


























Take the vertex set {0,1,2,3,4, 5,6}, and blocks BU{(6 : 0,1,2), (6:3,4,3)} = BUY
where B is as in Example 3.2. The permutations «, f# and v of Example 3.2 fix Y.
Hence {2,3,4,7} € I153(7). Moreover, Y trades with Y’ = {(6 : 0,1,3), (6:2,4,5)},
and so 0 € 153(7). Also (BUY)N(BAUY")| =1and |(BUY)N(BUY")| =5, so
the result follows. O

ExaMPLE 3.4 I53(9) = {0,1,...,10,12}.
Let the vertex set be Zyg, and take blocks B as follows.

block in subset(s) block in subset(s)
(0:1,3,6) X (6:1,2,7) Y, T
(1:2,4,7) Y (7:2,0,8) T
(2:0,5,8) (8:0,1,6) X, T
(3:1,4,6) X (3:2,7,8)

(4:2,57) Y (4:0,8,6) X
(5:0,3,8) Z (5:1,6,7) Y, Z

The set X trades with X' = {{1:0,3,8),(0:3,4,8),(6:0,3,8),(4:3,6,8)}; the set
Y trades with Y/ = {(2:1,4,6),(1 :4,5,6),(7:1,4,6),(5 : 4,6,7)}; the set Z trades
with Z' = {(5:0,3,7),(5: 8,1,6)}; and the set T trades with 7" = {(6 : 1,2,8),(7 :
0,2,6),(8 :0,1,7)}. Also Z and T are disjoint. The intersection values now follow
from the table below, where numbers in parentheses are permutations on Zg.
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blocks intersection
BN B(678) 0
BN B(4758) 1
BN B(45)(78) 2
BN B(78) 3
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tradae (9 : U, 1,4),{9 L 9,%,0)y wWith {{¥ 1 U, 1,3),(Y : £4,4,0)p. Lhis completes the
example. O

In the general situation we deal with four cases: n =6m, n = 6m+1,n =6m+3
and n = 6m + 4. In each case the vertex set is V = {(4,5) | 1 <4< 2m, j = 1,2,3},
or VU {oo},or V' =V U{(2m+1,5) |7 =1,2,3} or V' U {co} (respectively).

First, when n = 6m+ 1, there is a { K7, K3 3}-decomposition of K, with K7 blocks
{oo} U{(20 - 1,7),(2,5) | 5 = 1,2,3} for 1 < 1 < m and K33 blocks {(a,7) |
7 =123U{(bj) | j =123} forall 1 < a< b < 2m, excluding {a,b} =
{2 -1,%),1 <i<m.

From Lemma 1.1 it follows that I53(6m + 1) = JS3(6m + 1).

Secondly, when n = 6m + 4, we use a {K19, K7, K3 3}-decomposition of K, with
one K1g block and m—1 K7 blocks. Once again Lemma 1.1 then yields I53(6m+4) =
JSa(Gm + 4).

Thirdly, when n = 6m, in order to achieve the intersection number “b — 2”, with
all but two blocks in common, since 5 — 2 = 3 ¢ 153(6), we use a {Ky, K¢, K33}
decomposition of K, with two Ky blocks and m — 3 Kjg blocks. This assumes that
m 2 3, so n 2 18; the case of order 12, therefore, must be considered separately.

Then, for m > 3, as before we obtain I.53(6m) = JS3(6m).

Fourthly, when n = 6m + 3, we use a {Kjg, K¢, K3 3}-decomposition of K, with
one Ko block and m — 1 Kg blocks, and obtain IS3(6m + 3) = JS3(6m + 3).

It now remains to consider the case of order 12.

EXAMPLE 3.6 1S3(12) = {0,1,...,20,22}.

First, all intersection numbers except 20 (that is, (b — 2)) can be achieved with the
following construction using two designs of order 6 and four lots of decompositions of
K33. Let A, B, C and D each stand for a set of three vertices. Then on sets {4, B}
and {C, D}, place Ss-designs of order 6, and on the sets {A} U {C}, {4} U {D},
{B} U {C}, and {B} U {D}, place S3-decompositions of K33. The result is an S3-

design of order 12, and we see that
153(12) D 2% 153(6) + 4 % IS:;(K;;’:;)

which includes all required intersection numbers except 20.

