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Abstract

Let v be the domination number of a graph. The bondage number
b(G) of a nonempty graph G was first introduced by Fink, Jacobson,
Kinch and Roberts [3] to be the minimum cardinality among all sets of
edges X for which v(@ — X) > v(G) holds.

In this paper we show that b(G) < ZA(G) for any graph ¢ satlsfylng
v(G) < 3, which is best possible.

1 Introduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple edges.
For v € V(G) we denote by N(u) the neighborhood of u. More generally we define
N(U) = Uyev N(u) for aset U C V and N[U] = N(U)UU.

A stt D of vertices in G is a dominating set if N[D] = V. A dominating set of
minimum cardinality in G is called a minimum dominating set (M DS), and its car-
dinality is termed the domination number of & and denoted by (G).

Fink, Jacobson. Kinch, and Roberts [3] defined the bondage number b((:) of a
nonempty graph to be the minimum cardinality among all sets of edges X' for which
(G — X) > (/) holds. Brigham, Chinn, and Dutton [2] defined a vertex v to be
critical iff v((G —v) < 4(G) and  to be a vertex domination-critical graph (from now
on called ‘ve-graph’) iff each vertex of (7 is critical. For graph theory terminology not
presented here we follow [4].

From [1] we know that b(G) < deg v < A(G), when G has a non-critical vertex
v. For ve-graphs it is more diflicult to find good upper bounds. On one hand, we
have trivial-type upper bounds like 6(G) < A(G) + 6(G) — 1 [3]. On the other hand
it was conjectured in [3], that 6(G) < A(G) + L. This conjecture was disproved in
[5] and further it was pointed out in [7], that there is no fixed natural number ¢
such that b(G) < A(G) + ¢ is valid for any graph G. This result was obtained by
indicating an infinite class of graphs G; (i € N) for which A(G;) = 2(¢ — 1) and
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(G = 3(i—1
arose, namely 6
satisfying v(&)

N—

. Since the class G; looked ‘somehow extremal’, a new hypothesis
() < 2A(G). In this paper we prove b(({) < IA(G) for graphs G
3.

—~

IA

2 Preliminary results

Proposition 2.1 [6] Let & be a graph. Suppose q edges can be removed from G to
give a graph H with b(H) = 1. Then b(G) < g + 1.

Proposition 2.2 [6] Let G be a nonempty graph with a unique M DS.
Then () = 1.

Proposition 2.3 [6] Let G be a nonempty graph with K, < (. Then
b(C) < mun{deg u +deg v —1+1; u and v belong to the same K,}

To arrange the proof of our main result as smoothly as possible we will prove some
preliminary results. Furthermore we need a few helpful definitions:

Definitions:
1. Let uw € V(). Then E, := {2 € F(GQ);x incident to u)

2. Let DOM(G) == ({v € V(();v belongs to at least one MDS(G)}),
where (V) is the subgraph induced by V' € V/(G).
Observation: If (' is a ve-graph then DOM () = G.

3. Let bi((3) i= man{| X[} X C E(G).v(G — X) > 4(G) + k} for
L <k < V(G)] = 4(G), k € N be the k-bondage number of G.

Lemma 2.4 Let G be a ve-graph, v € V()

and y(DOM(G — u)) = v(G) — k, where k € {1,2}.

Then b(() < deg v+ b (DOM (G —w))  if b(DOM(G — u)) exists,
and b(GY < deg u+ 1 if (DOM(G — u)) doesn’t exist.

Proof: Since u is critical, 4(G' — ) = 4(¢) — 1 and N(u) N V(DOM(G — u)) = 0.
Hence any dominating set of (¢ — u including a vertex w ¢ V(DOM(G — u)) has at
least v(G) elements because it can’t be a M DS.

