A new upper bound for the Bondage Number of graphs with small domination number

Ulrich Teschner Lehrstuhl II für Mathematik, RWTH Aachen

Abstract

Let γ be the domination number of a graph. The bondage number b(G) of a nonempty graph G was first introduced by Fink, Jacobson, Kinch and Roberts [3] to be the minimum cardinality among all sets of edges X for which $\gamma(G - X) > \gamma(G)$ holds.

In this paper we show that $b(G) \leq \frac{3}{2}\Delta(G)$ for any graph G satisfying $\gamma(G) \leq 3$, which is best possible.

1 Introduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple edges. For $u \in V(G)$ we denote by N(u) the neighborhood of u. More generally we define $N(U) = \bigcup_{u \in U} N(u)$ for a set $U \subseteq V$ and $N[U] = N(U) \cup U$.

A set D of vertices in G is a dominating set if N[D] = V. A dominating set of minimum cardinality in G is called a minimum dominating set (MDS), and its cardinality is termed the domination number of G and denoted by $\gamma(G)$.

Fink, Jacobson, Kinch, and Roberts [3] defined the bondage number b(G) of a nonempty graph to be the minimum cardinality among all sets of edges X for which $\gamma(G - X) > \gamma(G)$ holds. Brigham, Chinn, and Dutton [2] defined a vertex v to be critical iff $\gamma(G-v) < \gamma(G)$ and G to be a vertex domination-critical graph (from now on called 'vc-graph') iff each vertex of G is critical. For graph theory terminology not presented here we follow [4].

From [1] we know that $b(G) \leq deg \ v \leq \Delta(G)$, when G has a non-critical vertex v. For vc-graphs it is more difficult to find good upper bounds. On one hand, we have trivial-type upper bounds like $b(G) \leq \Delta(G) + \delta(G) - 1$ [3]. On the other hand it was conjectured in [3], that $b(G) \leq \Delta(G) + 1$. This conjecture was disproved in [5] and further it was pointed out in [7], that there is no fixed natural number c such that $b(G) \leq \Delta(G) + c$ is valid for any graph G. This result was obtained by indicating an infinite class of graphs G_i $(i \in \mathbf{N})$ for which $\Delta(G_i) = 2(i-1)$ and

Australasian Journal of Combinatorics 12(1995), pp.27-35

 $b(G_i) = 3(i-1)$. Since the class G_i looked 'somehow extremal', a new hypothesis arose, namely $b(G) \leq \frac{3}{2}\Delta(G)$. In this paper we prove $b(G) \leq \frac{3}{2}\Delta(G)$ for graphs G satisfying $\gamma(G) \leq 3$.

2 Preliminary results

Proposition 2.1 [6] Let G be a graph. Suppose q edges can be removed from G to give a graph H with b(H) = 1. Then $b(G) \le q + 1$.

Proposition 2.2 [6] Let G be a nonempty graph with a unique MDS. Then b(G) = 1.

Proposition 2.3 [6] Let G be a nonempty graph with $K_t \subseteq G$. Then

 $b(G) \le \min\{\deg u + \deg v - t + 1 ; u \text{ and } v \text{ belong to the same } K_t\}$

To arrange the proof of our main result as smoothly as possible we will prove some preliminary results. Furthermore we need a few helpful definitions:

Definitions:

- 1. Let $u \in V(G)$. Then $E_u := \{x \in E(G); x \text{ incident to } u\}$
- 2. Let $DOM(G) := \langle \{v \in V(G); v \text{ belongs to at least one } MDS(G) \} \rangle$, where $\langle V' \rangle$ is the subgraph induced by $V' \subseteq V(G)$. Observation: If G is a vc-graph then DOM(G) = G.
- 3. Let $b_k(G) := \min\{|X|; X \subseteq E(G), \gamma(G X) \ge \gamma(G) + k\}$ for $1 \le k \le |V(G)| \gamma(G), k \in \mathbb{N}$ be the k-bondage number of G. Observation: $b(G) = b_1(G)$.

