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coincide with or be within an arbitrarily small difference of a job completion time.

Letd” be any arbitrarily chosen common due date which does not coincide
with any of the job completion times (i.e. Cy; <d” < Cy,j=1,2, .., n)
where Cy is the completion time of the job in position j.

Then d” expressed in the form of a Gantt chart will be as follows:
|
Cpoay| < X-->d <y 1 Cyy

!
-1 [l i+11

Figure 1

If we shift d’ to the right so that it is equal to Cy, then the following
change in penalty will arise

AP = (j-Tly-In-j+ Ty = (2j-n-2)y.

Similarly, if we shift d” to the left so that it equals C ), then the following
change in penalty occurs

AP = (n-j 4+ Tx-{-1Th = (n-2] + 2)x.
Since x, y and n > 0, it follows that

AP, = 0 if j=n/2 + 1
and
AP, = O if j =n/2 + 1.

Thus for any given d’ we can shift it to the left or to the right depending
on its value so that a reduced or eqgually good penalty value can be achieved.
Consequently the optimal due date must be equal to one of the job completion
times; or be arbitrarily close to it to preserve the required number of tardy jobs.

This means that the optimal sequences developed for the restricted
problem are also optimal for the unrestricted problem but it remains to asscciate
a specified number of tardy jobs in the unrestricted problem with the appropriate
optimal sequence from the restricted problem. That is, we must ascertain
whether an optimal sequence for the restricted problem with n, jobs is also an
optimal sequence for the unrestricted problem with the same number of tardy
jobs.

