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see [1, 2, 6, 4) for references. In 1967, A. Adam [1] rrHl1P,'1.11T<>" that the cyclic groups are 

examples of this class. Elspas and Turner [5] this conjecture by rfHl."tlr11rtln,cr 

cOlmtef€~xamJ:lles for digraphs of valency 3 and for of But 

Toida that the conjecture is true for cubic Favaron and Maheo 

[4] proved that it is true for the graphs of 4, which had been open in 

[4] determined isomorphisms of of abelian groups, 

although in which some were this paper. this 

paper we determine the ISClm40fl}hlSm classes of connected 

on abelian groups and as a corollary we prove that true 

most 5 

undirected 

of valency 5. Since the 'and Turner's c011nten~xa,mIHe for undirected 

is of 6, our this result is the best for conjecture for undirected 

In the 

G and S 

all 

S-1. Let r 
we mention are connected and unlUUICClea, 

with vertex-set V and ea.l!e-;set E. Let 

y) = where d(x, y) denotes the distance hp1~u")&>n X and and Autr 

be the U'A",nUVllln.uO.l.H group of r. 

on the set of arcs of r. For two 

product and lexicographic product of 1'1 and 

dimension nand Q;t = Qn , where E' 

let Cn be a of n. A circulant 

VC = {O,1, .. ·,n-1} and set EC = 

which has order n and valency 2d or 2d - 1. Thus Cn 

C( nj 1, is of 3, denoted by Mn. In section 2, we will define a 

r 1 X(q,T) r 2 of two circulant r 1 and r 2 • The main results of this paper 

direct 

of 

follows. 

Theorem 1.1 Let r be a connected Cayley of valency 4 on an abelian group. Then 

(1) either r ~ Mr X ](2 for some r > 3, or r ~ Cm X(q,T) Cn some integers m, n, q 

and r, where C2q X(q,l) C 2q ~ C4q X(4q,2g-1) C4q ~ 

(2) if r is symmetric then r ~ C rq X(q,T) C rg ! where r2 ±1 (mod q), or r = O. 

Moreover, these graphs are non isomorphic except for the stated cases. 

Corollary 1.1.1 Any two finite isomorphic connected Cayley graphs of valency 4 coming 

from abelian groups are Adam isomorphic, unless one of the following cases occurs: 
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G s 

This result were missed. 

All symmetric ri.'l'lrui,rl'l1.t 1, 

where 

abelian group. 

5 coming 
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COlroUarv 1.2.2 If rand r' are two Cayley of valency 5 on a cyclic group and 

r ~ r', then there an Addm isomorphism between rand r', that is, the 

is true for undirected graphs of valency 5. 

conjecture 

In section 2, define a type of product, called (q, of two circulant graphs 

and give some properties. In section 3, we 

4, we prove Theorem 1.2 and its corollaries. 

Theorem 1.1 and its corollaries. In section 

2 

In this section, we quote some results and 

10110liVInJ! sections. 

some definitions which will be used in the 

t"rop,OSltl,On 2.1 All Cayley graphs of 3 for abelian groups are 

and Mn! where X ](2 s:! Q3, M4 s:! ](4 and Ms which symmetric. 

PROOF: It is dear. 

There are many of nO][l-U;Onlorph.lc groups which 

t"rOlJ,oSltl,on 2.2 Suppose G = ]( X zi and 

and Z4 (c). Let S = Tl UT2abU{ a, b} and Sf 

T2 ~](. Then S) s:! 

and 

PROOF: Let p be a map from G to H such that In and ,nrl"rtnr.nlu 

p: xt -t for t TIl 

xa -t 

xb -t x'c-1 , 

xab -t x'c2 

xtab -t , for t E T2 • 

It is easy to see that p is an isomorphism from S) to 

......... "1., .. 1" we can easily get Sand S' from G = ]( X and H = X 

if x P 

such that X( G, S) s:! S'). Now we define (q, r)-product of two circulant 

then 

I 

Definition 2.3 For an integer q, let r satisfy either 0 ::; r < q and q) = 1, or q = 1 

and r = O. A (q,r)-product, denoted by Crq X(q,T) ofCrq by G aq is as a graph 

r with vertex set V and edge set E! where 

V {(i,j,k) 10::; i::; r -1,0::; j::; s -1,0::; k::; q -I}, 
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k2 )) E E if and only if either 

i2 ::;:; i1 ± 1 (mod r), h jll ::::: k1 + 
i2 ::;:; iI ± 1 (mod k2 kl + 

If rq is even, of ((ibJtl 

{ 

i2 i l , h kl + ~ (mod 

i2 i l + ~ (mod j2 = j1, k2 kl + 
If sq is even, then let E2 be the set of ((il' jt, kt), 

