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Abstract 

Existence results concerning double and multiple orthogonal resolu-
tions of triple are and a number of open nlll~~tl0Tl!'l 

mentioned. 

1 Introduction 

A triple system of order v and index .:\ (briefly TS(v, .:\)) is a where V 
a v-set, and E is a collection of 3-subsets of V called triples such that each 2-subset 
of V is contained in exactly .:\ triples. 

A parallel class of a TS(v,.:\) (V, E) is subset of E which the set V. 
A resolution of (V, E) is a collection of parallel classes which partitions the set 

Let (V,E) be a TS(v, .:\). Two resolutions R,S of (V,E) are orthogonal if 114. ri 
Sjl ~ 1 for any 14. E R and any Sj E S, A TS(v,.:\) admitting two orthogonal resolu­
tions is said to be orthogonally resolvable or doubly resolvable. More a set 
R fR1 ) ... , Rs} of s resolutions of a TS(v,.:\) is a d-orthogonal set of resolutions if 
for any d-subset {ill ... , i d } of {I, "0' s} and any d parallel classes 14.1 ,j1) , .. " Rid,jd 
where 14.,.,j,. E 14.kl we have 114.1,j1 n 14.2 ,j2 n , ,. n 14.d,jdl :S 1. A d-orthogonal set 
R of resolutions is regular of strength t (2 t ~ d) if R is a t-orthogonal set but 
contains no (t 1 )-orthogonal set, Thus 2-orthogonal is the same as orthogonal (a 
2-orthogonal set is necessarily regular of strength 2). 

The motivation for studying orthogonal resolutions of TS(v,.:\) (or, more gen­
erally, of designs) comes from their connection to the existence of various kinds of 
square and (multidimensional) cubical arrays. 
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A d-orthogonal set of resolutions of a TS( v, A) rise to an multi-
dimensional array. A multidimensional Kirkman design of dimension d, index ). and 
order v (briefly MKD( d, A, v)) is a d-dimensional array such that 

1. every cell of the array is either empty or contains a 3-subset of a v-set 

2. every element of V is contained in exactly one cell of any (d 1 )-dimensional 
subarray, 

3. the collection of 3-subsets in the nonempty cells is the collection of triples of a 
TS(v, (called the underlying triple system of the MKD). 

An MKD( d, A, v) is regular of strength t (2 ::::; t d) if its projection on any t 
dimensions an MKD( t, A, v) but its projection on any t 1 dimensions is never an 
MKD. The theorem is obvious. 

Theorem 1.1 A regular MKD( d, A, v) of strength t with underlying triple system 
(V,8) exists if and only if there exists a regular d-orthogonal set of d resolutions of 
strength t (V, B) 

Proof. If {RIl ... , R d } is a d-orthogonal set of resolutions of (V, B) where Ri 
{~,1' ... , in the cell (jI, ... , jd) of a d-dimensional array K the set 
RI ,il n R2 ,j2 n . . . which is either empty or is a triple of B. given 
an MKD(d,A,V) K with an underlying triple system (V,B), the triples of Kin 
any (d 1 )-dimensional obtained by fixing the coordinate ic in the ith 
coordinate direction (i {I, "" d}) yield a resolution and R d } is a d-
orthogonal set. 

Several special cases of MKDs are of next we consider these in more 
detail. 

2 Generalized Room squares of degree 3 

A regular MKD with d 2, A v 2 (and, of course, t 2) whose underlying triple 
system is the TS(v,v - 2) (that is, whose triples are all 3-subsets of a v-set, 
or, which is the same, the complete 3-uniform v-hypergraph), can be thought of as a 
straightforward of a Room square, and is therefore called a generalized 
Room square of 3 (and order v, briefly GRS(v)). It is a square array of side 
(V;I) by (V-I)); each row (column) of a GRS( v) contains ~ nonempty cells, and the 
triples in the nonempty cells of each row (column) form a parallel class. By Theorem 
1.1, a GRS(v) exists if and only there exists a pair of orthogonal I-factorizations of 
the complete 3-uniform v-hypergraph. 

A first example of a GRS was given by Baker [I} for v=9. This is the smallest 
possible nontrivial GRS, as clearly GRS(6) cannot exist. We present a different 
example of a GRS(9) [21]). 