Suppose d is optimal, then d = C, where s is determined by the specified
number of tardy jobs and by whether m = n,. Suppose m = n,, then s will have
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a value satisfying s < n/2 + 1 and so any arbitrary due dates which preserve
the specified number of tardy jobs will shift to the right so as to coincide or
nearly coincide with a job completion time. Three optimal sequences for the
restricted problem each associated with different numbers of tardy jobs are the
only candidates for the optimal sequence for the unrestricted problem with n,
tardy jobs. These sequences are illustrated in Figure 2. The sequence relevant
to the unrestricted sequence with n, tardy jobs is determined in what follows.

~~~~~ > n, + 1 tardy jobs to the right ->
--> n, tardy jobs -—->
--n.-1 tardy jobs -->

relevant
optimal sequence

d (i} d (optimal due date for the
restricted problem with n,
tardy jobs)

(ili) (optimal due date (ii) d {optimal due date for the

for the restricted restricted problem with
problem with n,+1 n.-1 tardy jobs)
tardy jobs)

Optimal sequences for the restricted problem with (i) n,, {ii} n-1 and (i} n+1
tardy jobs.

Figure 2

The first sequence is illustrated in part (i) of Figure 2, and is the optimal
sequence for the restricted problem with n, tardy jobs (having penalty P). We
shift its due date as far as possible to the right while still preserving the same
number of tardy jobs, that is, shift it by an amount t, - 1, as by equation (3) the
first late job is the shortest job and has processing time t,. The new penalty P,
is given by

P, = P-(2n, - n)t, - 1)

and as m = n,, we have 2n,-n = 0 and so P, < P. The second sequence is
illustrated in part (i) of Figure 2. The specified number of tardy jobs can be
obtained by taking the optimal sequence for the restricted version with n, - 1
tardy jobs and an arbitrary due date to the left of the optimal date for this
version. When such a date is moved as far as possible to the right (while still
retaining n, tardy jobs), it has a value one unit less than the optimal due date for
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n, - 1 taray jobs. The resultant penalty P, is given by

2n,~n=1
P,=P - % t_+{2n -n)
r=0
where we have used the result of the corollary to the restricted problem to give
the difference between the optimal penalties for sequences with n, and n, - 1
tardy jobs. We next compare the relative sizes of P, and P,.

Upon simplification, we obtain

2n,~n-1

Py =P, = ¥t - (2n - nht,

r=0

2n,-n-1

= 3 {t,-t) =0

r=0

after noting that t, is the smallest of the 2n, - n numbers t, t i, ... , tyomes
which lie in SPT order in the associated optimal sequence for the restricted
problem. Note that when these numbers all have the same value, P, = P,.

Thus P, < P, < P. The only other approach (illustrated in part (iii) of
Figure 2) is to take the optimal sequence in the restricted problem for n, + 1
tardy jobs and move the due date to the right until there are n, tardy jobs. But
the associated penalty then can be no less than P, which is the optimal penalty
for the restricted problem.

Hence when m = n, in the unrestricted case, we choose to form the
optimal sequence for n, - 1 tardy jobs for the restricted problem and select a
common date one unit less than the associated optimal due date for this
restricted case. The associated optimal penalty for the unrestricted case is P,,
which is equal to the optimal penalty for the restricted case with n, - 1 tardy jobs
plus the number 2n, - n.

On the other hand, suppose m # n,. We again consider the same
sequences illustrated in Figure 2. In this case, n, is relatively small and so s will
have a value satisfyings = n/2 + 1. As a consequence, arbitrary due dates
which preserve the required number of tardy jobs will shift to the left for
optimality to coincide with the exact completion of n - n, jobs. Thuss = n-n,
and the relevant optimal sequence is that for the restricted problem with n, tardy
jobs (see part (i} of Figure 2). Note from part (i) of Figure 2, that the optimal
sequence for the restricted problem involving n, - 1 tardy jobs can be made to
have n, tardy jobs by taking an arbitrary due date to the left of the optimal due
date for the restricted version and shifting it further to the left to coincide with
the nearest job completion time. However, this action does not result in any
improvement in the penalty for the restricted version with n, tardy jobs than that
already achieved. An argument similar to that which established P, < P, earlier
using the corollary to the restricted problem can be used to establish this fact.
The third possibility involves the optimal sequence for the restricted problem
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with n, + 1 tardy jobs and is illustrated in part (iii) of Figure 2. This can also be
dismissed as the resultant penalty obtained by moving any due date to the left
in this sequence (while preserving n, tardy jobs) can be no better than that for
n, tardy jobs. Thus when m # n,, the results for parts (a), (b) and (c) of the
restricted problem are the same for the unrestricted problem. This completes the
proof for the unrestricted version of the problem.

G. Discussion

in their review article, Baker and Scudder {1990) refer to the large variety
of optimal due dates arising in Kanet's result from the way that pairs of jobs are
assigned to the beginning and end of the optimal sequence. They mention the
secondary criterion of minimizing the total processing time in the set of jobs
scheduled before the comimon date. In many applications it is an advantage in
terms of customer satisfaction to have the optimal common due date as early
as possible, while the associated minimum penalty is preserved. In the current
investigation, the number of tardy jobs is specified before sequencing and the
manner of job assignment insures that the secondary criterion described above
is achieved. A variety of optimal sequences still remain, when different jobs
have the same processing times, but this variety does not change the optimal
common date.

Bagchi, Sullivan and Chang (19886), in investigating the determination of
an optimal sequence for unweighted total absolute lateness with respect to a
given due date, refer to the V-shaped property of all optimal sequences. By this
term they mean that the jobs preceding and succeeding the shortest job are in
LPT and SPT orders, respectively. Krieger and Raghavachari (1892) prove that