{ 
i2 h = i1, k2 kl + ( mod 

i2 it, h j1 + ( mod k'J, = k1 + 
For odd q and even r,s, let E3 be the set of ((i1 ,j1,kt), 

i7, i1 + ~ (mod r), = i1-+ and k'J, = 

X(q,r) and 

Note that in the definition of 

of 

x 

4 

this section, we prove Theorem L 1 and its corollaries. 

and ::;:; r* s for some 

=: 1 and rr* ::::: 1 the vertex set 

vx= r 0:::; ::S;s-

q even; 
q odd. 

q even,. 

q odd. 

q). 

with vertex-set V, with 

which join the pairs 

X(l,O) Cs ~ 

1, 

follows that 

written 

o k 

k) to denote the vertices arHi bi for all admissible Then 

if and if 
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(1). Assume 

{ 
It follows that i']. -0 

Thus i2 - i l - where 

+£r 

Since i2 < r, if i2 =t i l then 

It follows that i2 
Thus h - i1 - {; = 

N ow assume S :::::: 

If 

and 

={ 

{ 

that 

assume that S :::::: 

is either C4. 

where b ±L Since 

i l o (mod 

Since 0 i 1 < r, 

O,lor -1. Thus, 

0 rq), that is, k2 kl 

contradiction. 

Thus 

b, c, where a, b, c, dare 

or 

b,b-1}, where a2 =t 1 and ::/= 

(ii) S = {a,a-I,d,e}, where a2 ::/= 1, d2 = e2 = 1; 

S = b, c, d}, where all elements have order 2. 

8 

s, i2 i1 and so 

-r i2 - {; :s; r. 

is to show 



In case (i), S) X(q,T) where q I(a) n (b)l, r I(a) I( (a) n (b) )1, 
I(b}/«a) n (b)I, and T is the least non-nef~atl'Ve such that aTT bS In case (ii), 

d E (a) and (a); if 

(iii), S) = Q4, M4 

a minimal ~erler;:l,tlIllg 

o(a)/2. If S) M2r K 2 , then 

(a) but de E (a). In case 

and S 

and (a, b, c) =: if 

So every connected 

listed in the theorem. Now 

if nl :f nz then 

4 on abelian groups is one of the 

HU)lrnOlrnhl;::rrlJ': between 

](2' For any n 4, let act 

on the eOI1:e-SIE!t of Mn X ](2- Then Al has 

of 1. For X(q,T) let (a, b I 

B= 
each orbit of Bl on S 

H 

Then 

Then we have shown that 

Since there is an 

2 or 4. So 

ab :::: 

First suppose that there x, V E S such that 

o for It follows that 

loss of may assume that a2 b2• 

ba, arq = bsq 1, be and 

above. Let 

b- I , 
for any S, q, n. 

- {ill but Ir(x)n 

±1. Without 

U a-1(e) where a-1b 

is an Let Vi :::: {ai, for 

i = 1, ... , n. to 

every vertex in then G is of even order. Let 

Since a2 without loss of we may assume G (a) and a1 for 

some < 1 2n-1. Nowa21 b2 a2 • Thus = 1 and 2n that is, 1 = n+ l. 
1 if and for some 

q. We have shown before that :f 1, 

:::: n. Thus I(a) n (b)1 = nand T :::: t :::: 
If G is n (b)l. It fonows that 

Next suppose that there x, V, z E S such that - {1}1 :?:: 1. It follows 

that b = a3e: or a:::: where c:,c: f = ±1. Without loss of B"'.l.Lv"''''ll":I, assume that b:::: a3 • 

Since S) ~ there are X', V', Zl E T such that 

It follows that b' = a'±3 or a' :::: . Hence G and Hare of the same order. It is 

easy to show that there is an isomorphism a from G to H such that SOL = T. 
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Finally suppose that, for any x, y, Z E S, Ir(x )nr(y) - {1}1 1 and Ir(x )nr(y)nr(z)-

{I}I o. S)~X(H,T)~ then it to show that H Z4xZ4and 

sO' == T for some isomorphism (J' from G to II. Thus we may assume that '1- C4 XC4 • 

Since is vertex-transitive, there p from 

that 1P = 1. If {a, a-I}P = 
-1, and so r(a) n - {I} 

X(G,S) C4 x contradiction. 

{b, b-1}P {b', and 

T) such 

1 or 

p: 1 -t 1, a -t a', b -t b', a-I 1-1 a , b,-l -t • 

Then 

where i,j ±l. Thus 

Now we ,ncln,.."'",,!" suppose that 

where I ~ Let be a vertex of 

induction assumption, -t x' == 

Thus 

and 

{xab} == r(xa) n r(xb) - {x}-t 

a'b', 

Iii + Ijl ~ 2. 

