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Abstract

In this paper, we completely classify all connected Cayley graphs of valency at most
5 on abelian groups and show that, with a few simple families of exceptions, the graph
is sufficient to determine up to isomorphisin the group and the set giving the edges. It
follows that the Adim’s conjecture about isomorphisms of circulant graphs with valency
at most 5 is true. This is the best possible for this conjecture in the sense that for every
k > 6 there exist counterexamples of valency k.

1 Introduction

Let G be a finite group and § a Cayley subset (that is, 1 ¢ §) of G. The Cayley (di)-graph
X(G,8) of G with respect to & has the elements of & as vertices and the pairs {g,sg},
g € G, s € 5, as edges. By the definition, X(G, 5) is connected if and only if (§) = G,
and X(G,S) is undirected if and only if § = § ~!. The group Gpg, the right regular
representation of G (that is, gr : © - zg), is a subgroup of automorphisms of X(G, 5)
and acts transitively on vertices. For two groups G and H, if G =7 H then ¢ induces an
isomorphism from X(G,5) to X(H,5%) in the obvious way. For any fixed element g € G,
gro is an isomorphism from X(G, S) to X(H,57), called an Addm isomorphism. It is of
course possible for two Cayley graphs X (G, §) and X (H,T") to be isomorphic without any
Adém isomorphism from X{(G,S)to X(H,T), see Proposition 2.2 for some examples. A
lot of people have been interested in the following question: does there exist some class of
groups, and some families of elements, such that for any two groups G, H in the same class,
X(G,5)= X(H,T)implies that thereis an Adam isomorphism from X (@, 8)te X(H,T),
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see [1, 2, 6, 4] for references. In 1967, A. Adam [1] conjectured that the cyclic groups are
examples of this class. Elspas and Turner [5] disproved this conjecture by constructing
counterexamples for digraphs of valency 3 and for (undirected) graphs of valency 6. But
Toida [7] proved that the conjecture is true for cubic graphs; Delormme, Favaron and Mahéo
[4] proved that it is true for the graphs of valency 4, which had been open in [3]. In fact,
[4] completely determined isomorphisms of Cayley graphs of valency 4 on abelian groups,
although in which some simple cases were missed, see Corollary 1.1.1 of this paper. In this
paper we determine the isomorphism classes of connected Cayley graphs of valency at most 5
on abelian groups and as a corollary we prove that Adém’s conjecture is true for undirected
graphs of valency 5. Since the Elspas and Turner’s counterexample for undirected graphs
is of valency 6, our this result is the best possible for Adém’s conjecture for undirected
graphs.

In the following, all graphs X (&, §) we mention are connected and undirected, so ($) =
Gand § = §°1. Let I' = (V,E) be a graph with vertex-set ¥V and edge-set E. Let
Ti(z) = {y € V| d(z,y) = i}, where d(z, y) denotes the distance between z and y, and Autl
be the automorphism group of I'. A graph I' is called symmetric if Autl’ acts transitively
on the set of arcs of I'. For two graphs I'; and T'y, I'y x I's and I'4[I';] denote the direct
product and lexicographic product of I'1 and I'y, respectively. Let €}, be the cube graph of
dimension n and QF = @, + E', where E' = {{z,y} | z,y € V(Qn), d(z,y) = n}. Forn > 2,
let C,, be a cycle of length n. A circulant graph C(n; ny,-- -, nq) is a graph with vertex set
VC = {0,1,---,n — 1} and edge set EC = {(3,7) [ {7 =1 = ny,- -, ng-1 or ng (mod n)},
which has order n and valency 2d or 2d ~ 1. Thus C,, = C(n;1). If n is even then the graph
C(n;1,%) is of valency 3, denoted by M,. In section 2, we will define a type of product

Ty X(g,r) 2 of two circulant graphs I't and I'y. The main results of this paper are as follows.

Theorem 1.1 Let T be a connected Cayley graph of valency 4 on an abelian group. Then
(1) either T' = M, x K3 for somer >3, or I' 2 Cy, X(g,7) Cn for some integers m, n,q
and 7, where Caq X(g,1) Cag = Cag X(49,29-1) Cag = Ca|Ko);
(2) if T is symmetric then T’ = Cry X(g,7) Crq, where 7% = 41 (mod q), or 7 = 0.