Lemma 2.4 Let G be a vc-graph, $u \in V(G)$ and $\gamma(DOM(G-u)) = \gamma(G) - k$, where $k \in \{1, 2\}$. Then $b(G) \leq deg \ u + b_k(DOM(G-u))$ if $b_k(DOM(G-u))$ exists, and $b(G) \leq deg \ u + 1$ if $b_k(DOM(G-u))$ doesn't exist.

Proof: Since u is critical, $\gamma(G-u) = \gamma(G) - 1$ and $N(u) \cap V(DOM(G-u)) = \emptyset$. Hence any dominating set of G-u including a vertex $w \notin V(DOM(G-u))$ has at least $\gamma(G)$ elements because it can't be a MDS. Now let $\gamma(DOM(G-u)) = \gamma(G) - k$ where $k \in \{1, 2\}$. We consider two cases. Case 1: G-u has a unique MDS. Then $b_k(DOM(G-u))$ may not exist, but from

Proposition 2.2 we have b(G-u) = 1 and thus by Proposition 2.1 $b(G) \le deg \ u+1$. Case 2: G-u has more than only one MDS. Then $|DOM(G-u)| \ge \gamma(G) = \gamma(DOM(G-u)) + k$. Thus $b_k(DOM(G-u))$ is well defined. Now let X be a minimum set of edges such that $\gamma(DOM(G-u) - X) = \gamma(DOM(G-u)) + k$. Let D be a MDS(G-u-X). <u>Case 2.1</u>: There is a $w \in D$ with $w \notin V(DOM(G-u))$. Then $\gamma(G-u-X) = |D| \ge \gamma(G)$ by the argument at the beginning of the proof. <u>Case 2.2</u>: $D \cap V(DOM(G-u)) = D$. Then $\gamma(G-u-X) \ge \gamma(DOM(G-u)-X) = \gamma(DOM(G-u)) + k = \gamma(G)$. In both cases we have $\gamma(G-u-X) \ge \gamma(G)$ and therefore $\gamma(G-E_u-X) \ge \gamma(G) + 1$ which proves the lemma.

The next two lemmata are almost trivial but useful. We will omit the proofs.

Lemma 2.5 Let G be a graph with $\gamma(G) = 1$ and $t := |\{v \in V(G); deg \ v = |V(G)| - 1\}|$. Then $b(G) = \lceil \frac{t}{2} \rceil$.

Lemma 2.6 Let G be a vc-graph, $u \in V(G)$ and G' := DOM(G - u). Let R := V(G-u) - V(G') be the vertices not belonging to any MDS(G-u). And let m[w,G'] be the number of edges leading from w to G' for any vertex $w \in R$. Then $b(G) \leq deg \ u + \min_{w \in R} \{m[w,G']\}$.

Remark: Since $N(u) \subseteq R$ for any vc-graph, the set R can not be empty and hence is well defined in the above lemma.

Lemma 2.5 especially shows that $b(G) \leq \frac{1}{2}\Delta(G) + 1$ if $\gamma(G) = 1$. Before finally concentrating on the case $\gamma = 3$ we also treat the much easier case $\gamma = 2$.

Lemma 2.7 Let G be a graph with $\gamma(G) = 2$. Then $b(G) \leq \frac{3}{2}\Delta(G)$.

Proof: If G is not a vc-graph, then $b(G) \leq \Delta(G)$ is immediate (see Section 1). Now let G be a vc-graph. From [2] we know that the vc-graphs with domination number 2 are exactly the graphs K_{2k} with a 1-factor removed $(k \geq 2)$. From [6] we know that for these graphs $b(G) = \Delta(G) + 1$. Since $\Delta(G) \geq 2$ we have $\Delta(G) + 1 \leq \frac{3}{2}\Delta(G)$.

Lemma 2.8 [2] If G is a vc-graph, then $|V(G)| \le (\gamma(G) - 1)(\Delta(G) + 1) + 1$.

Proof: Since G is a vc-graph, $\gamma(G - u) \leq \gamma(G) - 1$ for any $u \in V(G)$. Hence $|V(G)| - 1 \leq (\gamma(G) - 1)(\Delta(G) + 1)$.

