The intersection problem for small G-designs

ELIZABETH J. BILLINGTON*

Centre for Combinatorics, Department of Mathematics, The University of Queensland, Queensland 4072, AUSTRALIA

DONALD L. KREHER

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, U.S.A. 49931-1295

Abstract

A G-design of order n is a pair (P, B) where P is the vertex set of the complete graph K_n and B is an edge-disjoint decomposition of K_n into isomorphic copies of the simple graph G. Following design terminology, we call these copies "blocks". Given a particular graph G, the intersection problem asks for which k is it possible to find two G-designs (P, B_1) and (P, B_2) of order n, with $|B_1 \cap B_2| = k$, that is, with precisely k common blocks. Here we complete the solution of this intersection problem for several G-designs where G is "small", so that now it is solved for all connected graphs G with at most four vertices or at most four edges.

1 Introduction and preliminaries

Let G be a simple graph which is some subgraph of K_n , the complete undirected graph on n vertices. A G-design of order n is a pair (V, B) where V is the vertex set of K_n and B is an edge-disjoint decomposition of K_n into copies of the simple graph G. Following design terminology, we refer to these copies of G as blocks. Thus, for example, a Steiner triple system is a K_3 -design and a balanced incomplete block design with block size four and index $\lambda = 1$ is a K_4 -design. The number of blocks, |B|, is $\binom{n}{2}/|E(G)|$ where E(G) is the edge-set of G; this number clearly must be an integer.

*Research supported by the Australian Research Council.

Australasian Journal of Combinatorics <u>12</u>(1995), pp.239-258

The intersection problem for G-designs asks for what values of k is it possible to find two G-designs (V, B_1) and (V, B_2) , of the same order |V| and based on the same set V, with $|B_1 \cap B_2| = k$; that is, having precisely k common blocks. This problem was first considered for Steiner triple systems or K_3 -designs (see [8]), and since then the intersection problem has been considered for many different types of combinatorial structures; see [3] for a recent survey.

A (p,q) graph is one with p vertices and q edges. We list below all non-trivial connected simple (p,q) graphs with $\min(p,q) \leq 4$.

q = 1

 $-- K_2$

$$q = 2 \quad \bullet \quad P_{3}$$

$$q = 3 \quad \bullet \quad K_{3}, \quad \bullet \quad S_{3}, \quad \bullet \quad P_{4}$$

$$q = 4 \quad \bullet \quad C_{4}, \quad \bullet \quad S_{4}, \quad \bullet \quad D, \quad \bullet \quad Y, \quad \bullet \quad P_{5}$$

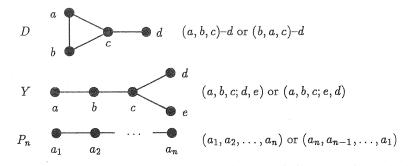
$$q = 5 \quad \bullet \quad K_{4} - e$$

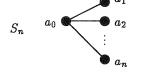
$$q = 6 \quad \bullet \quad K_{4}$$

Clearly a K_2 -design is unique; each block is an edge! And so for this design we cannot find two distinct designs, let alone a pair of designs intersecting in a specified number of blocks! So we leave this trivial case.

As mentioned above, the intersection problem for K_3 -designs was dealt with in [8]. The intersection problem for C_4 -designs appears in [4], for $(K_4 - e)$ -designs in [5] and for K_4 -designs (with a few exceptions) in [6].

The remaining cases, namely the graphs P_3 , P_4 , P_5 , S_3 , S_4 , D and Y, we deal with below. We use the notation of [2] for names of these graphs, and the following diagram shows how we label the blocks.





$$(a_0:a_{i_1},a_{i_2},\ldots,a_{i_n})$$
 where $\{i_1,i_2,\ldots,i_n\} = \{1,2\ldots,n\}$

In what follows we let IG(n) denote the set of integers k for which there exist two G-designs (P, B_1) and (P, B_2) with |P| = n and $|B_1 \cap B_2| = k$. Also if G is a graph with q edges, let

$$JG(n) = \left\{ egin{array}{ll} \{0,1,2,\ldots,rac{1}{q}inom{n}{2} - 2,rac{1}{q}inom{n}{2} \} & ext{if } q \mid inom{n}{2}; \ \emptyset & ext{otherwise.} \end{array}
ight.$$

In other words, JG(n) denotes the intersection numbers one expects to achieve with a G-design of order n.