Moreover, these graphs are nonisomorphic except for the stated cases.

Corollary 1.1.1 Any two finite isomorphic connected Cayley graphs of valency 4 coming

from abelian groups are Addm isomorphic, unless one of the following cases occurs:



G S X(G,5)
Z3 = (a,b,c) {a,b,ab,c}
Zy X Ly = (a,b) {6,0'1,62,11} My x K,
7% = (a,b,c,d) {a,b,c,d}
Zy4 X Zy = (a, b) (a,a“l,b,b“l) C4 x C4 = Q4
Zy X 2% = (a,b,c) {a,a71,b,c)
Zy X Z4 = (a,b) {a,a”1,b,b71}
Z, % 2% = (a,b,c) {a,a71,b,c} CpxCqyn+#4
Z3 = (a,b,c) {a,b,c,abc}
Z4 X Z2 = (ll, b) {a, a"l,b,azb} C4 X(gvl) C4 = Q;
Z, X Zg = {a,b) {ab?,a"16%,b, 671}
Zogn X By = (a’ b> {a$ amlvbw anb} Can X(2,1) Cy, n odd
Zan = (a) {a’ad’aZn-l’aan}
Zoy X Zo = {(a,b) {a,a7T ab,a" b} Conl K]

This result was got in [4, Theorem 1}, but some simple cases were missed.

Corollary 1.1.2 (1) Al circulant graphs of valency 4 are Crq X (g 1y Csq with (r,s)=1.
(2) All symmetric circulant graphs of valency 4 are exactly Cq X(4r) Cq = C(g;1,7),

where 7% = 1 (mod q).

Theorem 1.2 (1) Let T be a symmetric Cayley graph of valency 5 on an abelian group.
Then T is isomorphic to one of K¢, K55, Keg — 6Kq, QF and Qs.

(2) Let T' be a Cayley graph of valency & on an ebelian group. Then I is isomorphic to
one of the following: (Cry X (gr) Cn) X K2, Mm X(4r) Cny Cin X(q,r) My and I'(m,n,q,7),
where (Cyg X (4g,29-1) Cag) X Ko = (Cog X (1) C2q) X K2, Cag X(4g,2g-1) Mag = Cag X(g,) My
and Myg X (4g,29-1) Cag 2 Moy X(q,1y Cae (¥(m,n,q,7) is defined in Definition 2.3).

Moreover, all graphs listed here are nonisomorphic except for the stated cases.

Corollary 1.2.1 Any two finite isomorphic connected Cayley graphs of valency 5 coming

from abelian groups are Addm isomorphic, unless one of the following cases occurs:

G g X(G, 5)
Hyx Zy = (T1> X (8) T U {8} X(Hth) x Ky
Hz % Zy = (T3) x (¢} Lu{d} D)
Zn % Zy = {a,b) {a,a” %, 6,677, 0%}
Zy X 2% = {a,b,c) {a,a71,b,c,bc} Cox Ky
7% = {a,b,c,d) {a,b,¢,d, abed}
Zgx 7% = (a,b,c) {a,a7%,b,c,a’bc} QF
7% = {a,b) {a,a7 1, b, b7 a?b%}
Z5 = (a,b,¢) {a,b,ab,c,abe}
L4 X Ly = (a, b) {(L, awl, a®, b,azb} Ky X(2,1) Cy = C4[K2]
Zzin - (&) {CL, a~1,a2n, aZn—l’a2n+l}
Zan X Zn = (a,b) {a,a7%,b,ab, a0} ConlK3)




Corollary 1.2.2 If T and I" are two Cayley graphs of valency 5 on a cyclic group and
I' = 1Y, then there is an Addm isomorphism between I' and I", that is, the Addm’s conjecture

is true for undirected graphs of valency 5.

In section 2, we define a type of product, called (g, T)-product, of two circulant graphs
and give some properties. In section 3, we prove Theorem 1.1 and its corollaries. In section

4, we prove Theorem 1.2 and its corollaries.

2 Preliminary

In this section, we quote some results and give some definitions which will be used in the

following sections.

Proposition 2.1 All Cayley graphs of valency 3 for abelian groups are ezactly Cp, x K,
and My, where Cy X Ko = Q3, My 2 K, and Mg & K33, which are symmetric.