Corollary 2.9 If G is a vc-graph with $\gamma(G) = 3$, then $|V(G)| \le 2\Delta(G) + 3$.

Theorem 2.10 Let G be a vc-graph with $\gamma(G) = 3$ and $|V(G)| = 2\Delta(G) + 3$. Then $b(G) \leq \Delta(G) + 1$.

Proof: For $\Delta(G) \leq 2$ the conclusion is trivially true by the result $b(G) \leq \Delta(G) + \delta(G) - 1$ in [3]. Now let $\Delta(G) \geq 3$, $u \in V(G)$ and G' := G - u. Since G is a vc-graph $\gamma(G') = 2$. Let $\{v, w\} \in MDS(G')$. If v and w had a common neighbor we would have $|V(G)| \leq 2\Delta(G)+2$, which is a contradiction. Hence d(v, w) > 2 and $|N(v)| = |N(w)| = \Delta(G)$. $(v, w \notin N_G(u)$, otherwise $\gamma(G) = 2$, contradiction as well) <u>Case 1:</u> $\{v, w\}$ is the unique MDS of G'. Then we get b(G') = 1 by Proposition 2.2 and thus $b(G) \leq deg \ u + 1 \leq \Delta(G) + 1$, as required.

<u>Case 2</u>: There is a set $D \in MDS(G')$, $D \neq \{v, w\}$.

<u>Case 2.1</u>: $D \mapsto \{v, w\} \neq \emptyset$, say $v \in D$. Then the second element of D must be an element of $N(w) := \{t_1, \ldots, t_{\Delta(G)}\}$, say $D = \{v, t_1\}$. Hence $N(t_1) = \{w, t_2, \ldots, t_{\Delta(G)}\}$ because v and t_1 have no common neighbor (see above). Now consider $\tilde{G} := G - t_1$. To dominate w in \tilde{G} we conclude that $N(t_1) \cap MDS(\tilde{G}) \neq \emptyset$. But then $\gamma(\tilde{G}) = \gamma(G)$ and t_1 is not critical in G, which is a contradiction since G was a vc-graph.

<u>*Case 2.2*</u>: $D \cap \{v, w\} = \emptyset$, say $D = \{s_1, t_1\}$ where $N(v) := \{s_1, \dots, s_{\Delta(G)}\}$.

Without loss of generality let t_1 be adjacent to $t_2, \ldots, t_i, s_{i+1}, \ldots, s_{\Delta(G)}$ and let s_1 be adjacent to $s_2, \ldots, s_i, t_{i+1}, \ldots, t_{\Delta(G)}$ where $1 \leq i \leq \Delta(G) - 1$. (t_1 must have a s_j -neighbor, otherwise we have the same contradiction as in Case 2.1.).

Consider $G := G - s_1$. What does a $MDS(\tilde{G})$ look like?

One element of $V_1 := \{s_{i+1}, \ldots, s_{\Delta(G)}\}$ must belong to any $MDS(\hat{G})$ because v has to be dominated in \hat{G} . (v itself can't belong to a $MDS(\hat{G})$ otherwise $\gamma(G) = \gamma(\hat{G})$). Also w can't belong to a $MDS(\hat{G})$ because w and any vertex of V_1 have the common neighbor t_1 (which still is not possible).

Thus one element of $V_2 := \{t_1, \ldots, t_i\}$ must be the second element of a $MDS(\tilde{G})$, since w has to be dominated in \tilde{G} . But $d(V_1, V_2) \leq 2$, hence we again have the contradiction $|V(G)| \leq 2\Delta(G) + 2$, even in the extreme case i = 1.

Thus case 2 can not arise, which completes the proof. \bullet

3 The main result

3.1 The 'finding' algorithm

Before we prove our main result it is useful to present the algorithm that will be used to find a 'bondage-edge-set', i.e. a minimum set X of edges such that $\gamma(G - X) > \gamma(G)$:

Let G be a vc-graph with $\gamma(G) = 3$.