We also modify this notation slightly and let IG(H) and JG(H) denote respectively the achievable and expected intersection numbers for a G-decomposition of the graph H.

We also need the following definition. If S is a set of positive integers and h is some positive integer, then h * S denotes the set of all integers which can be obtained by adding any h elements of S together (repetitions of elements of S allowed). For example, $2 * \{0, 1, 3\} = \{0, 1, 2, 3, 4, 6\}$.

Subsequently we shall need to decompose certain bipartite and tripartite graphs into edge-disjoint copies of the graphs G. Consider the following example.

EXAMPLE 1.1 Decompositions of $K_{4,4}$ into copies of P_5 .

Let $K_{4,4}$ have vertex set $\{1_1, 2_1, 3_1, 4_1\} \cup \{1_2, 2_2, 3_2, 4_2\}$, and let $P = \{A, B, C, D\}$ where

$$A = (1_2, 1_1, 2_2, 2_1, 3_2), \quad B = (1_2, 4_1, 4_2, 3_1, 3_2), \ C = (1_1, 3_2, 4_1, 2_2, 3_1), \quad D = (1_1, 4_2, 2_1, 1_2, 3_1).$$

These cover the 16 edges of $K_{4,4}$, and so form a P_5 -decomposition of $K_{4,4}$.

Now C and D cover the same edges as

$$C' = (1_2, 2_1, 4_2, 1_1, 3_2), D' = (1_2, 3_1, 2_2, 4_1, 3_2),$$

while B, C and D together cover the same edges as

$$\ddot{B} = (2_2, 4_1, 3_2, 1_1, 4_2), \ddot{C} = (1_2, 2_1, 4_2, 3_1, 3_2), \ddot{D} = (2_2, 3_1, 1_2, 4_1, 4_2).$$

Moreover, the permutation (1 2) applied to the subscripts of blocks A, B, C and D yields a different P_5 -decomposition of $K_{4,4}$ having no blocks in common with P; call these blocks \overline{P} .

Thus we see that $|P \cap \overline{P}| = 0$, $|P \cap \{A, \hat{B}, \hat{C}, \hat{D}\}| = 1$, $|P \cap \{A, B, C', D'\}| = 2$, $|P \cap P| = 4$. (Clearly it is not possible to have two decompositions which have all but one block in common.) We record these intersection numbers for P_5 -decompositions of $K_{4,4}$ as

$$IP_5(K_{4,4}) = \{0, 1, 2, 4\}.$$

More generally, if \mathcal{K} is a collection of graphs, then a \mathcal{K} -decomposition of the graph H, (V, \mathcal{B}) , is an edge-disjoint decomposition of H with vertex set V into a set of subgraphs \mathcal{B} , with each subgraph isomorphic to some graph in \mathcal{K} . If $\mathcal{K} = \{G\}$, then we call this a G-decomposition of H, and if also $H = K_n$, then it is a G-design of order n.

The following lemma will be most useful in the rest of this paper.

LEMMA 1.1 Let G be a graph with q edges and suppose (V, \mathcal{B}) is a $\{K_m, H\}$ -decomposition of K_n , with $\alpha > 0$ blocks isomorphic to K_m . If IG(m) = JG(m) and $IG(H) \supseteq \{0, r\}$ with |E(H)| = qr and $q(r+1) \leq \alpha \binom{m}{2}$, then IG(n) = JG(n).

Proof. First a G-design of order n can be constructed by replacing each of the blocks $B \in \mathcal{B}$ that is isomorphic to K_m by a G-design of order m, and replacing each of the blocks $B \in \mathcal{B}$ that is isomorphic to H by a G-decomposition of H.