Secondly, in order to obtain this intersection number, note that in the above con-
struction, one of the four decompositions of K31 is on the sets {A} U {C} while
another is on the sets {A} U {D}; so there will be two blocks of the form (= : u,v,w)
and (z : r,s,t). These may be traded with (z : u,v,t) and (z : r,s,w); so we have
20 € 153(12) as required. O

The results in this subsection have shown

THEOREM 3.1  The intersection numbers for S3-designs are given by I1S3(n) =
{0,1,...,b—2,b} where n =0 or 1 (mod 3), n > 6 and b = n(n — 1)/6, except that
3 ¢ 155(6). 0
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3.2 S;-designs

Since the number of blocks in an S4-design of order n is n(n — 1)/8, we must have
n = 0 or 1 (mod 8). First note that once we have intersection numbers I.54(8m),
we can easily obtain I1S4(8m + 1). For in order to construct an S4-design of order
8m + 1 from one of order 8m we may simply adjoin one new vertex, say z, and 2m
new blocks of the form {(z : a,b,¢c,d) | ¢,b,¢,d € V} where V is the vertex set of the
design of order 8m. Moreover, by judicious interchange of the 2m elements, we see
that we may construct two Sy-designs of order 8m + 1 so that

I84(8m +1) D I84(8m) +{0,1,2,...,2m — 2,2m}.

Now consider the following examples.

ExaMPLE 3.7 IS4(Ks4) 2 {0,4}.

Imitate the construction in Example 3.1 above, but taking four vertices rather than
three in each partite set. O

EXAMPLE 3.8 154(8) = {0,1,2,3,4,7}.
With vertex set {0,1,2,3,4,5,6, 7}, let blocks B be as follows.

(0:1,2,3,7),(1:2,3,4,7),(2:3,4,5,7),(3 : 4,5,6,7),
(4:5,6,0,7),(5:6,0,1,7),(6: 0,1,2,7).

The following table shows the intersection values achieved by applying the given
permutations to the vertices.

permutation | intersection size
(0123) 0
{0012) 1
(012) 2
(00 0) 3
(01) 4
identity 7
0
ExAMPLE 3.9 I154(9) ={0,1,2,3,4,5,6,7,9}.
As indicated in the remark preceding Example 3.7,
I54(9) 2 I154(8)+ {0,2}
= {0,1,2,3,4,7} +{0,2}
= {0,1,2,3,4,5,6,7,9}.
O
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WXAMPLE 3.1U0 154(10) = U, 1,...,46,0Uy.

First, all intersection numbers except 28 (that is, (b — 2)) can be achieved with the
following construction using two designs of order 8 and four lots of decompositions of
Ky4. Let A, B, C and D each stand for a set of four vertices. Then on sets {4, B} and
{C, D}, place S4-designs of order 8, and on the sets {A}U{C'}, {A}U{D}, {B}uU{C},
and {B} U {D}, place Ss-decompositions of K4 4. The result is an Ss-design of order
16, and we see that

154(16) D2x 154(8) + 4 % IS4(K4,4)

which includes all required intersection numbers except 28.
Secondly, in order to obtain this intersection number, take another design of order 16
with vertex set Z15 U {oc} and 30 blocks as follows:

(icid+1,i42i+3,i+4), (G:i+54i+6i+7,00), i€ ZLis.

The two blocks (0:1,2,3,4), (0:5,6,7,00) trade with (0: 5,6,7,4), (0:1,2,3,00),
changing just two blocks, and thus showing that 28 € 154(16) as required. O

Again, using the remark at the start of this subsection, using the above example
it is easy to obtain 1S54(17) = {0,1,...,32,34}.

Now the general construction for order 8m uses a {K1¢, K3, K4 4}-decomposition
of Kgmm with one Kig block and m — 2 Kjg blocks. Explicitly, let the vertex set be
{(3,7) 11 €4 < 2m, 1 < j <4}, and let the Ki¢ block be {(7,7) | 1 < 4,7 < 4}, the
Kg blocks be {(2¢ — 1,7),(2¢,7) | 1 € 7 < 4} for 3 < i < m, and the K44 blocks be
{{a,7) 11 <7 <4}U{(b,7) |1 < j < 4} for all ¢ # b where a and b are not both first
components of elements in the same Ki5 or K3 blocks. Then I54(8m) = JS4(8m).

The only difference for order 8m + 1 is that, since 1.54(9) includes all intersection
numbers expected, including “b — 2", we may merely use a { Ky, K4 4 }-decomposition
of Kgm+1, in order to achieve I54(8m + 1) = JS54(8m + 1).