- 1. Isolate a vertex v_0 with $deg v_0 = \Delta(G)$. Let $H_1 := DOM(G v_0)$.
- 2. Consider $\gamma(H_1)$. Since G is a vc-graph $\gamma(H_1) \leq 2$.
- 3. Let $v_1 \in V(H_1)$ be a vertex with $deg_{H_1}v_1 = \delta(H_1)$. Isolate $v_1 \ \underline{in \ H_1}$. Let $H_2 := DOM(H_1 v_1)$ and let $t := |\{w \in (V(H_1) v_1); \ deg_{(H_1 v_1)}w = |V(H_1)| 2\}|$.

The following cases have to be discussed:

 $\begin{array}{l} \underline{Case 1:} \ \gamma(H_1) = 2. \ \text{Then} \ b(G) \leq \Delta(G) + b(H_1) \\ (\text{or} \ b(G) \leq \Delta(G) + 1 \ \text{if} \ b(H_1) \ \text{doesn't exist}) \ \text{by Lemma 2.4.} \\ \underline{Case \ 1.1:} \ v_1 \ \text{is not critical in} \ H_1. \ \text{Then} \ b(H_1) \leq \deg_{H_1} v_1 = \delta(H_1). \\ \underline{Case \ 1.2:} \ v_1 \ \text{is critical in} \ H_1. \ \text{Then} \ b(H_1) \leq \deg_{H_1} v_1 + \lceil \frac{t}{2} \rceil \ \text{by Lemma 2.5.} \\ \underline{Case \ 2:} \ \gamma(H_1) = 1. \ \text{Then} \ b(G) \leq \Delta(G) + b_2(H_1) \\ (\text{or} \ b(G) \leq \Delta(G) + 1 \ \text{if} \ b_2(H_1) \ \text{doesn't exist}) \ \text{by Lemma 2.4.} \\ \underline{Case \ 2.1:} \ \gamma(H_2) > 1. \ \text{Then} \ b_2(H_1) \leq \deg_{H_1} v_1 = \delta(H_1). \end{array}$

<u>Case 2.2</u>: $\gamma(H_2) = 1$. Then $b_2(H_1) \le \deg_{H_1} v_1 + \lceil \frac{t}{2} \rceil$.

If one of the bondage numbers doesn't exist we have $b(G) \leq \Delta(G) + 1$. Otherwise we have $b(G) \leq \Delta(G) + \delta(H_1) + \lceil \frac{t}{2} \rceil$ in the worst case. So we now have to calculate $\delta(H_1)$ and $\lceil \frac{t}{2} \rceil$.

3.2 The main theorem

Theorem 3.1 Let G be a vc-graph with $\gamma(G) = 3$, then $b(G) \leq \frac{3}{2}\Delta(G)$.

Proof: Without loss of generality let $\Delta := \Delta(G) \geq 3$ (for $\Delta \leq 2$ the conclusion is trivially true as in Theorem 2.10) and likewise without loss of generality let $|V(G)| \leq 2\Delta + 2$ (for the case $|V(G)| = 2\Delta + 3$ we have Theorem 2.10 to prove the conclusion).

Following the 'finding algorithm' we firstly isolate the vertex v_0 (deg $v_0 = \Delta$) in G and define $H_1 := DOM(G - v_0)$.

Since $N(v_0) \cap V(H_1) = \emptyset$ (otherwise v_0 was not critical) we conclude that $n_1 := |V(H_1)| \le |V(G)| - (\Delta + 1) \le \Delta + 1$.

Assumption: $b(G) > \frac{3}{2}\Delta$.

Then the relevant bondage numbers of H_1 must exist and we can start calculating $\delta(H_1)$ and $\lfloor \frac{t}{2} \rfloor$.

Let $N(v_0) := \{w_1, \ldots, w_{\Delta}\}$. We want to apply Lemma 2.6: If we had a $w_i \in N(v_0)$ with $m[w_i, H_1] \leq \frac{1}{2}\Delta$ we would obtain $b(G) \leq \deg v_0 + \frac{1}{2}\Delta = \frac{3}{2}\Delta$ by Lemma 2.6, a contradiction.