Secondly, if $q \mid \binom{m}{2}$, then for any positive integer x,

$$x * JG(m) = \left\{0, 1, 2, \dots, \frac{x}{q}\binom{m}{2} - 2, \frac{x}{q}\binom{m}{2}
ight\},$$

and for all $x \ge r+1$,

$$\{0, 1, 2, \dots, x-2, x\} + \{0, r\} = \{0, 1, 2, \dots, x+r-2, x+r\}.$$

Thus if β contains α blocks isomorphic to K_m and β blocks isomorphic to H, then

$$IG(v)\supseteqlpha*JG(m)+eta*\{0,r\}=\{0,1,2,\ldots,z-2,z\}$$

where $z = \alpha \frac{1}{q} \binom{m}{2} + \beta r$. But \mathcal{B} is a decomposition of K_n so we also have $\alpha \binom{m}{2} + \beta q r = \binom{n}{2}$. Thus $z = \frac{1}{q} \binom{n}{2}$, as required. Hence IG(n) = JG(n).

In what follows, the graph H in Lemma 1.1 will usually be a complete bipartite or tripartite graph.

2 Paths on 3, 4 and 5 vertices

2.1 The path P_3

Note that a P_3 -design of order n contains n(n-1)/4 blocks and so we must have $n \equiv 0$ or 1 (mod 4).

EXAMPLE 2.1 $IP_3(K_{2,2}) = \{0, 2\}.$

Take designs (P, B_i) , i = 1, 2, where the vertex set of $K_{2,2}$ is $P = \{a, b\} \cup \{c, d\}$, and $B_1 = \{(a, c, b), (a, d, b)\}, B_2 = \{c, a, d), (c, b, d)\}$. Since $|B_1 \cap B_2| = 0$ we have $IP_3(K_{2,2}) = \{0, 2\}$. EXAMPLE 2.2 $IP_3(4) = \{0, 1, 3\}.$

We use designs (P, B_i) , i = 1, 2, 3, where $P = \{a, b, c, d\}$ and

$$\begin{array}{lll} B_1 = & \{(a,b,c),(a,c,d),(a,d,b)\},\\ B_2 = & \{(a,b,c),(d,a,c),(b,d,c)\},\\ B_3 = & \{(a,b,d),(a,d,c),(a,c,b)\}. \end{array}$$

Here $|B_1 \cap B_2| = 1$, $|B_1 \cap B_3| = 0$ and of course $|B_1 \cap B_1| = 3$. The result follows. \Box

EXAMPLE 2.3
$$IP_3(K_{1,2n}) = \{0, 1, 2, \dots, n-2, n\}.$$

The verification of this is immediate.

Now let n = 4m, and take the vertex set of K_n to be $\{(i, j) \mid 1 \leq i \leq 2m, j = 1, 2\}$. Take K_4 blocks $\{(2i - 1, j), (2i, j) \mid j = 1, 2\}$, for $1 \leq i \leq m$, and $K_{2,2}$ blocks $\{(a, 1), (a, 2)\} \cup \{(b, 1), (b, 2)\}$ where $1 \leq a < b \leq 2m$ and $\{a, b\} \neq \{2i - 1, 2i\}$ for $1 \leq i \leq m\}$. The result is a $\{K_4, K_{2,2}\}$ -decomposition of K_{4m} and consequently by Lemma 1.1 we have $IP_3(4m) = JP_3(4m)$.

Now let n = 4m + 1, and let the vertex set of K_n be $\{1, 2, \ldots, 4m, \infty\}$. We may use P_3 -designs of order 4m on $\{1, 2, \ldots, 4m\}$ and use Example 2.3 to find P_3 -decompositions of $K_{1,4m}$ on $\{\infty\} \cup \{1, 2, \ldots, 4m\}$. Thus

$$\begin{array}{rcl} IP_3(4m+1) &\supseteq & IP_3(4m) + IP_3(K_{1,4m}) \\ &= & \{0,1,2,\ldots,m(4m+1)-2,m(4m+1)\} = JP_3(4m+1). \end{array}$$

We have now proved

THEOREM 2.1 The intersection numbers for P_3 -designs are given by $IP_3(n) = JP_3(n) = \{0, 1, \ldots, b-2, b\}$ where b = n(n-1)/4, the total number of blocks in a P_3 -design of order n.

2.2 The path P_4

A P_4 -design of order n contains n(n-1)/6 blocks so that $n \equiv 0$ or $1 \pmod{3}$, $n \ge 4$. So let n = 3m or 3m + 1. First we give some necessary examples.