We have now proved

THEOREM 3.2 The intersection numbers for Si-designs are given by ISi(n) =
{0,1,...,6~2,b} where n =0 or 1 (mod 8), except that 5 & 154(8). , O

4 D, a triangle with pendant edge
Once again, since D has four edges, we find that a D-design of order n contains
n(n —1)/8 blocks and so n = 0 or 1 (mod 8). However, since D contains an odd cycle

(a triangle!) there is no D-decomposition of any bipartite graph, so in this case we
require a D-decomposition of a tripartite graph.

EXAMPLE 4.1 ID(K2’2'2) 2 {0, 3}, and I.D(K4,4’4) D) {0,3, 6,9,12}.
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For K332, take the vertex sets {1,1'} U {2,2'} U {3,3'}. Then disjoint D-decomposi-
tions are given by {(1,3,2)-1', (3,2',11)-3', (1,2',3')-2} and {(1, 3',2')-1, (3,2,1)-
3, (1,2,3)-2'}. Thus {0,3} C ID(K22,2)-

Now let the vertex sets for K444 be {A, D} U {B,E} U {C, F}, where each letter
here is itself a set of two points. Then we may take four decornpositions of K339 on
the four sets AUBUF, AUEUC, DUBUC and DU E U F, yielding 12 blocks
for a D-decomposition of K444. Then using the intersection values for ID(Ka 3 2)
we obtain 1D(Ks44) 2 {0,3,6,9,12}. O

For the general construction, we take the vertex set V = {(7,7) |1 €4< 2m, 1 <
J<4}ifn=8m,or VU{cc}ifn=2=8m+1.

Then if 2m = 0 or 2 (mod 6), 2m > 6, we may use a GDD with group size 2
and block size 3 on {1,2,...,2m}, while if 2m = 4 (mod 6), 2m > 10, we may
use a GDD with one group of size 4 and the rest of size 2, and block size 3 on
{1,2,...,2m}. These exist; see for instance Lemma 2.1 in [1], or the general result
in [7). Then for each group {zi,...,z4} of the GDD, place a D-design on the set
{(zi,7) |1 <4< g, 1 <j <4} oron this set together with co. Since the group sizes
are 2 or 4, this means we require D-designs of orders 8, 9, 16 and 17. And for each
block {a,b,c} of the GDD, place a D-decomposition of Ky44 on {(a,7) |1 <j <
2 U{(,5) 11 <5 <4FU{(es) |1<] <4}

It now remains to deal with orders 8, 9, 16 and 17.

ExAMPLE 4.2 ID(8) = {0,1,...,5,7}.

Take the vertex set {oo} UZry, and blocks B = {(3,1+41,3+4%)~co | i € Z1}. Note the
following trades.

X ={(1,2,4)-00, (3,4,6)-0c0} trades with X' = {(1,2,4)-3, (o0,4,6)-3},
Y ={(2,3,5)-00, (4,5,0)-0c} trades with ¥' = {(2,3,5)-4, (00,5,0)-4},

={(5,6,1)-00, (0,1,3)-00} trades with Z' = {(5,6,1)-0, (oo, 1,3)-0},
A= {(0,1,3)-o0, (2,3,5)-00, (5,6,1)-00} trades with

={(0,3,1)~o0, (2, 3)—00, (6,1,5)-00}.

Here X, Y and Z are pairwise disjoint, and A is also disjoint from X. Thus we
achieve the following intersection values, where a below denotes the permutation
(1 00) applied to B.

trades  blocks changed intersection achieved
Ba 7 0
X, Y, 2 6 1
X, A 5 2
X, Y 4 3
A 3 4
X 2 5
nothing 0 7
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LAAMPLE 2.0 LIA9)= U, 1,...,(,9).
With vertex set Zg, let D = {(i,i+ 1,1 +4)-(1 +6) |1 € Zg}. The following trades

are disjoint:

X ={(1,2,5)-7, (4,5,8)-1} trades with X' = {(8,4, 5)-7, (2,5,1)-8},
Y = {(2,3,6)-8, (5,6,0)-2} trades with Y’ = {(3,6,2)-0, (0,5,6)-8},
Z = {(0,1,4)-6, (3,4,7)-0, (6,7,1)-3} trades with

z'={(3,1,7)-6, (0,7,4)-3, (6,4,1)-0}.