Proor: It is clear. g

There are many pairs of non-isomorphic groups which give isornorphic graphs.

Proposition 2.2 Suppose G = K x 7% and H = K X Z,, where K is abelian, Z% = {a,b)
and Zy = (c). Let §' = T1UTyabU{a, b} and §' = T1UT3c*U{e, ™'}, where Ty C K —{1} and
T, C K. Then X(G,S5) = X(H,5"), but there is no Addm isomorphism between X(G,8)
and X (H, S").

Proor: Let p be a map from G to H such that 12, = 1y and inductively, if 2 = z’ then
G

p: xt—z't,forteTy,

za — 2'e,

zb — z2'c™1,

zab — z'c?,
ztab — a'tc?, for t € Ty,

It is easy to see that p is an isomorphism from X (G, §) to X (H, S"). |
Similarly, we can easily get S and §' from G = K x 7 and H = K x Z3 , respectively,

such that X(G,8)= X(H, $’). Now we define (g, 7)-product of two circulant graphs.

Definition 2.3 For an integer q, let T satisfy either 0 < 7 < qand (r,q) =1, 0rqg=1
and 7 = 0. A (q,7)-product, denoted by Crg X(q,r) Csqs of Crg by Cy, is defined as a graph
T' with vertex set V and edge set E, where

V={(i,3,k) [0<i<r-1,0<5<s-1,0<k<g—1},



(Ciry s n), (i, ja.k2)) € E if and only if either
iy =iy £ 1 (mod r), j2 = j1, by = k1 + [32:—:}31] (mod q); or
iy = i1, jo = j1 £ 1 (mod s), ky = ky + [2=2F s (mod g).
If rq is even, then let Ey be the set of ((il,jl,kl), (ig,jg,kg)) such that

ig =11, ja = J1, k2 = ki + & (mod q), q even;
g =iy 4§ (modr), j2 =g, k2= kit ! (mod q), q odd.

If sq is even, then let E; be the set of ((il,jl,kl), (iz,jz,kz)) such that

iy = i1, j2 = J1, k2 = ki + &7 (mod q), q even;
iy = i1, jo =1+ 5 (mod 8),kz = ky + 157 (mod q), q odd.

For odd q and even r,s, let E3 be the set of ((il,jl,kl),(iQ,jz,kz)) such that

ig =141+ 5 (mod r), jo=j1+ £ (mod s),and ky = ki+ 3—5—1— (mod q).
Define Mrq X (q,;r) Csqy Crq X (g,r) Msq and ['(rq, sq,q,7) 6s the graph with vertez-set V, with
edge-set E U Ey, EU Ey and E U E3, respectively.

Note that in the definition of T'(rgq, sq,q,7), Es is the set of edges which jéin the pairs
of vertices with the largest distance in Crq X(g,r) Csq. It is €asy to show that C, X(1,0)Cs =
Cy X Cy; Cy X (q,7) Csg = C(3g;1, 5); and Crg X(g,7) Cy 2 C(ra; 1,r).

3 The graphs of valency 4

In this section, we prove Theorem 1.1 and its corollaries.

Proor oF THEGREM 1.1: We first list all Cayley graphs of valency 4 on abelian groups
and then determine isomorphism relations among them. Suppose that I' = X (G, S) for
some abelian group G and some § € G — {1} such that |S]| = 4.
First, assume § = {a,a”%,b,b"1}, where o(a),0(b) > 2. Let ¢ = [(a) 0 (B)]. If ¢ = 1,

then X(G,S5)= X((a},{a, a1} X(IYO)'X((b)y {b,b"'}). Now assume ¢ > 1. Let

r=min{i > 1|a € (B}, s = min{i > 1 | ¥ € (@),

™ = min{i > 1 l af = b}, st =min{i > 1 | bt =a'}.
Then clearly o(a) = rq and o(b) = sq. Without loss of generality, assume r > s. Since
a™" =b® and b*" = @, we have o’ € (b) and b*" € (a). So r | r* and s | &*, that is, r* = 77
and ¢* = 7*s for some 1 < 7,7 < ¢. Since a” = b*" = b0 = g™ = a7 77, it follows that
a1 = 1 and so r7* = 1 (med ¢). Clearly the vertex set of X(G, §) can be written

VX:G:{@T’C“bjl()gigr«l,Ogjgsul, 0<k<qg-1}

In the following, we use (1, j, k) to denote the vertices a™*+ipd for all admissible ¢, 7, k. Then

two vertices (41, j1, k1) and (i3, j2, k) are adjacent in X(G,8) if and only if

o ka—k )iz =i o= (afk1+l'1 bj1)-1(ark2+fzbjz) P {a,a'"l,b,b—l}.