EXAMPLE 2.4 $IP_4(4) = \{0, 2\}.$

Let $V = \{1, 2, 3, 4\}$, $B_1 = \{(1, 2, 3, 4), (2, 4, 1, 3)\}$, $B_2 = \{(1, 4, 3, 2), (3, 1, 2, 4)\}$. Then $(V, B_1), (V, B_2)$ are both P_4 -designs, and $|B_1 \cap B_2| = 0$; the result follows.

EXAMPLE 2.5 $IP_4(K_{3,3}) \supseteq \{0,3\}.$

Let $K_{3,3}$ have vertex set $V = \{1,2,3\} \cup \{4,5,6\}$. Two disjoint decompositions are $B_1 = \{(1,4,2,5), (2,6,3,4), (3,5,1,6)\}, B_2 = \{(2,5,3,6), (3,4,1,5), (1,6,2,4)\}$. The result follows.

EXAMPLE 2.6 $IP_4(6) = \{0, 1, 2, 3, 5\}.$

Let K_6 have vertex set $V = \{0, 1, 2, 3, 4, 5\}$, and let $A = \{(0, 1, 2, 3), (3, 0, 5, 2), (0, 4, 3, 1)\}$, $B = \{(0, 2, 4, 5), (3, 5, 1, 4)\}$, and $C = \{(0, 4, 3, 1), (3, 5, 1, 4)\}$. Then $(V, A \cup B)$ is one P_4 -design of order 6. Note that the blocks A trade with $A' = \{(1, 0, 5, 2), (4, 0, 3, 2), (4, 3, 1, 2)\}$, and the blocks C trade with $C' = \{(0, 4, 1, 3), (1, 5, 3, 4)\}$. Let $X = A \cup B$, and let α denote the permutation (14)(35) and β the permutation (15)(34). The following table lists intersection numbers.

blocks	intersection size
Χ, Χα	0
$X, X\beta$	1
$X, \{A', B\}$	2
$X, ((X \setminus C) \cup C')$	3
X, X	5

EXAMPLE 2.7 $IP_4(7) = \{0, 1, 2, 3, 4, 5, 7\}.$

Let K_7 have vertex set $V = \{0, 1, 2, 3, 4, 5, 6\}$. Let $A = \{(0, 1, 3, 6), (1, 2, 4, 0)\}$, $B = \{(2, 3, 5, 1), (3, 4, 6, 2), (4, 5, 0, 3)\}$ and $C = \{(5, 6, 1, 4), (6, 0, 2, 5)\}$. Then (V, X), where $X = (A \cup B \cup C)$, is a P_4 -design of order 7. Moreover, A, B and C trade with $A' = \{(2, 1, 3, 6), (1, 0, 4, 2)\}$, $B' = \{(1, 5, 0, 3), (6, 4, 5, 3), (6, 2, 3, 4)\}$ and $C' = \{(4, 1, 6, 0), (0, 2, 5, 6)\}$ respectively. Let α denote the permutation (06)(13). The following table lists intersection numbers.

blocks	intersection size	
$X, A' \cup B' \cup C'$	0	
Χ, Χα	1	
$X, A \cup B' \cup C'$	2	
$X, A' \cup B \cup C'$	3	
$X, A \cup B' \cup C$	4	
$X, A' \cup B \cup C$	5	
X, X	7	

EXAMPLE 2.8 $IP_4(9) = \{0, 1, 2, \dots, 9, 10, 12\}.$

Take a P_4 -design of order 6, on $\{0, 1, 2, 3, 4, 5\}$, and adjoin elements H, J and K, and also the blocks

$$X = \{(0, H, 1, J), (2, H, 3, J), (4, H, 5, J), (1, K, 0, J), (3, K, 2, J), (5, K, J, H), (H, K, 4, J)\}.$$

Now using $IP_4(6)$ we have $\{7, 8, 9, 10, 12\} \subseteq IP_4(9)$. Also applying the permutation (HJ) to the set X changes all the blocks in X, so again using $IP_4(6)$ we have $\{0, 1, 2, 3, 5\} \subseteq IP_4(9)$.