Now denote permutations by « = (01), 8 = (125), v = (1234), and let T =
{(7,8,2)-4, (8,0,3)-5}. The following table then completes this example.

blocks intersection size
DN Dy 0
DN DB 1
Dn{X'uY'uz'uT} 2
DN Da 3
Dn{xuY'uz'uT} 4
Dn{X'uY'uzuT} 5
Dn{xXuvyuz'uT} 6
Dn{X'UYuUuzZuT} 7
DnND 9

ExAMPLE 4.4 ID(16) = {0,1,...,28,30}.
With vertex set Z15 U {0}, a design is given by

{(i,1 +4,6 +2)~(8+1), (5,3+14,7+1i)oo} wheres € Zs.
Now blocks A4; trade with Ai for 0 <17 < 6 where

A; = {(3,3414,7+1)-00, (T+1%,10+1,14 +14)-oco} and
Al {G,344,7+4)~(10+1), (741,00 +1,14 +4)~(10 +i)}.

Il

Disjoint from these trades are the following five trades, B; with B}, for 0 <17 < 4
where

3

B; = {(3,1+%,6 +1)~(8+14), (5+1,6+1,114+4)~(13+14), (10+7,11+2,1+2)-(3+14)}
and
B! = {(3,6 +14,1 +3)~(3+1), (544,11 +%,6+43)~(8+14), (10+1,141,114+1)~(13+1)}

(addition in Zy5). Thus we have trades on 2a + 3b blocks, where 0 < ¢ < 7 and
0 € b < 5. This means that we may trade 2a + 3b = ¢ blocks for 2 € ¢ € 29. Thus
{1,2,...,28} C ID(16). And trivially 30 € I.D(16). Finally, to show 0 € I.D(16), let

X = {(6,9,13)-c0, (13,1,5)-00, (14,2,6)-co0}
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which trades with
X' ={(14,2,6)-92, (1,15,13)-9, (13,6,00)-15}.

Thus trading {B:}+ o U {4:}2_o U {X} will change all the blocks, so 0 € ID(16).
This concludes the example. 0
ExaMPLE 4.5 ID(17) = {0,1,...,32,34}.
Let the vertex set be Z17. Then a design is given by

D={0G:+3,i+8)-(:+4+12), 5, + L,i + T)-(44+9) | 2 € Z17}.
Let permutations on Z17 be given by

oo =(012345678), oy =(012345678910),
oy = (01)(23456), 3= (01)(2345), as=(01234).

Then |D N Da;| = 1, 0 < 1 < 4, so {0,1,2,3,4} C ID(17). For the remaining
intersection values we consider trades as follows.

The set 4; = {(1,4,9)-13, (13,16,4)-8} + ¢ (mod 17) trades with A} = {(16,4,13)-
9, (9,1,4)-8} + 4 (mod 17), 0 < 7 < 4. Disjoint from this are the blocks

B; = {(1,2,8)-10, (9,10,16)-1} + 3 (mod 17)
trading with
B} = {(8,2,1)-16, (9,16,10)-8} +i (mod 17),
0<2< 7. Also let
Ci = {(0,3,8)-12, (12,15,3)-7, (11,12,1)-3} + 14,
which trades with
C! = {(0,8,3)-7, (12,15,3)-1, (1,11,12)-8} +1,
for0 <1< 4.

Note that Cp is disjoint from A4;, +=10,1,2,3
Cy is disjoint from A;, 1 =1,2,3,4
C, is disjoint from A4;, :=0,2,3,4,
C3 is disjoint from A4;, 1=0,1,3,4
Cy is disjoint from A;, 1 =10,1,2,4

Thus we may obtain trades of sizes 2, 3, ...,28, 29, yielding {5,6,...,31,32} C
ID(17). Finally, 34 € ID(17) trivially. This completes the example. O

Now combining the results of this section we have

THEOREM 4.1 The intersection numbers for D-designs are given by ID(n) = {0, 1,
.ov, b—2,b} where b=n(n—1)/8. |
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o l1lhegraph Y

A Y-design of order n contains n(n — 1)/8 blocks, and so n = 0 or 1 (mod 8). The
only ingredients we need are Y-designs of orders 8 and 9, a Y -decomposition of Ky 4,
and their intersection numbers. (In fact, it suffices to use IY(Ky4) 2 {0,4}.)

EXAMPLE 5.1 ITY(K44) 2 {0,4}.