(1). Assume g"(Fz—k)+iz—iipia—i1 = g® where § = +1. Since j;, j; < 8, j2 = j; and so
{ (ks — k1) + i3 — iy = 8 (mod 1q),
ja—j1=0.
It follows that iy — 4; — 8§ = 0 (mod r). Since 0 < 43,41 < 7, we have —7 < 4y — 43 — § < 7.

Thus i3 — ¢3 — § = er, where ¢ = 0,1 or —1. Thus,
r(ka — k1) + er = 0 (mod rq), that is, ky — &y = —¢ (med g).

So i3 — iy = 6 (mod 7) and ky — ky = —& = — 27170 (mod q).

(2). Assume a™(bz~Fi)tia—ispie=ir = b8 where § = £1. Since a” = b7,

giz=npertlha—ki)tia—gy o grike—ki)tia-igh-i o b

Since i1,z < 7, if i3 # 4; then a1 ¢ (b}, a contradiction. Thus
{z‘g —ip =0,
st*(ky = k1) + j2 = j1 = § (mod gs).
It follows that j; — jy — 6 = 0 (med s). Since 0 < 3,71 < &, we have —s < jy — j; — § < s.
Thus j; — j3 — 6 = €3, where ¢ = 0,1 or ~1. Thus

s7*(kg — k1) + s = U (mod sg), that is, kg — ky = —e7 (med g).

Hence j; — j1 = 6 (mod q) and kg — ky = —er = —278E7 (mod ¢). So X(G,8) =
er X{q,r) C,q.
Now assume § = {a,a™",d, e}, where o{a) > o(d) = o(e) = 2. If |{(a) N {d,e)| = 1, then

X(G,5)2 X({a), {a,a™}) x X({d,€),{d,e}) = Cpa) X Ci.

If [{a) N {d, e})] > 1, then ofa) is even and let o(a) = 2r. It is easy to see that at most one
of d,e and de belongs to (a). If one of d, e belongs to (a), for example, d € (a), then d = o
and X({a,d),{a,e"},d}) 2 C(2r;1,7) = My,. If de € (a) then de = 4" So
XG.5) - {X’<<a,d>,{a,j~f,d}) X X((e), {e}) & M % i, ird=a,
X((a),{a,07}) X(2,) X({d, €}, {d, }) = C2r X(2,1) C, i de=1d".
Finally, assume that § = {a,b,¢,d}, where a, b, c,d are all of order 2. It is easy to show
that X(G, 9) is either Oy X(1,0) Ca & Qa, or My X K3, or Cy X(33) C4.
Therefore, there are three casess
(1) 8 = {a,a",b,b71}, where a? # 1 and b% # 1;
(i) § ={a,a71,d, e}, where a? # 1, d? = e? = 1;

(iii) S = {a,b,c,d}, where all elements have order 2.



In case (i), X(G,8) is Crq X(g,r) Csq» Where ¢ = |(a) N ®), r = Ka)/({a) n )}, s =
|(b)/((a) 0 (b))], and T is the least non-negative integer such that o™ = b°. In case (i1),
X(G,S)is My, x Kg or Cop X(g1) C4, Where r = o(a)/2. I X(G,8) = My x Ky, then
d € (a) and e ¢ (a); if X(G,S) = Czr X(2,1) C4 then dye ¢ (a) but de € (a). In case
(iil), X(G,S) = Qa, My x K3 or C4 X(2,1) Cs. If X(G,5) = Q4 then G = Ztand S is
a minimal generating set of G; if X(G,S) = My x Ky then G = 73 and (a,b,¢) = Z%; if
X(G,S) = Cy X(z,1) C4 then G = Z3 and ab = cd.

So every connected Cayley graph of valency 4 on abelian groups is one of the graphs
listed in the theorem. Now we determine the isomorphisms between these graphs.