Thus we know that $m[w_i, H_1] > \frac{1}{2}\Delta$ for each *i*. Now we can estimate the number of edges in H_1 :

$$m_{1} := |E(H_{1})| \leq \frac{1}{2} \left(\sum_{u \in V(H_{1})} deg \ u - \sum_{1 \leq i \leq \Delta} m[w_{i}, H_{1}] \right)$$
$$\leq \frac{1}{2} \Delta \left(n_{1} - \left[\frac{1}{2}\Delta + \frac{1}{2}\right] \right) \leq \frac{1}{2} \Delta \cdot \left[\frac{1}{2}\Delta\right].$$

<u>*Case* 1</u>: Δ even

We already know $n_1 \leq \Delta + 1, m_1 \leq \frac{1}{4}\Delta^2$. Then

$$\delta(H_1) \le \left\lfloor \frac{2m_1}{n_1} \right\rfloor \le \left\lfloor \frac{\Delta^2}{2(\Delta+1)} \right\rfloor = \frac{1}{2}\Delta - 1$$

(For the second inequality, notice that since m_1 also depends on n_1 we can easily check the derivation to see that the maximal value of $\delta(H_1)$ is obtained by taking the maximal value of n_1 .)

Following the algorithm we now isolate v_1 in H_1 (remember that v_1 is a vertex of

degree $\delta(H_1)$ in H_1). The remaining object is to estimate t (as defined in section 3.1), i.e. to estimate the number of vertices in $H_1 - v_1$ with degree $n_1 - 2$. The following formula, counting the edges of H_1 , is obvious:

$$t(n_1-2) + (n_1-t) \cdot \delta(H_1) \leq 2m_1 \quad if and only if \quad t \leq \frac{2m_1 - n_1 \cdot \delta(H_1)}{n_1 - 2 - \delta(H_1)},$$

which implies that $t \leq \frac{\Delta(n_1 - \lceil \frac{\Delta+1}{2} \rceil) - n_1 \cdot \delta(H_1)}{n_1 - 2 - \delta(H_1)}.$ (1)

Again the derivation shows that t is maximal for the greatest possible n_1 . Hence we can evaluate (1) by putting the term $\frac{1}{2}\Delta - 1 - s$ instead of $\delta(H_1)$ (where $s \ge 0$, $s \in \mathbb{N}$) and taking the maximal n_1 :

$$t \leq \frac{\frac{1}{2}\Delta^2 - (\Delta + 1)(\frac{1}{2}\Delta - 1 - s)}{\Delta - 1 - (\frac{1}{2}\Delta - 1 - s)} = 2s + 1 + \frac{2 - 4s^2}{\Delta + 2s}.$$

Discussion of *t*:

s = 0; $t \le 1 + \left\lfloor \frac{2}{\Delta} \right\rfloor = 1$ $s \ge 1;$ $t \le 2s$ (since the fraction is negative)

Now we can estimate b(G):

$$\begin{split} b(G) &\leq \deg \, v_0 + \deg_{H_1} v_1 + \left\lceil \frac{t}{2} \right\rceil &\leq \quad \Delta + \delta(H_1) + \left\lceil \frac{t}{2} \right\rceil \\ &= \left\{ \begin{array}{cc} \Delta + \frac{1}{2}\Delta - 1 + \left\lceil \frac{1}{2} \right\rceil \leq & \frac{3}{2}\Delta \ , & for \ s = 0 \\ \Delta + \frac{1}{2}\Delta - 1 - s + \left\lceil \frac{2s}{2} \right\rceil \leq & \frac{3}{2}\Delta - 1 \ , & for \ s \geq 1 \ . \end{array} \right. \end{split}$$

In both cases we have a contradiction to our assumption. Hence the first case is complete.

$\underline{Case 2}: \Delta \text{ odd}$

We already know $n_1 \leq \Delta + 1$, $m_1 \leq \frac{1}{4}\Delta(\Delta + 1)$. Then

$$\delta(H_1) \le \left\lfloor \frac{2m_1}{n_1} \right\rfloor \le \left\lfloor \frac{\Delta(\Delta+1)}{2(\Delta+1)} \right\rfloor = \frac{1}{2}(\Delta-1)$$

(again the derivation tells us that $\delta(H_1)$ is maximal by taking the maximal n_1).

