## Classroom Note

# An easy bijective proof of the Matrix-Forest Theorem 

Kimmo Eriksson

Dept. of Mathematics, SU, S-106 09 Stockholm, Sweden
kimmo@nada.kth.se


#### Abstract

The Matrix-Forest Theorem says that for a subset $I$ of vertices of a digraph, the number of $I$-rooted spanning forests is the determinant of the submatrix obtained from the Laplacian by deleting all rows and columns corresponding to nodes in $I$. We give an easy bijective proof of this fact.


The rather well-known Matrix-Tree Theorem gives the number of spanning trees of a graph as a minor of the Laplacian of the graph. This note will give an easy bijective proof of what one might call the "Matrix-Forest Theorem", which is a slightly less general version of the "All Minors Matrix-Tree Theorem" of Chen [2] and Chaiken [3], while containing the ordinary Matrix-Tree Theorem, see Biggs [1] or Goulden-Jackson [4]. This new proof should be good for education purposes, taking the theorem down to a bijective interpretation of the expansion of the determinant.

Let $G=(V, E)$ be a finite directed graph. Between any pair of nodes there may be arbitrarily many edges, and they are distinguishable. Let $d_{i j}$ denote the number of edges directed from node $i$ to node $j$ in $G$. Let $d_{i}^{+}=\sum_{j \neq i} d_{i j}$, the total number of edges that are directed from $i$ to any other node; loops are disregarded. The Laplacian of $G$ is the square matrix $L \in \mathbb{R}^{V \times V}$ where the element in place $(i, j)$ is $d_{i}^{+}$ if $i=j$ and $-d_{i j}$ if $i \neq j$. The row sums of $L$ are zero, so $L$ is singular.

A $J$-cycle in $G$, for $J \subseteq V$, is a directed cycle visiting each of the nodes in $J$ once.
For any node $i$, by an $i$-rooted tree in $G$ we mean a tree where every node has exactly one outgoing edge except $i$ which has none. In other words, for any node $j$ in the tree, the path between $j$ and $i$ in the tree is directed towards $i$. (Such a tree is sometimes called an "in-directed arborescence".) If the tree reaches all the nodes in $V$, it is an $i$-rooted spanning tree.

For any node set $I \subseteq V$, by an $I$-rooted spanning forest in $G$ we mean a collection of $i$-rooted trees, one for each $i \in I$, such that every node in $V$ is in exactly one of
the components. For example, an $\{i\}$-rooted spanning forest is simply an $i$-rooted spanning tree; there exists no $\emptyset$-rooted spanning forest.

Theorem 1 (Matrix-Forest Theorem) If $G=(V, E)$ is a digraph with Laplacian $L$ and $I \subseteq V$, then the number of $I$-rooted spanning forests in $G$ is

$$
\operatorname{spanf}_{G}(I)=\operatorname{det} L_{I}
$$

where $L_{I}$ denotes the submatrix obtained by deleting the $i$-th row and column for all $i \in I$.

The theorem will follow from this lemma:
Lemma $1 \operatorname{spanf}_{G}(I)$ can be determined recursively by

$$
\operatorname{spanf}_{G}(I)=d_{x}^{+} \cdot \operatorname{spanf}_{G}(I \cup\{x\})-\sum_{\substack{x \in J \subseteq V \backslash I \\|J| \geq 2}} \# J \text {-cycles } \cdot \operatorname{spanf}_{G}(I \cup J) .
$$

where $x$ is any node in $V \backslash I$.
Proof. The first term on the righthand side counts pairs consisting of one edge directed from $x$ and one ( $I \cup\{x\}$ )-rooted spanning forest. When adding an edge $e$ directed from $x$ to some node $y$ to a $(I \cup\{x\})$-rooted spanning forest, we get one of two cases, depending on which of the trees in the forest that contains $y$ :

Case 1: $y$ is a node in a tree rooted in $i \in I$. Then by adding $e$ the $x$-rooted tree becomes a part of the -rooted tree, and what remains is an $I$-rooted spanning forest.

Case 2: $y$ is a node in the $x$-rooted tree. Then by adding e we get some directed cycle $C=(x y \cdots)$. Say that $J$ is the set of nodes in $C$, so $C$ is a $J$-cycle. Erase the edges in this cycle. Then all the nodes in $J$ become roots, so we obtain an $I \cup J$-rooted spanning forest.

It is easily seen that the steps above are invertible. Hence we have described a bijection that establishes the identity

$$
d_{x}^{+} \cdot \operatorname{spanf}_{G}(I \cup\{x\})=\operatorname{spanf}_{G}(I)+\sum_{\substack{x \in J \subseteq V \backslash I \\|J| \geq^{2}}} \# J \text {-cycles } \cdot \operatorname{spanf}_{G}(I \cup J)
$$

which is equivalent to the desired formula.
We shall now relate the number of $I$-rooted spanning forests of $G$ to determinants of certain submatrices of the Laplacian $G$. Let us adopt the following conventions: The determinant of an empty submatrix is $1 ; S_{V}$ is the set of permutations on the set $V ; \mathcal{C}_{V} \subset \mathcal{S}_{V}$ is the set of cyclic permutations on $V$.