Clearly, if ny # ng then M,,, x Ky ¥ My, x K,. Foranyn 2 4, let A= Aut(M, x K;)act
on the edge-set of M, x K. Then A; has at least one orbit of length 1 on the neighborhood
of 1. For graph Crq X(g,r) Cogs let G = (a,b | ab = ba, a™ = b7 = 1, b° = a"") and
S = {a,b,a™1,b7'}. Then we have shown that Crg X(gr) Cag & X(G,5) as above. Let
B = Aut(Crq X(g,r) Csg)- Since there is an a € Aut(G) such that a® = a™! and b* = b1,
each orbit of By on S has length 2 or 4. So M, x Ky % Crq X(q,5) Csq for any 7,8,¢, 7,70

Now suppose Crq X(qr) Cog = Crrgt X(g,71) Cyry for some 7,8’ ¢/, 7. Let

£l
H = (¥ l a'b’ = bla’, o'

= b =, b’ = a’r"') and T = {a’,b’,a’"l,b’_l},
Then Crigt X(g1,7) Corgr 2 X(H, T).

First suppose that there are z,y € § such that |T(z) N [(y) — {1} > 2 but |I(z) N
I(y) N T(z) — {1}| = 0 for any z € §. It follows that a’? = b% where ¢ = £1. Without
loss of generality, we may assume that a® = b*. Then S = a(e) U a~'(e) where e = a~1b
is an involution, and D(a)(T(b) — {1} = {a® = b*,ab = ba}. Let V; = {a',a""'b} for
i=1,2,---,n. Then G = |J;V; is a partition of G and every vertex in V; is adjacent to
every vertex in Viyr. So X(G,8) = Co[K;). If G is cyclic then G is of even order. Let
|G| = 2n. Since a® = b?, without loss of generality we may assume G = (a) and b = d' for
some 1 < I < 2n—1. Now a? = b% = a?. Thus ¢®~? = 1 and so 2n = 21— 2, thatis, [ = n+1.
Clearly, (I,0(a)) = 1if and only if n is even. If (I, 0(a)) = 1, then a € (b) and n = 2¢ for some
positive integer g. We have shown before that X (G, 8) & Cig X(4q,2941) Cag- If (I, 0(a)) # 1,
then o(b) = n. Thus [{(a) N (b)) = n and 7 = L =1 So X(G,85)= Cm X (n, 241 Cy.
If G is noncyclic, then let ¢ = [{a) N (b)]. It follows that X (G, §) = Czq X(4,1) C2g- Thus
Claq X(19,20-1) Cag = Cog[K 2] = Cag X(g,1) C2q-

Next suppose that there are 2,7, z € § such that [['(z)NT(y)NT(z)—{1}| > 1. It follows
that b = a® or a = b% where ¢,¢' = +1. Without loss of generality, assume that b = a®.
Since X(G,8) = X(H,T), there are 2,3/, 2’ € T such that [[(z')NT(y")NI(z") - {1} = L.
It follows that & = a'®® or o' = b'*3, Hence GG and H are cyclic of the same order. It is

easy to show that there is an isomorphism « from G to H such that 5 =T.



Finally suppose that, for any z,y,z € §, |[T(z)NI'(y)— {1} <1 and |[T(z)nT(y)NT(z)~
{1} =0. If X(G, 8) = X(H,T) = CyxCy, then it is easy to show that G = H = Z,;xZ4 and
59 = T for some isomorphism o from G to H. Thus we may assume that X (G, ) % Cyx Cy.
Since X(G, §)is vertex-transitive, there is an isomorphism p from X (G, §) to X (H,T) such
that 17 = 1. If {a,a7 1} = {a'®1, b2}, then {b,b71} = {a’~%, b~} where £1,65 = 1 or
~1,and so I'(a) NI(a™!) - {1} = {a® = a~2} and T(B)NT(671) ~ {1} = {$? = b~?}. Thus
X(G,8) = C4xCy, a contradiction. Therefore, we may suppose that {a,a"1}? = {a’,a’},
{b,6-1}# = {¥', 11} and '

p: 1=l a—a bbb ot —at bt pL

Then
{a'b’} = I(a’) N T(a?) - {1} — T(a") N T (a") - {1} = {a"b7},

where 4,7 = £1. Thus
{a*} = T(a) - {1,ab,ab™'} — I'(d') = {1,a'¥,a'b"" 1} = {a”*};
similarly, a=? — a’~?, b2 — b2 and b2 — b'~2. That is,
(@'Y = a"b, for |i| + 5] < 2.