We carry out the same steps as in Case 1, i.e. we isolate v_1 in H_1 , we use formula (1) to estimate t and evaluate (1) this time by putting the term $\frac{1}{2}(\Delta - 1) - s$ instead of $\delta(H_1)$ (where $s \ge 0, s \in \mathbb{N}$ again):

$$t \leq \frac{\frac{1}{2}\Delta(\Delta+1) - (\Delta+1)(\frac{1}{2}(\Delta-1) - s)}{\Delta - 1 - (\frac{1}{2}(\Delta-1) - s)} = 2s + 1 + \frac{2 + 2s - 4s^2}{\Delta + 2s - 1}$$

Discussion of *t*:

 $s = 0; \quad t \le 1 + \left\lfloor \frac{2}{\Delta - 1} \right\rfloor$ $s = 1; \quad t \le 3$ $s \ge 2; \quad t \le 2s$

Hence, for $s \geq 2$ we conclude

$$b(G) \le \Delta + \delta(H_1) + \left\lceil \frac{t}{2} \right\rceil \le \Delta + \frac{1}{2}(\Delta - 1) - s + \left\lceil \frac{2s}{2} \right\rceil \le \frac{3}{2}\Delta$$

which is a contradiction to our assumption.

But we still have to inspect the cases s = 0 and s = 1.

<u>Case 2.1</u>: s = 0, so that $\delta(H_1) = \frac{1}{2}(\Delta - 1)$.

Let $\{w, w'\} \subseteq V(H_1) := DOM(G-v_0)$ such that $\{w, w'\} \in MDS(H_1)$ and $d\epsilon g_{H_1}w = \Delta(H_1)$. Since $\delta(H_1) = \frac{1}{2}(\Delta - 1)$, w' can dominate at most $\Delta - \delta(H_1) = \frac{1}{2}(\Delta + 1)$ vertices of $R := V(G-v_0) - V(H_1)$. Remember $N(v_0) \subseteq R$ and therefore $|R| \ge |N(v_0)| = \Delta$. Hence w has to dominate at least $\frac{1}{2}(\Delta - 1)$ vertices of R, and consequently

$$\Delta(H_1) \le \frac{1}{2}(\Delta+1). \tag{2}$$

Remember the definition of t. For the existence of t we necessarily need $\Delta(H_1) \ge n_1 - 2$. Hence by (2) we have $n_1 \le \frac{1}{2}(\Delta + 1) + 2$ and by recalculation

$$m_1 \le \frac{1}{2} [\Delta \cdot n_1 - \Delta \cdot \frac{1}{2} (\Delta + 1)] \le \Delta.$$
(3)

Obviously we get a new bound for $\delta(H_1)$:

$$\delta(H_1) \le \left\lfloor \frac{2m_1}{n_1} \right\rfloor = \left\lfloor \frac{2\Delta}{\frac{1}{2}(\Delta+5)} \right\rfloor = \left\lfloor 4 - \frac{20}{\Delta+5} \right\rfloor$$

For $\Delta \geq 7$ we immediately get a contradiction to the condition of Case 2.1. Thus the cases $\Delta = 3$ and $\Delta = 5$ remain to be investigated.

$\Delta = 3:$

We already know $\delta(H_1) = 1$, $\Delta(H_1) \leq 2$, $\gamma(H_1) \leq 2$ and $n_1 \leq 4$, $m_1 \leq 3$. To determine which existing graphs satisfy these conditions we consider the following possibilities:

 $H_1 \cong K_2$: Then $n_1 = 2$ and therefore by (3) $m_1 \leq 0$, a contradiction.

 $H_1 \cong K_{1,2}$: Then $n_1 = 3$ and therefore by (3) $m_1 \leq 1$, a contradiction.

 $H_1 = 2K_2$: Then $b(H_1) = 1$ and by Lemma 2.4 $b(G) \le 3 + 1 \le \frac{2}{2}\Delta$, a contradiction.

 $H_1 \cong P_4$: Any possible 'mother graph' G is cubic and has 8 vertices. There is only one graph satisfying all these conditions, but it has bondage number 4, a contradiction to our assumption.