Now let y(DOM(G — u)) = v() — k where k € {1,2}. We consider two cases.
Case | : G —u has a unique M DS. Then by(DOM (G ~u)) may not exist, but from
Proposition 2.2 we have b(G' — ) = 1 and thus by Proposition 2.1 b(G) < deg u + 1.
Case 2: (¢ — u has more than only one MDS. Then |[DOM(G — )| > +(G) =
Y(DOM(G — w)) + k. Thus b(DOM(G — u)) is well defined. Now let X be a
minimum set of edges such that y(DOM(G —u) — X) = y(DOM(G — u)) + k.

Let D be a MDS(G —u — X).
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Case 2.1 : There is a w € D with w & V(DOM(G — u)}). Then v(G —u — X) =
[D| > () by the argument at the beginning of the proof.

Case 2.2: DNV(DOM(G ~u)) = D. Then

UG —u— X) 2> Y DOM(G —u) — X) = y(DOM(G —u)) + k = 5(G).

In both cases we have v(( —u— X) > v(() and therefore v(& = E, — X) > 4(G) +
which proves the lemma. e

"I'he next two lemmata are almost trivial but useful. We will omit the proofs.

Lemma 2.5 Let G be a graph with v(G) = 1 and t := [{v € V(();deg v = |V(G)| -
1}]. Then b(G) = [£].

Lemma 2.6 Let (¢ be a ve-graph, v € V{(() and ' := DOM(G — u). Let R =
V(G —u)— V(') be the vertices not belonging to any MDS(G —w). And let mfw, ]
be the number of edges leading from w to G' for any verter w € K. Then b(G) <
deg u + mingep{mlw, G'}.

Remark: Since N(u) C R for any ve-graph, the set B can not be empty and hence
is well defined in the above lemma.

Lemma 2.5 especially shows that b(G) < IA(G) + 1 if y(G) = 1. Before finally

concentrating on the case v = 3 we also treat the much easier case y = 2.
Lemma 2.7 Let G be a graph with v(G) = 2. Then b(G) < IA(G).

Proof: If G is not a ve-graph, then b((7) < A(G) is immediate (see Section 1). Now
let G be a ve-graph. From [2] we know that the ve- gmphs with domination number 2
are exactly the graphs Ky with a 1-factor removed (k > 2). From [6] we know that
for these graphs b((Y) = A(G) + 1. Since A(G) > 2 we have A(G) +1 < JA(G). o

Lemma 2.8 [2] If G is a ve-graph, then |V(G)| < ((G) — D(A(G) + 1) + L.

Proof: Since G is a ve-graph, (G — u) < (G) — 1 for any v € V(). Hence
V(G =1 = (4(G) = DAG) +1). e

Corollary 2.9 If G is a ve-graph with v(G) = 3, then |V(G)| < 2A(G) + 3.

Theorem 2.10 Let & be a ve-graph with v(G) = 3 and |V (G)] = 2A(G) + 3.
Then b(G) < A(G) + 1

Proof: For A(G) < 2 the conclusion is trivially true by the result o(G) < A(G) +
§(G)—11m 3]

Now let A(G) > 3, v € V(G) and &/ := G —u. Since G is a ve-graph 4(G') = 2.
Let {v,w} € MDS(G'). If v and w had a common neighbor we would have [V/(G)] <
2A(G)+2, which is a contradiction. Hence d(v,w) > 2 and [N(v)| = [N(w)| = A(G).
(v, & Ng(u), otherwise v(() = 2, contradiction as well)

Case 1 : {v,w)} is the unique M DS of G'. Then we get b(G") = 1 by Proposition 2.2
and thus b(G) < deg v +1 < A(G) + 1, as required.

Case 2 : Thereis aset D € MDS(G'), D # {v,w}.
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ME2E ek o AS DI W W, say Vo L0 1 NEN HNEe SeCond eternent o1 L must be arn
element of N(w) := {t1.... tawy ). say D = {v. 4} Hence N(t,) = {w, 1, ..., tay}
because v and 1; have no common neighbor (see above). Now consider (¢ := (7 — ¢,.
To dominate w in ¢/ we conclude that N(f YA M DS(G) # 0. But then ) = ()
and #; is not critical in (7, which is a contradiction since (¢ was a ve-graph.