Example 2.1 Two orthogonal 1-factorizations :F, 9 of the complete 3-uniform hy­
pergraph Kg 3 on V Zg U {oo} are as follows: the base resolutions of :F are 
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rl ttU,l,OOl,t~,~,UI,t~,v, IIf, 

F2 {{O,2,oo},{1,3,5},{4,6,7}}, 
{{0,3,oo},{2,5,6},{1,4,7}}, 

F4 {{O,4,oo},{1,2,3},{5,6,7}}, 

and the base resolutions of 9 are 

(il = {{0,1,oo},{3,4, 7},{2,5,6}}, 
(i2 {{O,2,00},{3,4,6},{1,5,7}}, 
(i3 {{O, 3,00}, {4, 5, 6}, {I, 2, 7}}, 
(i4 {{0,4,00},{1,3,6},{2,5,7}}. 

The corresponding GRS is of side 28. 
Only finitely many GRS have been constructed by a direct method similar to 

that of Example 2.1. The orders of these include 18, 30, 42 (see and 
v=15 (see [21]). In Example 2.2 we present an example of a CRS of order v=21; no 
example of this order has been known previously. 

~xample 2.2 As in Example 2.1, we present only the base i-factorizations of two 
orthogonal i-factorizations of Kil on Z20 U {oo}' 

First i-factorization: 
{{00,0,1},{2,3,8},{4,5, 7},{6,9,10},{11,12,15}, {13,18,19},{14, 17}} 

l7,19},{O,2,10},{3,9,13},{l,4,ll},{5,14,15}, {6,7,8},{12, 18}} 
{{ 00,0, 3}, {4, 6, 9}, {I, 12, 15}, {7, 10, l8}, {5, 16}, {14, 17, 19}, {2, 8, 11}} 
{{oo, 1, 17}, {O, 8, 10}, {2, 9,12}, {4, 16,19}, 11, 18}, {6, 15}, {3, 7, 13}} 
{{00,0,15},{4,8,9},{7,12,16},{3,6,10},{2,5,18}, {l,13,19},{11, 17}} 
{{oo,13,19},{1,6,11},{2, 7,14},{3,10,15},{8,9,18}, {0,4,12},{5,16,17}} 
{{oo,O, 7},{l,14,16},{8,9,15},{2,3,10},{4,5,17}, {6,11,13},{12, 19}} 
{{ 00,6, 14}, {O, 2, 11}, {I, 5, 10}, {8, 13, 16}, {4, 12, 18}, {3, 19}, {7, 9, 15}} 
{{ 00,0, 9}, {7, 18}, {3, 5, 16}, {I, 10, 14}, {8, 15, 19}, {2, 11, l7}, {4, 6, l3}} 
{{00,O,10},{l,5,9},{11,15,19},{2,3, 7},{12,13,17}, {4,6,8},{14,16,18}} 

Second 1-factorization: 
{{oo,10,ll},{O, 7,15},{3,9,14},{l,2,17},{5,8,16}, {4,18,19},{6,l2,13}} 
{{ 00,8, lO}, {O, 6, 12}, {3, 13, 16}, 15, l8}, {9, 17, {I, 2, 14}, {4, 5, 11}} 
{{ 00,10, 13}, {O, 1, 5}, {2, 7, 9}, {3, 6,11}, {4, 8, IS}, {12, 14, l7}, {16, 18, 19}} 
{{oo,3, 7},{0,4,8},{1,6,11},{5,13,14},{10,12,16}, {9,15,17},{2,l8,l9}} 
{{oo, 19},{0,6,10},{7,9,17},{l,8,ll},{2,4,13}, {3,5, 16},{12,15,18}} 
{{ 00,12, 18}, {a, 9, 10}, {I, 5, 11}, {7, 8, l7}, {2, 4, 6}, {3, 19}, {13, 14, 15}} 
{{00,10,17},{O,5,9},{I,3,l8},{7,l4,l9},{12,15,16}, {6,8,13},{2,4,ll}} 
{{00,2,14},{0,6,13},{7,ll,19},{8,lO,16},{l,3,17}, {5,9, l2},{4, 15, IS}} 
{{oo,lO,19},{O,3,15},{1,6,7},{9,13,18},{4,5,12}, {2,11,16},{8,14,17}} 
{{00,8,lS},{1,12,13},{2,3,11},{6,lO,19},{O,9,16}, {4,5,7},{14,15,17}} 

However, the known recursive constructions (see below) yield CRSs for infinitely 
many orders. 

