}, \mathcal{B}_{i}\right)$ is a triple system of order $v-1$ and index λ. Let $b_{i}=\left|\mathcal{B}_{i}^{*}\right|$. Then $b=\left(\sum_{i \in X} b_{i}\right) / 4$. It is well known that $b_{i} \geq m_{v-1}=(v-1)(v-2) / 6$ and $b_{i} \notin\left\{m_{v-1}+i \mid i=\right.$ $1,2,3,5\}$. Also if either $b_{i}=m_{u-1}+4$ or $b_{i}=m_{v-1}+6$, then one can easily determine the structure of blocks of frequency less than λ up to isomorphism (in first case it is unique, and in the second case there are two possibilities). Putting these results together it is strightforward but tedious to show that

$$
b \notin\left\{q_{v}+i \mid i=1, \ldots, 7,9,10,11,13\right\} .
$$

Therefore for $v \equiv 8$ or $16(\bmod 24)$ we have

$$
Q S S(v, \lambda)=P S(v, \lambda)
$$

3. Let $v \equiv 0(\bmod 24)$, and let (X, \mathcal{B}) be a $Q S(v, \lambda)$ with support size b. It is well known that $b \geq t_{v}$, and again applying well known results on the support sizes of triple systems on derived designs one can show that $b \notin\left\{t_{v}+i \mid i=1, \ldots, 5\right\}$. On the other hand it can be shown that $t_{v}+6 \in Q S S(v, \lambda)$. Therefore Theorem 4 determines $Q S S(v, \lambda)$ with at least one and at most 6 possible omissions.

References

1. S. Ajoodani-Namini, On the factorizations of complete graphs, submitted to Journal of Combin. Math. and Combin. Computing.
2. C.J. Colbourn and A. Hartman, Intersections and supports of quadruple systems, Disc. Math. 97(1991)119-137.
3. C.J. Colbourn and A. Rosa, Support sizes of λ-factorizations, Proc. Int. Conf. on Incidence Geometries and Combinatorial Structures, 1991.
4. A. Hartman and Z. Yehudai, Intersections of Steiner quadruple systems, Disc. Math. 104(1991) 227-244.
5. C.C. Lindner, A note on disjoint Steiner quadruple systems, Ars Combinatoria 3(1977) 271-276.
6. C.C. Lindner, E. Mendelsohn, and A. Rosa, On the number of 1 -factorizations of complete graphs, J. Combin. Theory, Ser. B, 20(1976) 265-282.
7. W.H. Mills, On the covering of triples by quadruples, Proc. Fifth Southeastern Conf. Combinatorics, Graph Theory and Computing, 1978, pp. 559-687.
8. L.Teirlinck, On large sets of disjoint quadruple systems, Ars Combinatoria, 17(1984) 119-137.

[^0]: "This work was essentially carried out while the author was a member of Combinatorics and Computing Research Group at IPM and the final version of the manuscript was completed while he was at Caltech as a graduate student.