 $\Delta = 5:$

We already know $\delta(H_1) = 2$, $\Delta(H_1) \leq 3$, $\gamma(H_1) \leq 2$ and $n_1 \leq 5$, $m_1 \leq 5$. There are the following graphs satisfying these conditions:

- $H_1 \cong C_3$: Then $n_1 = 3$ and therefore by (3) $m_1 \leq 0$, a contradiction.
- $H_1 \cong C_1$ or $H_1 \cong (K_1 \epsilon dg\epsilon)$: Then $u_1 = 1$ and therefore by (3) $m_1 \leq 2$, a contradiction.

 $H_1 \cong C_5$: Then $b(H_1) = 2$ and by Lemma 2.4 $b(G) \le 5 + 2 \le \frac{3}{2}\Delta$, a contradiction.

This completes the Case 2.1.

<u>Case 2.2</u>: s = 1, so that $\delta(H_1) = \frac{1}{2}(\Delta - 3)$.

Analogously to Case 2.1 we conclude that $\Delta(H_1) \leq \frac{1}{2}(\Delta+3)$. Continuing analogously to Case 2.1 we compute $n_1 \leq \frac{1}{2}(\Delta+3) + 2$ and with (3) $m_1 \leq \frac{3}{2}\Delta$. Hence

$$\delta(H_1) \leq \left\lfloor \frac{2m_1}{n_1} \right\rfloor = \left\lfloor \frac{3\Delta}{\frac{1}{2}(\Delta+7)} \right\rfloor = \left\lfloor 6 - \frac{42}{\Delta+7} \right\rfloor.$$

For $\Delta \ge 11$ we immediately get a contradiction to the condition of Case 2.2. Thus the cases $3 \le \Delta \le 9$ remain to be investigated.

If $t \leq 2$ we immediately have a contradiction to our assumption. Hence the only remaining case is t = 3 and therefore $n_1 \geq 4$. We evaluate (1):

$$3(n_1 - 2) + (n_1 - 3)\delta(H_1) \le 2m_1 \tag{4}$$

 $\Delta = 3;$

We know $\delta(H_1) = 0$, $u_1 \leq 5$ and $m_1 \leq 4$. We investigate any possible value of n_1 and obtain the following results:

- $n_{\pm} = 5$: This contradicts (4).
- $n_4 = 4$: $H_1 \cong C_3 \cup K_1$ is the only possibility for H_1 . But then H_1 and thus G contains a triangle, and by Proposition 2.3 we get $b(G) \leq 2\Delta 2 = 4 \leq \frac{3}{2}\Delta$, a contradiction.

$\Delta = 5:$

We know $\delta(H_1) = 1$, $n_1 \leq 6$ and by (3) $m_1 \leq \frac{1}{2}(5n_1 - 15)$. Then all possible values of n_1 ($4 \leq n_1 \leq 6$) contradict (1).

The cases $\Delta = 7$ and $\Delta = 9$ can be worked out in the same manner.

This completes the proof of the main theorem.

Finally we want to state the following

Conjecture: $b(G) \leq \frac{3}{2}\Delta(G)$ is valid for any graph G (even for vc-graphs with $\gamma \geq 4$).

Acknowledgement

I am grateful to professor L.Volkmann for discussions and his many valuable suggestions.

References

- D.Bauer, F.Harary, J.Nieminen and C.L.Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983), 153-161.
- [2] R.C.Brigham, P.Chinn and R.D.Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173-179.
- [3] J.F.Fink, M.S.Jacobson, L.F.Kinch and J.Roberts, The bondage number of a graph, Discrete Math. 86 (1990), 47-57.
- [4] F.Harary, Graph Theory, (Addison-Wesley, Reading, 1969).
- [5] U.Teschner, A counterexample to a conjecture on the bondage number of a graph, Discrete Math. **122** (1993), 393-395.
- [6] U.Teschner, New results about the bondage number of a graph, submitted.
- [7] U.Teschner, The bondage number of a graph G can be much greater than $\Delta(G)$, Ars Combinatoria, to appear.

(Received 28/3/94)