Let the vertex set be {1,2,3,4} U {5,6,7,8}. Then two disjoint decompositions are
given by
{(4,7,1;5,6), (1,8,2,6,7), (2,5,3;7,8), (3,6,4;5,8)}

and

{(8,3,5;1,2), (5,4,6;2,3), (6,1,7;3,4), (7,2,8;1,4)}.

ExAMPLE 5.2 IY(8) = {0,1,2,3,4,5,7}.
With vertex set {oo} U Zr, take blocks D = AU BU C where

il

A
c

{(0, 1,3;6,00), (1,2,4; 0,00)}, B= {(2,3,5; 1,00), (3,4, 6; 2,00)},
{(4,5,0;3,00), (5,6,1;4,00), (6,0,2;5,00)}.

I

Blocks A trade with A' = {(6,3,1;0,2), (3,00,4;0,2)},

blocks B trade with B' = {(1,5,3;2,4), (5,00,6;2,4)} and

blocks C trade with C' = {(4,5,0;3,2), (4,1,6;5,0), (5,2,00;1,0)}.

Now let o denote the permutation (01) and 8 the permutation (012). We obtain the
following intersection numbers, which completes the result.

blocks intersection
DnDB 0

DN Da
Dn{AuUB'UC"}
Dn{AUBUC}
Dn{AuBUC"}
Dn{AuUB'UC}
DnD

O D W B

ExaMPLE 5.3 IY(9) = {0,1,...,7,9}.

Let the vertex set be Zg, and blocks be D = {(0+1,1+%,3 +1;6 +3,7+4) | 7 € Zg}
(addition mod 9). The blocks

Ai={(i—1,5,24+55+5,6+1), (5,1 +4,3+56+5,7+0)}, 1<i< 4,
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trade with
Al = {(644,2+2,51-1,3+1), (2+4,64+4,3+%14+13,7+4)}, 1 <i<4
Also the blocks

B = {(3i-3,3i—2,3;3 43,3 +4),
(31:~2,3i~1,3i+1;3i+4,3i+5), (37;“1:37;;37;+2;37:+5,3i+6)}’

1 <1 <3, trade with the blocks

Bl = {(3:+3,3i,3 — 2;3i — 3,3 — 1),
(34,3 +4,3i + 1;3i — 1,30+ 5), (36 +2,30 +5,3 +1;3i + 4,3 — 1)},

1 <1 £ 3. Thus we obtain the required intersection numbers:

blocks intersection
D n{BjuUB)U B}

D 0{{(8,0,2;5,6)} U{AL |1 <i<4}}
Dn{A1U A5 U Ay U By}

D n {A}U 4, U A5 U Bs}
Dﬂ{AlUA2UA%UBé}

DN {4} U 45 U 43 U Bs}

DN {A;1U A3 U A3 U B}
Dﬂ{A’lUA2UA3UB3}

DnD

<o

W =3 O U P WD

Thanks to Lemma 1.1 we now have

O

THEOREM 5.1 The intersection numbers for Y-designs are gven by IY(n) = {0,1,

., b—2,b} where b =n(n-—1)/8.

6 Summary

d

The following table summarises the intersection results for G-designs where G is a

connected graph on at most four vertices or at most four edges.

In the table, b denotes the number of blocks in a G-design of order n, and the
impossible intersection values are b — z where z is as given. A reference is listed if

the result is not in this paper.
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T

G Comments Ref
Ko ® & n{n —1)/2 | all eccept b unique design!
Py e—eo—@ n(n —1)/4 1 n = 0,1 (mod 4)
n = 0,1 (mod 3),
Pi o o o e n(n —1)/6 ; n> 4
B e o o e | M(n—1)8 I n = 0,1 (mod 8)
n = 1,3 (mod 6),
s V nn—-1)/6 | 1235 5.8 ¢ 1K (9). 18]
D p—_ﬁ. n(n —1)/8 ] n = 0,1 (mod 8)
v >_+_‘ n(n —1)/8 ] n = 0,1 (mod 8)
_ nz=6n=01 (mod8),
53 Oé n(n—1)/6 y 3 ¢ 154(6)
n = 0,1 (mod 8),
Sy é n(n’ - 1)/8 1 5 g 154(8)
on I::I n(n —1)/8 ] n =1 (mod 8§) 4]
n = 0,1 (mod 5),
e EI R ne6rsgin)
n = 1,4 (mod 12);
K, n(n—1)/121 12,3457 | 7,9,10,11,14 ¢ I1(16); /6)
several unknown values
for n = 25,28,37.
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