We shall prove the theorem by expanding the determinant in the cycles containing a. certain element. An alternative form of the basic expansion of the determinant of a matrix $A \in \mathbb{H}^{V \times V}$ with $x \in V$ is

$$
\begin{equation*}
\operatorname{det} A=a_{x x x} \operatorname{det} A_{\{x\}}-\sum_{\substack{x \in J \subseteq V \\|J| \geq 2}} \sum_{r \in C_{J}} \prod_{j \in J}\left(-a_{j, r(j)}\right) \operatorname{det} A_{J} . \tag{1}
\end{equation*}
$$

This can be obtained as follows from the basic expansion,

$$
\operatorname{det} A=\sum_{\pi \in S_{V}} \operatorname{sgn} \pi \prod_{j \in V} a_{j, \pi(j)}
$$

Split the sum into two parts according to whether $x$ is a fixpoint of $\pi$ or not. If $x$ is not a fixpoint, let $\tau$ be the cycle that contains $x$ in the cycle decomposition of $\pi$, and let $J$ be the set of elements in the cycle. Thus we have $x \in J, \tau \in \mathcal{C}_{J}$ and, because $x$ was not a fixpoint, $|J| \geq 2$.

$$
\begin{aligned}
\operatorname{det} A & =a_{x x} \sum_{\pi^{\prime} \in \mathcal{S}_{V \backslash\{x\}}} \operatorname{sgn} \pi^{\prime} \prod_{j \in V \backslash\{x\}} a_{j, \pi(j)} \\
& +\sum_{\substack{x \in J \subseteq J \\
\mid J \backslash 2}} \sum_{\tau \in \mathcal{C}_{J}} \operatorname{sgn} \tau \prod_{j \in J} a_{j, \tau(j)} \sum_{\sigma \in \mathcal{S}_{V \backslash J}} \operatorname{sgn} \sigma \prod_{k \in V \backslash J} a_{k, \pi(k)} .
\end{aligned}
$$

Since $\tau$ is a cycle on $J$, the sign of $\tau$ is $\operatorname{sgn} \tau=(-1)^{\mid y_{\mid+1}}$. Hence we can multiply each $a_{j, \tau(j)}$ by a $(-1)$ and still have one ( -1 ) left. By using the basic expansion of the determinant again, twice, we get equation (1).

The theorem is now proved by induction on $|V \backslash I|$, the size of submatrix $L_{I}$. If $|V \backslash I|=0$, i.e. if $V=I$, then $L_{I}$ is the empty matrix. Since there is only one $V$-rooted spanning forest and $\operatorname{det} L_{I}=1$, the statement is true. Suppose it is true whenever $|V \backslash I| \leq p$ and consider a subset $I \subset V$ with $|V \backslash I|=p+1>0$. Choose some $x \in V \backslash I$. Equation 1, with $A=L_{I}, a_{x x}=d_{x}^{+}$and $-a_{i j}=d_{i j}$ when $i \neq j$, gives:

$$
\operatorname{det} L_{I}=d_{x}^{+} \cdot \operatorname{det} L_{I \cup\{x\}}-\sum_{\substack{x \in J \in V \backslash I \\ \mid J \backslash \geq 2}} \sum_{\tau \in \mathcal{C}_{J}} \prod_{j \in J} d_{j, \tau(j)} \operatorname{det} L_{I \cup J}
$$

Now, thanks to the induction hypothesis, $\operatorname{det} L_{I \cup\{x\}}$ is equal to the number of ( $I \cup$ $\{x\})$-rooted spanning forests in $G$; also, $\operatorname{det} L_{I \cup J}$ is the number of $(I \cup J)$-rooted spanning forests. The sum $\sum_{r \in \mathcal{C}_{J}} \Pi_{j \in J} d_{j, r(j)}$ is clearly the number of $J$-cycles in $G$. Hence we have proved that

$$
\operatorname{det} L_{I}=d_{x}^{+} \cdot \operatorname{spanf}_{G}(I \cup\{x\})-\sum_{\substack{x \in J \subseteq V \backslash I \\|J| 22}} \# J-\text { cycles } \cdot \operatorname{spanf}_{G}(I \cup J)=\operatorname{spanf}_{G}(I)
$$

by the lemma. The theorem follows by induction.

## References

[1] N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, 1974, pp. 34-35.
[2] W-K. Chen, Applied Graph Theory, 2nd ed., North-Holland, New York, 1976.
[3] S. Chaiken, A combinatorial proof of the all minors Matrix-Tree Theorem, SIAM J. Alg. Disc. Math. 3 (1982) 319-329.
[4] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley \& Sons, 1983, pp. 182-185.