Now we inductively suppose that (a't?)? = &b for all integers , j such that [s| + [5] < I
where [ > 2. Let 2 = a”b’ be a vertex of X (@, S) such that |¢’| + || = [ — 1. Then by the
induction assumption, z — 2’ = a,"'lb’jl. and (za,zb,za™1,zb71) — (a'a’, 2t 2'a"1, 2'b"Y).
Thus
{zab} = T(za) NT(zb) - {2} — I'(&'d’) NI{a'V') - {z'} = {2'a'D'},

similarly, za*0F — 2/a™V'* for |h| + |k| = 2. It follows that (a'b’)P = a’b'/ for all integers
t,7 such that |i| + [j| = I + 1. By induction, (a‘d?)? = a”b7 for all integers i,j. Therefore,
p induces an isomorphism a from G to H such that §* = T. It follows that (r,s,q,7) =
(', s, ¢, 7). |
Proor or CororLLARY 1.1.1: By the proof of Theorem 1.1, if G = H then there is an
Adam isomorphism between X (G, §) and X(H,T). Since G = (5) and |5| = 4, all 2-Sylow
subgroups of G are of rank at most 4. By Proposition 2.2 and Theorem 1.1, it is easy to

get our conclusion. L |

ProoF oF COROLLARY 1.1.2: (1). Let ' be a circulant graph of valency 4. Then there is a
cyclic group G and § € G — {1} with | S| = 4 such that I' & X(G, §). Since there is at most
one involution in G, § = {a,a™1,b,b71} for some ofa),o(b) > 2. By the proof of Theorem
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1.1, X(G,8) = Crq X(qr) Cag> Where o(a) = rq, o(b) = sq, |G| = rsq, ¢ = |(a) N (b},
a” =b*"", b = a’" and 77* = 1. Since- G is cyclic, there exists an element ¢ € G such that
¢ = a'b’ for some %, and G = {c), that is, o(a'b’) = rsq. Clearly, o(aibj) = rsq if and only
if (r,s)= 1.

(2). By (1) and the proof of Theorem 1.1, this is clear. B

4 The graphs of valency 5

In this section, we first determine symmetric Cayley graphs of valency 5 on abelian groups

and then classify general graphs.

Proor orF THEOREM 1.2 (1): Let I be a symmetric Cayley graph of valency 5 for
some abelian group G. Then there is a § = {ay, ag, a3, a4, as} such that I' & X(G, §). Set
X = X(G,8)and A = AutX. Then A,, the stabilizer of 1in A, is transitive on §. Without
loss of generality, suppose p € 4; such that p: a; — aipr, ¢ = 1,2,3,4 and a5 — ay. For
R C 5, let T(R) = Nyer[(z) and [*(R) = [(R) ~ Uzes-r ['(2), that is, I"(R) is the set
of all elements which are joined to every elements of R and to no element of § — R. If
R = {a;), -+, a;,} then set IT*(R) = I*(a;, - -,a;,). Clearly, for every z € I'z(1), there is
a unique R C S such that z € I*(R). If [[*(S)| < 1, then |[I™*(R)| > 1 for some R C §.

Noting that A; is transitive on §, R can be taken as follows.

Case 1. |I*(8)] > 2. Let w,y € I'(S5). Then there exist ug,- -+, us; vy, -+, v5 € § such
that

a1y = Ggilg = Gzl = G4lq = Aply = W,
{alvl = (gUy = A3V3 = Q44 = A5U5 = Y,
where u; # v for 1 € i < 5 and {ug,---,us} = {vg,-,vs} = {ay,---,a5}. Thus
a1u1.0:v; = ayvy.age; and so upy; = vy for ¢ = 2,3,4,5. Since uyvy = vy, we have
that 1S = v1.5. Since Ay is transitive on 5, it follows that @15 = 498 = a3§ = a4§ = a55,

that is, I‘(al) = F(az) = I’(ag.) = P(a4) = I‘(a5). So X(G,S) = K5’5.