Two Steiner systems S(3, 5, v) (V, B1 ), (V, B2 ) are orthogonal if 
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(i) 8 1 n 8 2 0, and 

(ii) whenever Q, Q' are two blocks of 8 1 such that Q n Q' and R, R' 
are such that (Q \ P) U R (Q' \ P) U R' E 8 2 then R 

The existence of orthogonal STSs implies the existence of (ordinary) Room squares 
For have the following ~U'_~~,",~'~' 

Theorem 2.1 If there exist two orthogonal Steiner S'lR9'Ce'ms 5, then there 
ists a + 1). 

Proof. Label the rows and columns of a (~) by array with 2-subsets of 
a v-set V. If (V, two orthogonal Steiner 5, 
the {a, b, c} in the cell in row labelled and column labelled 
{a, b, c, x, y} and {a, b, c, u, E 8 2 . Place the triple {a, is the 
additional in the cell in row labelled b} and column labelled 
{a,b}. 0 

Unfortunately, the only order v for which a of 
known to is v=17 [31]), and GRS(18) is known 

But the next theorem [8]), which a result due to Stillier 
and Blake several infinite classes of GRSs. 

Theorem 2.2 If there exists a ."i-wise balanced design S(3, v) and for each k K 
there exists a + 1) then there exists a GRS(v + 1). 

If there exists a 

+ 
+ 1) and a Steiner 

In there exists a CRS( v) for v qa+2, q7, 16, since 
is known to exist for every power q. 

We also have the following multiplicative recursive construction 

Theorem 2.4 If a exists and v is even then there exists 

k, then 

<::!n."rt.T'111"Y1 for GRS remains to be determined. The smallest order v 
for which the existence of a CRS( v) is undecided, is v=27. 

3 

A Kirkman square is a (regular) MKD(2, l,v) (briefly a KS(v)). Its design 
is an STS( v), and its existence is equivalent to the existence of of orthogonal 
resolutions of this underlying STS(v) (cf. Theorem 1.1); the latter is said to be 
doubly resolvable or orthogonally resolvable. 

The first example of a doubly resolvable STS was obtained by Mathon and Van­
stone [18], [19] who used PG(3,3) to construct a KS(27). Trivially, there exists no 
KS(9), and an exhaustive check of the four nonisomorphic resolvable KTS(15) and 
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then resolutIOns reveals that there eXIsts no K::;~ 1b). The eXIstence ot a K::;~:l1) IS m 
doubt; thus the example of Mathon and Vanstone yields the smallest order for which 
a KS is known to exist. 

The main tool in direct constructions of Kirkman squares is the starter-adder 
method (see [9], [30], [23], [26]). Kirkman squares constructed by this method have 
the property that the automorphism group of the two orthogonal resolutions of the 
underlying STS is transitive on the parallel classes. Thus the order v of such a 
square must satisfy v 3 (mod 12). If n {R11 ... , R,.} and S {Sl, .'" Sr} are two 
orthogonal resolutions of (V, 8) where V x {O, 1 }u{ oc>}, and a (0010'" '11;10) 
(0111 ... v;11)(00), aR;. R;.+1,aSi Si+1, and if, say, Rl {B1, ... ,Br }, S1 = 
{C1 , ... , Cr}, and Ci = Bi + ai for i = 1, "'j r then (BI' ... , Br) is called the starter and 
(aI, ... , ar ) is called the adder, and the coresponding KS is said to be a starter-adder 
KS. The orthogonality of nand S ensures that ai -1 aj for i -1 j. 

While all KTS(27) with a cyclic automorphism of order 13 (thus 
transitive on parallel classes), Janko and Van Trung [9] found that there are exactly 
3 nonisomorphic starter-adder KS(27). One of these is displayed below in Example 
3.1. 

Example 3.1 A Kirkman square of order 27 

In [23}, [26], a search for a restricted class of starter-adder KS( v) was conduded 
where the underlying STS( v) contains a maximum order subsystem, i.e. a subsystem 
of order '11;1. In this way, several KS(39) and KS(51) were found. 

Baker [2] gave a construction for an infinite class of starter-adder KSs. 

Theorem 3.1 For all m == 1 (mod 3) there exists a KS{2 2Tn+2 
- 1). 

In particular, this gives a KS(63). 
Fuji-Hara and Vanstone [7] have shown that every affine space AG(2i+1, 3), i ~ 

1, admits a skew resolution, and hence is doubly resolvable (as the affine resolution 
and a skew resolution are orthogonal). In particular, this gives a KS(81). 

Another construction giving infinite classes of starter-adder KSs is obtained from 
the following theorem. 