Case 2.2 DO{vowh =0, say D = {5t} where N(v) = {s;,..... SA(G) )
Without loss of generality let t; be adjacent to Loty Sipry ooy saqe and et s
be adjacent to sz.... 8.0y, .. tagey where 1T <4 < A(G) — 1. (4 must have a

s;-neighbor, otherwise we have the same contradiction as in Case 2.1. ).

Consider (/ := (; — s;. What does a M ])“(G) look like?

One element of Vi := {s,11...., 85} must belong to any M [,‘)F?((;') because v has
to be dominated in (/. (v itself can’'t belong to a M DS(G) otherwise () = (1),
Also w can’t belong to a M DS(() because w and any vertex of Vi have the common
neighbor ¢y (which still is not possible).

Thus one element of V5 1= {#;,....1;} must be the second element of a Z\"I].')S((\/).
since w has to be dominated in (7. But d(Vy. Vo) < 2, hence we again have the con-
tradiction [V(¢)] < 2A(G) + 2, even in the exireme case 1 = 1.

Thus case 2 can not arise, which corapletes the proof. e

3 The main result

3.1 The “finding’ algorithm

Before we prove our main result it is useful to present the algorithm that will be used
to find a ‘bondage-edge-set’, i.e. a minimum set X of edges such that (¢ — X) >
(G-
Let (7 be a ve-graph with () = 3.

1. Isolate a vertex vg with deg vo = A(G). Let Hy = DOM((} — vg).

2. Consider (). Since G is a ve-graph (1) < 2.

3. Let vy € V(H)) be a vertex with degy, vy = 6(Hy). Isolate vy i1
DOM(H, — v} and let = [{w € (V(H) —v)); degiy, —oyw =

Hy. Let I, =
[V(H)| = 2}].

The following cases have to be discussed:

Case L2 v(Hy) = 2. Then b(G) < A(G) + b(H})

{or MGy < A(G) + Lif b{H;) doesn’t exist) by Lemma 2.4.

Case 1.1 : vy is not critical in Hy. Then b(H,) < degy, vy = 6(Hy).

Case 1.2: vy is critical in Hy. Then b(H,) < degy vy + [] by Lemma 2.5.
Case 2. (H;) = 1. Then b(G) < MG + by(Hy)

{or B{(d) < A{G) + 1 if by(Hy) doesn’t exist) by Lemma 2.4.

Case 2.1 2 y(Hy) > L. Then by(H,) < degy;, vy = 6(Hy).
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Case 2.2 2 y(Hy) = 1. Then by(Hy) < degy vy + [1].

If one of the bondage numbers doesn’t exist we have b(G) < A(G) + 1.
Otherwise we have b((/) < A(G) + 6(H1) + [] in the worst case. So we now have to
calculate 8(1,) and [£].

3.2 The main theorem
Theorvem 3.1 Let G be a ve-graph with v(G) = 3, then Gy < 2A(G).

Proof: Without loss of generality let A = A(G) > 3 (for A < 2 the conclu-
sion is trivially true as in Theorem 2.10) and likewise without loss of generality let
V()] < 2A + 2 (for the case |V(G)| = 2A + 3 we have Theorem 2.10 to prove the
conclusion}.

Following the “finding algorithm’ we firstly isolate the vertex vy (deg vg = A) in &
and define H, := DOM(G — vg).

Since N{vg) N V(H;) = 0 (otherwise vy was not critical) we conclude that n, =
VHN < V@) - (A+ 1) <A+ L

Assumption: b(() > 2A.

Then the relevant bondage numbers of H; must exist and we can start calculating
6(Hy) and [L].