Case 2. |T*(S—{a1})| > 1. Since A is transitive on 5, |T*(5'~{a;})| > L1 foreach 1 <7 < 5.
If a; € T*(S—{a1}), then cleatly X(G, §) & Ke. If ay ¢ T*(5—{a1}), then a; ¢ I"(5~{ai})
for every 1 < 7 < 5 and so there exists b; # a; and b; € I'*(§ — {a;}) for every ¢. It follows
that for any 4,7 with i # j, (ai,b;) is an edge of X(G,S). Since (a;,1) € E(X) and
IP(a;)] = 5, Ta(1) = {b1,---,bs}. Let-W be a subset of G and X[W] be the subgraph of
X spanned by W, that is, X[W] has vertex set W and edge set E(X )N (W x W). Then
in the subgraph X[{1}UT(1) UT3(1)], every vertex in {1} UT(1) is of valency 5 and every
vertex in I'(1) is of valency 4. Thus I'3(1) # 0. If E(X[T'2(1)]) # @ then at most 3 vertices
in {1} UT(1) U 'y(1) are adjacent to the vertices in I'3(1). So X is at most 3-connected.
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But the vertex 1 is not in any 3-cut set of X, contrary to the vertex transitivity of X.
Hence, E(X[T2(1)]) = @. Clearly I'(ay) = {1, by, b3, bs, b5} and ag, a3,a4,05 € I2(ay). Since
X (G, §) is vertex transitive, |I'g(a1)| = |[[2(1)] = 5 and so there is z € T'3(1) such that
T2(a1) = {az, a3, a4, a5,2}. It follows that z is adjacent to every b; for i # 1. Consider a.
We have that z is adjacent to every b; for ¢ # 2. Thus z is adjacent to every b;. It follows
that X (G, §) = Kqg ~ 6K,.

Case 3. |['(ay,az,4;)] > 1for i = 3 or 4. Since A; is transitive on .5, there are at least five
{i,5,k} € {1,2,3,4,5} such that [I"*(a;, aj, ax)| > 1. Clearly, I'*(a, a;, ax)"{a?, 0%, a}} # 0.
Thus there are at least five distinct sqﬁare elements af € I'2(1), contrary to that S contains
an element of order 2. So this case is impossible.

Case 4. [T™(a1,0:)] > 1 for some 1 < i < 5. ¥ |P*(a1,4;)] > 1, then T*(ar,a) = {af =
a?, aja; = a;a1}. Thus I“(al,a,‘)"i—l = I*(a;, 69i-1) = {a? = a%;_,, @a2i-1 = agi—10:}.
Thus ¢ = a? = a2, _,, a contradiction. So |I™(ay, ;)| = 1 and similarly |I*(z,y)| = 1 for
any z,y € S. If as is the unique involution of §, then § = {al,afl,ag,aglgas}. Thus
{a7% = a?} = (a1, a7?) and {a7% = a3} = [*(as,a;"), that is, a% = 1 and o} = 1. Since
IT*(ay, a2)| = 1, a? # a%. So X({e1,a2), {ag, a7, a5,a51}) 2 Cs x Cy = Qq. If a5 ¢ (a1, a2)
then X(G,5) ® Q5. If as € {ay,as) then clearly as = ala? and X(G,5)= Q. 5 =
{ay,a]", a3, 4, a5}, then o(ar) > o(as) = o(ay) = o(as) = 2. Thus T(ay,a7") = {a? = a7 *}
and so o(a;) = 4. Arguing as above, X (G, S) = QF or Qs. If all elements in § are of order
2, then similarly we have X (G, 8) = QF or Qs. |

Proor or TueoreEM 1.2 (2): Let I' = X(G,S5), where G is an abelian group and
S = {a,b,¢,d, e} such that if o(a) > 2 then b = a~! and if o{c) > 2 then d = ¢™*. So
S contains at least one involution. Let e be an involution of § and R = § — {¢}. Then
X((R), R) is a Cayley graph of valency 4 on abelian group. So it is one of the graphs listed
in Theorem 1.1. I e ¢ (R) then clearly X (G, §) = X((R), R) x X{{e),{e}). So

(Cm X(qr) Cn) ¥ Kz, i X((R), R) = Cpp. X(4,7) Cas

M,, x Cy, if X((R), R} M x Ka.