this property holds for optimal schedules with monotone penalty functions. In
the current paper, the method of forming the optimal sequence, which is given
in part (a) of the Results section; and its proof, show that the optimal sequences
produced are also V-shaped.

As mentioned earlier, Cheng (1992) show that for a given job sequence,
the optimal common due date k* is a simple function of the number of jobs. He
shows

k* = Cipanm ; n odd

= Cpyz + Ttz forsome O < f < 1,if nis even, where Cy is the

completion time for the job in position i in sequence and t,, , 4, is the processing
time of the job in position n/2 + 1. In the notation of this paper this result
translates to

k* = Cim , n=2m+ 1

= Cpm + fpmey forsome 0 < f <1, if n=2n,.

In the situation where we require the optimal due date for a given optimal
job sequence, having a specified number of tardy jobs, the result is
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KO= Lppm o 1OT M= Ny OF I = L0y, OF U= 24+

= Cpmn-1 for m=mn, and n 2Zm + 1 and n # 2n,. (7)

In this paper, we have shown directly that the optimal common due date
for the optimal sequence having a given number of tardy jobs is also a simple
function of the number of jobs; and is given in part (b) of the Results section;
and, equivalently by equation (7) once the optimal sequence is used.

The corollary to the restricted problem allows the generation of the
penalty for any feasible number of tardy jobs once the penalty for a particular
number of tardy jobs in a sequence is known. For example, if we begin by
considering zero tardy jobs and follow the required procedures, the jobs are
sequenced in LPT order and a common date equal to the sum of the processing
times is assigned. The corresponding optimal penalty can also be calculated.
The optimal penalty for successive numbers of tardy jobs decreases by the
quantity given in the corollary until either n = 2n, orn = 2n, + 1. It then
increases in accordance with the requirements of both the corollary and the
results of the unrestricted problem. This procedure is illustrated towards the end
of the next section.

7. A Numerical example

We present a numerical example to illustrate the results. The example
consists of twelve jobs.

Data Summary of Results Sample (n, = 8)
i Y n, d P i 4 C P
1 112 0 1254 6031 6 171 171 417
2 101 1 1140 5062 T 112 283 305
4 103 3 924 3784 10 109 392 196
5 71 4 823 3456 4 103 495 93
6 171 5 734 3311 9 94 589 1
7 89 6 663 3311 5 71 660 72
8 114 7 662 3313 11 74 734 146
9 94 8 588 3460 7 89 823 23b
10 109 9 494 3790 2 101 924 336
11 74 10 391 4324 3 105 1029 441
12 111 11 282 5072 12 111 1140 552
12 170 6043 8 114 1254 666

In the table above, the Data column gives the job numbers and processing
times for the twelve jobs. The Summary of Results column gives for each
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possible number of tardy jobs (from O to 12), the optimal due date and the
associated optimal penalty. The Sample column gives for n, = 8, the optimal
sequence in terms of the original jobs numbers; and, for each job in this
sequence, its completion time C; and the penalty it attracts, due to its position
relative to the optimal due date of 588. We next verify the contents of the
Sample column using the results developed in this paper.

First, place the jobs in LPT order and re-label them. We note thatn = 12,
n,= 8andthatn-n-1 =3 Thusm = 8 and as m = n, we consider the
restricted problem with n,- 1 = 7 = m tardy jobs and assign the firstn-m =
5 odd numbered jobs at the beginning of the sequence and the firstn-m = 5
even numbered jobs at the end of the sequence. The remaining two jobs are
placed in between in SPT order. This can be verified in the S8ample column
where the original job numbers have been retained. The sequence is the optimal
sequence.

Next we independently determine the optimal due date given by

pen=1=5
d = Z tyrq = 1
r=1
= 589 - 1
= 588

where the jobs have first been placed in LPT order.

The optimal penalty is given independently by

5

4 2
P=3Y" (r=1) 1y, + }; rt,, + E; (7-Nty,., + (2n, = n)

r=1

il

1015 + 10556 + 1386 + 4
= 3460.

We now illustrate how the optimum penalty for each feasible number of
tardy jobs can be generated from a particular optimal penalty. The optimal
penalty for zero tardy jobs is obtained by sequencing the jobs in LPT order and
assigning a common date of 1254, which is the makespan of the job set. The
optimal penalty is 6031. To calculate the penalty for one tardy job we proceed
as in the corollary and calculate

n=2n,-1
St . wheren = 1.
=0
In this case, this sum is 969. The optimal penalty for one tardy job is then 6031
- 969 = 5062 and we can proceed in a similar way for increasing numbers of
tardy jocbs. In summary:
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n, Yot Optimal Penalty

=0

2 746 5062 - 746 = 4316
3 532 4316 - 532 = 3784
4 328 3784 - 328 = 3456
5 145 3456 - 145 = 3311
6 O(asn = 2n,) 3311-0 = 3311

When n, > 6, m = n, and we foliow the results for the unrestricted
problem. Thus for n, = 7 we use the penalty for 6 tardy jobs calculated above
and add 2n, - n = 2 to obtain the optimal penalty of 3311 + 2 = 3313. For
n, > 7 we calculate the penalty for the restricted version first. These penalties
can also be obtained conveniently by symmetry with the optimal penalties for
n, < 6.

n, Optimal penalty for n, - 1 jobs 2n - n Optimal penalty
8 3456 4 3460
9 3784 6 3780

10 4316 8 4324

11 5062 10 5072

12 6031 12 6043

These results match those summarised in the previous table.
8. Concluding statement

In this paper we consider the problem of optimal sequencing of a set of jobs
on. a single machine to minimize total absolute lateness, where a prescribed
number of jobs is tardy. Three independent procedures are presented. The first
determines the optimal sequence and the second determines the optimal due
date. Each of these procedures runs in O(n log n) time. The third determines
the optimal penalty and runs in O(n? time. The theoretical treatment involves
a consideration of an arbitrary job sequence and an arbitrary common due date,
which coincides with a job completion time. This date is then replaced with the
corresponding sum of processing times to give a total penalty in terms of job
processing times. A standard optimizing procedure follows and an adjustment
is made to the resultant due date to make the results globally optimal. A
numerical example is presented to illustrate the application of the procedures.
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