,x/b' , x'a,-l, 

n r(x/b' )- == {x/a'b'}, 

similarly, xahbk 
-t x, a'hb'k for Ihl + Ikl == 2. It follows that (aibi)p = afib'j for all ' ... tn ..... n.,." 

i,j such that Iii + 111 = 1 + 1. induction, (aibj)P a'ib'j for all i,j. 

p induces an isomorphism a from G to II such that SOl. == T. It follows that s,q,r) = 
(T', Sf, q', I 

PROOF OF COROLLARY 1.1.1: By the proof of Theorem 1.1, if G ~ H then there is an 

Adam isomorphism between X( G, S) and X(H, T). Since G == (S) and lSI == 4, all 2-Sylow 

subgroups of G are of rank at most 4. By Proposition 2.2 and Theorem 1.1, it is easy to 

get our conclusion. 

PROOF OF COROLLARY 1.1.2: (1). Let r be a circulant graph of 

cyclic group G and S ~ G - {1} with lSI == 4 such that r ~ X(G, 

one involution in G, S == {a,a-1,b,b- 1 } for some o(a),o(b) > 2. 
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4. Then there is a 

Since there is at most 

the proof of Theorem 



c 

if (r, s) 

In 

and then 

that 

that u1S 

that 

where rq, o(b) sq,IGI q n (b)1, 

there exists an element c E G such that 

and G (c), that is, r sq if and only 

of Theorem this I 

on groups 

for 

Set 

. Without 

For 

R. If 

E 

S. 

Then there exist Vl,"', Vs S such 

{ 
Thus 

::::: VI ui for i have 

transitive on S, it follows that 

:::: f(a5). So 

Al is transitive on 2:: 1 for each 1 i :::; 5. 

S) then ai 

so there exists hi for every i. It follows 

bj) is an (ai,1) E and 

Let· W be a subset of G and be the surlgnl.p.n of 

has vertex set Wand n (W X W). Then 

u f 2 (1)], every vertex in {I} U 5 and every 

vertex in f2(1) is of 4. Thus f3(1) =I- 0. If E(X[f2(1))) =I- 0 then at most 3 vertices 

in {l} U f(l) U are aa~lac<ent to the vertices in r3(1). So X is at most 3-connected. 
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But the vertex not in any 3-cut of contrary to the vertex tr~,n!:ltjv1tv of 

Hence, E(X[r2(1)]) 0. read 
vertex traJllsltlve. Ir2(al)1 

~d~, ffin~ 

We have 

that 

Case 3. 

It 

,>,,',">r . .,nT to every bi for i 

- 6](2' 

1 for i 3 

five distinct square elements 

an of order 2. So this 

PROOF OF THEOREM 1.2 

b,c,d,e} that if 

S contains at least one involution. Let 

N ow assume e E 

== X((a,b),{a, 

S)- {X((a,b),{a,b,e})X(q,r) 
- X((a,b),{a,b})x(q,r)X((c, 

Assume, e ¢: (a,b) U (c,d). If o(a),o(c) > then e 

which are joined by an e-edge have the largest distance in em 
n,q,r). Assume 0(0.) > 2 and o(c) = = 2. If e 

12 

Thus 

if e E 
if e E 

such that 

0. 

any two vertices 

Thus 

then 



rc m, 4,1,0). without loss of g;eIlerall1Gy = a Then (a, c, e) contains 

just three involutions and so X( (a, {a, b, C4 • Thus d <t (a, c, e). So 

"",',13..,/'" 5 on abelian groups is XC G, S) X(2,1) G4 ) X 1(2. So every 

one of the 

these 

then 

(i). If Ai 

2,3) 

are '''Al'YlAl0n 

listed in this theorem. Now we determine 'CATYlr'''nh,o"Y\ relations among 

be a listed in the theorem and {a, b, c, d, e}, where if o( a) 2 

2 then d and 2. Let A S)). 

X(G, 

has an orbit {e} 

to an orbit of 

4,1,0). 

ISOJffio:rph.lc to 

or 

is 

1(4 1, 

Note that 1(4 M4 

ifm5 
ifm> 

where €l is the 

no two of these 

1. Then e is an involution and 

or If 

involution 

Since 

xG4 • 

as above 

S)= 
{e}) is invariant under A. Theorem 1.1, 

R) ~ Mr xK'}" then ~ Mr xC4 or 

2 of a contradiction. Thus R) ~ 

em Theorem 1.1, up to is UllllQuely determined by 

m,n,q, unless X(q,1)C2q ~ X(4q,2q-l)C4q , So it easy to get relations 

in the theorem. This the of the theorem. I 

PROOF OF COROLLARY 1.2.1 AND 1.2.2: Proposition 2.2 and the Theorem 1.2, 

it is easy to get Corollary 1.2.1 and it follows Corollary 1.2.2. I 
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