Let N(vg) := {wy,...,wa}. We want to apply Lemma 2.6:

If we had a w; € N(vo) with mfw,, H] < ;A we would obtain b(G') < deg vo -+ A=
%A by Lemma 2.6, a contradiction.

Thus we know that mjw;, H;] > A for each 1.

Now we can estimate the number of edges in Hy:

my = |E(Hy)| < -

( S degu— Y m['wi»[fz])

wEV (H;) 1<i<A

1 1 1 1 1

y N Ny T I R e ol

2A (nl {ZA +2D 2A [2.{3}.
We already know ny < A41, my < f—IAz. Then

2mq A? 1
< e e A
5(Hh) [ m j = {2(;3 + 1,)J Tl

(For the second inequality, notice that since m; also depends on n; we can easily
check the derivation to see that the maximal value of §(H,) is obtained by taking the
maximal value of ny.)

B |

IA

Clase 1. A even

Following the algorithm we now isolate vy in [ (remember that v; is a vertex of
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degree o{ i1y ) m Hy). Lhe remaining object 1s to estimate f (as defined in section
3.1), Le. to estimate the number of vertices in H, — vy with degree ny — 2.
The following formula, counting the edges of Hy, is obvious:

Zrny —nyg - 6(Hy)

Hnyg —2) +{ng — 1) - 8(Hy) < 2my if and only if < *;17?2 AN

Alny ~ [y gy, L 4
which implies that t < (1 nffz ],_) (k([n;]) S(H) . (1)

Again the derivation shows that ¢ is maximal for the greatest possible ny. Hence we
can evaluate (1) by putting the term A —1—s instead of 6(ff;) (where s > 0, s € N)
and taking the maximal n:

IA(A+DEA -1~ ) 2 — 45?
t o< 2 2 - = Qs L4 —
- A-1-((A-1-5) P A 2s

Discussion of t:
& = O: # S | + I%J = ]
s>l t<2s {since the fraction is negative)

Now we can estimate b(():

b{(¥) < deg vo + degp, v1 + B“} < AF () + {21
B A+iA—T4 i< da, for s =10
A+ !z_l -1 -5+ -22 < EA -1, fors>l.

In both cases we have a contradiction to our assumption. Hence the first case is
complete.

Case 20 A odd

We already know ny <A+ 1, my < %A(A +1). Then

. Zmy| A+ )] oo
o(Hy) < [WJ < {"ﬂmJ =5B-1)

(again the derivation tells us that §(Hy) is maximal by taking the maximal ny).

We carry out the same steps as in Case 1. i.e. we isolate vy in Hy, we use formula (1)
to estimate ¢ and evaluate (1) this time by putting the term (A — 1) — s instead of
&(Hy) (where 3 > 0, s € N again):
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J;AA 1) — { i %Am — 5 2+ 2¢ — 45*
, o BAFD-@AFNGA-D s, 24t
AT -(HA-1) -9 Atz

Discussion of {:
s=0 t<1+4 ‘L;%J
s=1 t<3

s >20 < 2s

Henee, for s > 2 we conclude
. !

which is a contradiction to our assumption.

But we still have to inspect the cases s = 0 and s = 1.

Clase 2.1 5 =0, so that §(fy) = 1(/\ -1}

Let {w, 'y CV(H) = DOM(G- ﬂ*()) such that {w,w'} € MDS(H,) and degp,w =
A(Hp ). bince ¢( i’[l) = f';(A — 1), 2’ can dominate at most A —6(H;) = ,(A+]) ver-

tices of R = V/(;~»rg)— V(H,). Remember N(vy) C B and therefore |[R| > |N(vo)| =
A. Hence w has to dominate at least Z(A — 1) vertices of K, and consequently

AT < =(A+ 1), (2)
Remernber the definition of £. For the existe me of t we nefessa,riiy need
A(IH)Y 2 ny — 2. Hence by (2) we have ny < YA+ 1)+ 2 and by recalculation

ey

< A —a A< A 3)

o o

Obviously we get a new bound for 6(Hy):
2my 2A 20
EI = l,‘m“”j TITA TS N {4 NI ,\
S(Hh) < |7 E(A + 5)} N

For A > 7 we immediately get a contradiction to the condition of Case 2.1. Thus the
cases A = 3 and A = 5 remzin to be investigated.