Theorem 3.2 If there exists a starter-adder KS(2q + 1) on the set of elements 
GF(q) X {O, I} U {oo} then for each n ~ 1 there exists a KS(2qn + 1) on the set 
of elements GF(qn) X {O, I} U {oo}. 

We also have the following PBD-closure theorem for Kirkman squares. 
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Theorem 3.3 If there exists a K) 1) and if for each k there exists a 
KS(2k + 1) then there exists a KS(2v + 1). 

Proof. Let V) be a PBD(v, 1). Put W=V x {O, I} U where 00 is 
a new element. Label square S of side v with the elements of V. For a block 
B IBI k, let be the of S whose rows and columns are labelled 
by the elements of B. Place copy of KS(2k + 1) (which exists by the aSSUITLPtlOn 

{O, I} U in such way that the UiO'J;;V.LH"'-

contains the {oo, i 2} for each i E B. 
Per'ioI'mlng the above for each block B D but 

i 1 ,i2 } in the diagonal cell (i,i) 
for each i V only one 
a + 1) whose set 

UVF'.vVJL~'-.L with some small known KSs suffices to prove the following 
"""·,rn,,,+r.,+,r existence result. 

Theorem 3A For all 3 (mod 6), v sufficiently large, there exists a 

Proof. for v=39 and 81 are known to so choose K 
Wilson's theorem for example, there exists Va such that for v 

3) and v > Va, there exists a 1). 0 

Two further recursive constructions for Kirkman squares due to Vanstone 
and to Curran and Vanstone [4]. We state these the next two theorems. 

Theorem 3.5 

+ 
then there exists a 

Theorem (The Kirkman construction Kirkman 
exists a (t, u) Kirkman a KS(2(us+ l) + 1) with a 
exist 3 then there exists a KS (2t( us + l) + 1). 

It has been conjectured that KS( v) exists for all v == 3 (mod 6), v 27. 

exists 
three 

If there 
and there 

at there are only 5 orders v 100 for which KS( v) is known to exist: v=27, 
39, 51, 63, 81. 

4 

A regular MKD(3, 1, v) a Kirkman cube. It is strong (sKC) if it of strength 
and weak (wKC) if it is of strength 3. 

The starter-adder method of direct construction is applicable to Kirkman cubes 
as welL The first example of a strong Kirkman an sKC(255), was constructed 
by Vanstone [29]. The only other sKC obtained a direct construction (of starter-
adder type) is an sKC(39) (see Rosa and Vanstone [24]). Stinson and Vanstone [26] 
have constructed a set of 6 pairwise orthogonal packings in PG(5,2) which implies 
the existence of a sKC(63) (actually, this yields 6-dimensional Kirkman cube of 
order 63 and strength 2). Since the PBD-closure theorem of §3 holds for Kirkman 
cubes as well, we obtain the following asymptotic result (see [26]). 
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Theorem 4.1 J!'or every v ;} (mod 12); v suJ:J1,c'tentty targe, there ex?,Sts a s.Kl/(v). 

Lamken [17] has shown that Theorem 4.1 holds for all sufficiently v satisfying 
v 3 (mod 6). 

Weak Kirkman cubes are somewhat easier to come by. While there no wKC(9), 
a wKC(15) does exist (see [23]). In fact, wKC( v) is known to exist for all v 3 (mod 
6), 15 v 63 except for v=33 and 57. Also, Theorem 3.4 holds for wKC as welL 

Theorem 4.2 For every v 3 (mod 6), v 2: Vo, there exists a wKC(v). 

It has been conjectured (see [23]) that vo=15. Proving this, or at least ODLaLnmLg 

a good bound on Vo is contingent on the existence of a wKC(33) which is unknown 
at present. 

5 resolvable 

All MKD( d,)., v) considered so far had A=1. Next we consider the where the 
underlying triple system is a twofold triple TTS( v). The corresponding 
MKD(2, 2, v) is called a twofold Kirkman square; its side is v - 1. Colbourn and 
Vanstone [5] used the starter-adder method to construct twofold Kirkman squares 
of orders 18, 21, 24, and 30. They chose the to be 1-
rotational; this is a convenient choice since the I-rotational au1~onlorphl 
the of a TTS( v) into ~ orbits, and is also the number of in a 
class. One of the resolutions is relatively easy to obtain: one just has to choose a 
starter containing one block from each orbit. 

