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Abstract 

theorem is the main result of this paper: If 
G is a 
graph, 

that has then the 

Hamilton deICOInplosltl()nS 

All considered in this paper 
V (G) and we denote the vertex set 

Kn we denote the complete on n vertices. 
A cycle is 2-regular connected A Hamilton G IS a 

2-regular connected spanning ou..JJ;<.J.UIJLl. 

A i-factorisation of a is a of E( G) into A 1-
factorisation of G is a I-factorisation of G in which the union of any of I-·factors 
is a Hamilton of G. A graph is said to be perfectly if it has at 
least one I-factorisation. 

The line graph, denoted by L( G), of G is the with vertex set 
where two vertices of L( G) are adjacent in L( G) if and only if the edges 
in G are incident with a common vertex in G. 

A Hamilton decomposition of a regular graph G consists of a set of Hamilton 
cycles (plus a I-factor if .6.( G) odd) of G such that these the I-factor 
when .6.(G) is odd) partition the edges of G. If G has a Hamilton decomposition, it 
is said to be Hamilton decomposable. 

Definitions omitted in this paper can be found in [5]. 
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While decompositions of line graphs into I-factors have been well studied [1, 10, 
11], Hamilton decompositions remain an area of continuing much of which 
is motivated by a conjecture made by Bermond [4]: 

"""~~"'n""'" 1 If G is Hamilton decomposable, then L( G) is Hamilton decomposable, 

Bermond's has been shown to hold when G is a Hamilton decompos-
able graph satisfying any of the following criteria [8, 11, 13, 15, 16, 17]: 

1. L1(G) :s; 5, 

2. L1(G) 0 (mod 4), 

3. is odd and G is bipartite, or 

4. G = for k ~ O. 

2 

We prove the l.Vil.VVVHJL"- ~1.let)l'eII1, which serves to further support Bermond's 
ture: 

Theorem 1 If G is a 2k-regular graph that has a perfect i-factorisation, then L( G) 
is Hamilton decomposable. 

Proof. G is (4k - To show that L( G) is Hamilton 
decomposable, (2k-l) Hamilton of L(G) will be constructed. We 
accomplish this task by that each Euler tour in G to a Hamilton 
cycle in L( G), and so we need only find (2k - 1) Euler tours in G such that each 
pair of incident in G occurs consecutively in exactly one of these Euler tours 
(ie. such that the Euler tours partition the 2-paths of G). 

We begin fixing a proper edge-colouring of G such that the of each 
colour class to the of I-factor in a 1-factorisation of G. 
We use the colours 0, ... , (2k 2) and 00. Additionally we select some vertex v of 
G at which we will begin and end each Euler tour. 

Each of the Euler tours that we construct will be obtained by at v and 
then travelling the k Hamilton of a Hamilton of G. Each 
of these Hamilton will be obtained from the union of two of the 1-factors in 
the I-factorisation of G. The set of I-factor thus used for each Euler 
tour will correspond to a I-factor in K2k where V( K 2k ) = {O, ... ,2k - 2} U {oo}. 

Consider now the I-factor, m 

{OO,O}, 2, I}, {2k 3, {2k - 4, '" , + 1, k k -1} 
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We treat each colours as an ordered with the first coordinate being 
the colour of the that we use when departing v, and the second coordinate being 
the colour of the used when returning to v. 

Let u denote the permutation (0, ... , 2k - 2)( 00). Then the I-factors F, a( F), 
... , a 2k- 2(F) the 2-sets of V(K2k ), and so each pair of edges in G that meet 
at a vertex other than v will be used exactly one of the (2k - 1) 
resultant Euler tours. 

Edge that meet v are described the I-factors F', u(F'), ... , u2k- 2(F') 
where F' denotes the I-factor: 

{O, 2k - {I, 2k - {2,2k - 4}, 2k-5}, ... ,{k 2,k},{k-l,oo} 

Again, the 2-sets of V(K2k) are r..,,~1Tt·;nTH>rl 
Hence each in G will occur in 
- 1) Euler tours thus correspond to (2k 

L(G). 

one of the (2k - 1) Euler tours. The 
1) edge-disjoint Hamilton m 

o 

3 

the following r"AY11Plrt111"P' 

K2k has perfect i-factorisation for all k ~ 2. 

Kotzig's conjecture has been shown to hold when k is 
or when 2k is one of 16, 28, 36, 170, 244, 

2198, 3126, or 6860. 18, 19].) 

1 is Hamilton decomposable} 'Where F is a of 
provided that any of the follo'Wing conditions are satisfied: 

1. k is prime} 

2. (2k - 1) is prime} or 

3. 2k is one of 28} 36, 40} 50} 126, 170} 244, 344} 730} 
2198} 3126} or 6860. 
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