Now assume e € {R). Then (R) = G. If X(G,R) ¥ M, x K,, then dearly X(G,5) =
M, X1y Cs I X(G,T) = Cp X(g,r) Cn for some m, n, ¢, 7, then it follows from the proof
of Theorem 1.1 that X(G,T) = X((a,b),{a,b}) x(4+) X ({¢,d},{c, d}). Thus

X(G,5) = {

X((a,b),{a,b,e}) x(g,r) X({¢,d),{¢,d}) = My X(q,-) Cn, if € € (a,)),

X(G,5)= {X((a, 5),{2,0}) X(q.) X ({0, ), {0 dy€}) = Cm X (qr) My if € € (cyd).

Assume, e ¢ (a,b) U (¢,d). If o(a),o{c) > 2, then e = a%c¥. Cleazly, any two vertices
which ate joined by an e-edge have the largest distance in Cry X(g,r) Cn. Thus X(G, 5) =
[(m,n,q,7). Assume o(a) > 2 and ofc) = o(d) = 2. If e = a%ecd, then X(G,S)
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I'(m,4,1,0). Otherwise, without loss of generality, suppose e = aZc. Then {a, ¢, e) contains
just three involutions and so X({a,c,e), {a,b,¢,e}) = C X(2,1) Ca. Thus d ¢ (a,c,e). So
X(G,8) = (Crm X(2,1) Ca) X K3. So every Cayley graph of valency 5 on abelian groups is
one of the graphs listed in this theorem. Now we determine isomorphism relations among
these graphs. ‘

Let X(G, S) be a graph listed in the theorem and S = {a,b,¢,d,e}, where if o(a) > 2
then b = a~1; if o(c) > 2 then d = ¢™'; and o(e) = 2. Let A = Aut(X(G, 5)).

(i). If A; is transitive on S, then by (1) of the theorem, X(G,S) is isomorphic to
C(6;1,2,3) = Ke, C(10;1,3,5) = Kss, I'(4,4,1,0) = QF, (Cy x Cy) x Ky = Qs or
1'(6,6,3,1)= Kgg — 6K3. Clearly no two of these graphs are isomorphic.

(ii). Assume that A{ has two orbits 57 = {a,b}, Sz = {c, d,e}. Then X((53),52) is
Al gymmetric. By Proposition 2.1, X((S2), S2) & Qa, K4 o1 Ksz. If [(51) N ($2)] = 1,
then X{G,8) % Crn X Ky, Cu x K3z or C X @3, where m = 4 or o(a). Note that K4 = My
and Koy & Me. Assume that [(Sy) 0 (S2)| > 1. Then X((S),52) = Kas or Qs If
X ((S2),52) = K33, then [(§1) N (S2)| = 3 and

K33 %(31) Cm, {m<6,

X(G,5)= {Cm X@n) Kag, ifm> 6.

If X((S2),S2) = Qs, then |(S1) N (S2)| = 2 and e = €3, where ¢, is the unique involution
in (a,b) — {a,b} and ez = cde or ¢’¢, depending on ofc) = 2 or ofc) = 4, respectively. Since
X ((Sy), 8;) is symmetric for ¢ = 1,2, [(S1) N (¢, d)| = 1. Thus X(G,{a,b,e,d}) 2 Coo) X Ca.
Since e = edey or ce, X(G,S) = I'(o(a),4,1,0). Clearly, no two of these graphs as above
are isomorphic.

(iii). Assume that A has an orbit {e} oflength 1. Then eis an involution and X(G,S5) =
X(G,R)U X(G,{e}), and X(G, R) and X(G,{e}) is invariant under A. By Theorem 1.1,
X((R), R)= M, x K3 or Cy X(g,r)Cn. H X((R), R) = M; X K3, then X(G,85) = M, xCqor
M, X (3,1)C4 and e belongs to an orbit of length 2 of Af, a contradiction. Thus X ((R), R) &
Cm X(q,r) Cn- By Theorem 1.1, up to isomorphism, X ({R), R) is uniquely determined by
m,mn, q, 7 unless Caq X (4,1)C2 & Claq X (2g,29-1) Cg- So it is easy to get isomorphism relations

in the theorem. This completes the proof of the theorem. [ |

ProoF oF COROLLARY 1.2.1 AND 1.2.2: By Proposition 2.2 and the proof of Theorem 1.2,
it is easy to get Corollary 1.2.1 and it follows Corollary 1.2.2. B
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