An analogue of Theorem 3.5 and 4.2 (the asymptotic existence of twofold Kirkman 
squares for all sufficiently large orders v == 0 (mod 3)) is obtained. In fact, 
Lamken [16] proves the following result: 

Theorem 5.1 A twofold Kirkman square of order v exists if and only if v == 0 
(mod 3) except when v E {6,9} and possibly when v E {72, 78,90,114,117, 126}. 

6 A further generalization: 
parallelepipeds 

In the definition of a d-orthogonal set of resolutions, the resolutions consist of parallel 
classes (which may be viewed as I-designs on the underlying set V). Relaxing this 
condition by allowing the resolutions to consist of other designs led Kramer and 
Mesner [14] to the following definition (actually, their definition is more general; we 
confine ourselves here to the case when the underlying design is still a triple system). 

A Room rectangle RR(m,n; (V,Vl,V2),()., Al,A2)) is an m X n array R such that 

(i) each cell is either empty or contains a triple of an underlying TS(v, A) (V, B), 

(ii) each triple of B is contained in exactly one cell of the array, and 
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Thus in 
classes 
which 

A Room parallelepiped RP( (nl' 
IS nl X. . X nd array R ""'T'CTU,rlIT 

(iv) the in the nO]ler:op1;y 
direction the 

We can define 
direct to the definition 
is then immediate. 

are the of a 

of dimension d, 

Theorem 6.1 A Room dimension d exists if and if there exists 
a of d resolutions of the >'). 

ations of 
design this case is an near resolvable resolutions con-
sist of near classes. The Room to such a doubly 
near resolvable TTS( v) is v;(v,v-l,v The below 
for v=10 is taken from Colbourn and Vanstone [5]. 

ABF CHI DEG 
DIJ BCG AEH 

EFJ CDH ABI 
AFG DEI BCJ 

BGH AEJ CDF 
ACJ BEH FGI 

BDF ACI GHJ 
CEG FHI BDJ 

ADH GIJ CEF 
BEl ADG FHJ 

Colbourn and Vanstone use the starter-adder method to find doubly near resolv­
able TTS( v) for v=13, 16, 19, 25, and 28. Lamken [15] has the strongest result in 
this area: 

Theorem 6.2 A doubly near resolvable TTS (v) exists for v == 1 (mod 3) J V ~ 10 J 

except possibly when v E {34, 70, 85, 88,115,124,133, 142}. 
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One of the earliest (and nicest) examples of Room parallelepipeds are the Steiner 
tableaus of Kramer and Mesner [13]. Each of the 3 nonisomorphic Steiner tableaus 
T(3,7) constructed by Kramer and Mesner is an RP((7,7,7); (9,9,9,9); (7,1,1,1)) 
which is of strength 3 (~here the meaning of "regular of strength t" is the 
same as that at the beginning of §1). In other words, it is a 3-dimensional cube 
whose underlying design consists of all triples of a 9-set, and the collection of triples 
in the cells of any plane in any of the three directions is an STS(9). It 
follows that the 7 in any of the 3 directions constitute a large of STS(9). 
We refer the reader for further details to [13]. 

Another example is that of a RR((8,8);(8,7,7);(S,1,1)) con-
'-'.L',,,>U.L.,,,'-LJ by Mullin and Rosa [20] as a labelled orthogonal resolutions square 

from of orthogonal S(3,4,8). The in the cells of any row (col-
umn) the of an STS(7), and the collection of the 8 rows (8 columns) 
constitutes an set of 8 STS(7). This Room IS below. 

235 346 457 156 267 137 124 
467 037 056 236 024 257 345 
157 456 014 067 347 035 136 
126 247 567 025 017 145 046 
237 057 135 167 036 012 256 
134 367 016 246 127 047 023 
245 034 147 027 357 123 015 
356 026 045 125 013 146 234 

For many other interesting Room and Room 
(many of them "proper", i.e. non-square and non-cube), [12], [131, [10] and [11]. 

7 

We end with several open problems. 

1. What is the spectrum for GRS( v)7 In does there exist a 

2. Does there exist a Kirkman square KS( v) for every v 3 (mod 6), v 277 

3. Does there exist a starter-adder KS( v) for every v 3 (mod 6), v ~ 277 

4. Determine the precise spectrum for existence of sKC( v). 

5. Does there exist wKC( v) for every v 3 (mod 6), v ~ 157 

6. Settle the remaining possible exceptions in the spectrum for doubly resolvable 
TTS(v). 

7. Does there exist a starter-adder generated twofold Kirkman square for every 
v 0 (mod 3), v ;:::: 15? 
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