A=3:

We already know 8(H,) = 1, A(H;) < 2, y(H;) £ 2 and ny < 4, my < 3. To
determine which existing graphs satisfy these conditions we consider the following
possibilities:

H, = Ky Then ny = 2 and therefore by (3) m; < 0, a contradiction.

Hy = K5 Then ny = 3 and therefore by (3) m; <1, a contradiction.
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LIy = 4 ge THCIOULT ) = 1 alld DY LOetniyia S0 ofls ) =

S b S AN a contradiction.

I = P Aoy possible mother graph™ (01 enbic and has 5 vertices. There is only
one graph satisfying all these conditions, but it has bondage number 1, a con-
fradiction to o assmnption.

A=

We already know o(H ) = 20 N 300y <0
the following graphs satisfving these conditions:

Py 50 ey < 50 There are

Hy = o Then iy = 3 and therefore by (3) my < 0. a contradiction.

/

He= Cooe 1> 0N, cdgey Then oy = L and thevelore by (3) m, <7 20 4 con-
tradiction.

3 .
—ZA“ a contradict 1011,

Hy = o Then b(Hy ) = 2 and by Lemma 2.4 6(G

This completes the (Case 201,

Case 2.2 s =1 sothat 8(H) = ri;(_k ~ 3.
Analogously to Case 2.1 we conclude that N(H ) < HUA 3} Continning analogonsly

to Case 2.1 we compute py < E(A A+ 3F 4 2 and with (3) my 2 AL Henee

I

For P we dmmediately get o confradiction to the condition of Case 220 This

the cases 3 < A <9 remain to be investigated.

I =2 we immediately have a contradiction to our assumption. Hence the only
remaining case is £ = 3 and therefore n; = 1. We evaluate (1

Bl = 20+ (g = 30 (H ) < 2y {1}
JANE=SC
We know a({fy) = 00 0y 2005 and oy = 10 We dnvestigale any possible value of o,

and uhlam the following results
iy 0 This contradicets (1),

g b M = U b the ondy possibility for 0 But then Hyoand thae ¢/

contains a triangle, and by Proposition 2.3 we get 6((7) <25 —

contradiction,

oy D6 and all possible values

SMH Y

S < b)) (‘am{mdu‘ (1.

of ny 4

The cases A= T and A = 9 can be worked ont in the same manner.

This completes the proofl of the main theorem. o
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Finally we want to state the following

Conjecture: b((/) < JA(() is valid for any graph (7 (even for ve-graphs with o > 4).

A cknowledgement

I am grateful to professor L.Volkmann for discussions and his many valuable sugges-
tions.

References

[1] D.Bauer, ¥.Harary, J.Nieminen and C.L.Suffel, Domination alteration sets in
graphs. Discrete Math. 47 (1983), 153-161.

[2] R.C.Brigham, P.Chinn and R.D.Dutton, Vertex domination-critical
graphs, Networks 18 (1988), 173-179.

[3] J.F.Fink, M.S.Jacobson, L.F.Kinch and J.Roberts, The bondage number of a
graph. Discrete Math. 86 (1990), 47-37.

[4] F.Harary, Graph Theory,(Addison-Wesley, Reading, 1969).

[5] U.Teschner, A counterexample to a conjecture on the bondage number of a graph,
Discrete Math. 122 (1993), 393-395.

[6] U.Teschner, New results about the bondage number of a graph, submitted.

[7] U.Teschner, The bondage number of a graph G can be much greater than A(G),
Ars Combinatoria, to appear.

(Received 28/3/94)

35