Thus it remains to show that 4 and 6 are in $IP_4(9)$. To do this, let D denote the design with blocks $X \cup A \cup B$ where A and B are as in Example 2.6 above. Then $|D \cap D\gamma| = 4$ where γ is the permutation (03)(12). Finally, let

$$T = \{(0, 2, 4, 5), (3, 0, 5, 2), (0, 4, 3, 1), (3, 5, 1, 4)\}$$

which has trade

 $T' = \{(3, 1, 4, 5), (0, 3, 5, 1), (3, 4, 2, 0), (4, 0, 5, 2)\}.$

Then $|D\gamma \cap ((D \setminus T) \cup T')| = 6$, which completes the intersection numbers for designs of order 9.

Now let n = 3m + 1 and let the vertex set of K_n be $V = \{(i,j) \mid 1 \leq i \leq m, j = 1, 2, 3\} \cup \{\infty\}$. There is a $\{K_7, K_4, K_{3,3}\}$ -decomposition of K_n with: one K_7 block $\{\infty\} \cup \{(i,j) \mid i = 1, 2; j = 1, 2, 3\}$; K_4 blocks $\{\infty\} \cup \{(i,j) \mid j = 1, 2, 3\}$, for $3 \leq i \leq m$; $K_{3,3}$ blocks $\{(i,j) \mid j = 1, 2, 3\} \cup \{(i',j) \mid j = 1, 2, 3\}$, for all $1 \leq i < i' \leq m$, excluding $\{i, i'\} = \{1, 2\}$. Then using Examples 2.7, 2.4, 2.5 and a slight generalization of Lemma 1.1, it follows that $IP_4(3m + 1) = JP_4(3m + 1) = \{0, 1, 2, \ldots, t-2, t\}$ where t = m(3m+1)/2, the total number of blocks in a P_4 -design of order 3m + 1.

Next let n = 3m. The cases m even and m odd are treated separately. When m is even let n = 6M and let the vertex set of K_n be $\{(i, j) \mid 1 \leq i \leq 2M; j = 1, 2, 3\}$. There is a $\{K_6, K_{3,3}\}$ -decomposition of K_n with K_6 blocks $\{(2i - 1, j), (2i, j) \mid j = 1, 2, 3\}$ for $1 \leq i \leq M$ and $K_{3,3}$ blocks $\{(i_1, j) \mid j = 1, 2, 3\} \cup \{(i_2, j) \mid j = 1, 2, 3\}$ for all $1 \leq i_1 < i_2 \leq 2M$ excluding $\{i_1, i_2\} = \{2i - 1, 2i\}, 1 \leq i \leq M$.

The result $IP_4(6M) = JP_4(6M)$ then follows from Examples 2.6, 2.5 and Lemma 1.1.

When *m* is odd let n = 6M + 3, and let the vertex set of K_n be $\{(i, j) \mid 1 \leq i \leq 2M + 1, j = 1, 2, 3\}$. There is a $\{K_9, K_6, K_{3,3}\}$ -decomposition of K_n with: one K_9 block $\{(i, j) \mid i, j = 1, 2, 3\}$; K_6 blocks $\{(2i, j), (2i+1, j) \mid j = 1, 2, 3\}$ for i = 2, ..., M; $K_{3,3}$ blocks $\{(a, j) \mid j = 1, 2, 3\} \cup \{(b, j) \mid j = 1, 2, 3\}$ for all pairs $\{a, b\}$ with $a \neq b$ and with *a* and *b* not both in $\{1, 2, 3\}$ or in $\{2i, 2i + 1\}, 2 \leq i \leq M$.

Then from Examples 2.8, 2.6, 2.5 and Lemma 1.1, we have $IP_4(6M + 3) = JP_4(6M + 3)$.

We have now proved

THEOREM 2.2 The intersection numbers for P_4 -designs are given by $IP_4(n) = \{0, 1, \ldots, b-2, b\}$ where b = n(n-1)/6.

2.3 The path P_5

The graph P_5 has 4 edges, and so a suitable decomposition of K_n will contain n(n-1)/8 blocks; consequently we must have $n \equiv 0$ or 1 (mod 8). The only ingredients needed are decompositions of $K_{4,4}$, K_8 and K_9 , and of course their intersection numbers too.

Now let the vertex set of K_n be $V = \{(i, j) \mid 1 \leq i \leq 2m, 1 \leq j \leq 4\}$ or $V \cup \{\infty\}$, according as n = 8m or 8m + 1.

In the former case there is a $\{K_8, K_{4,4}\}$ -decomposition of K_n with K_8 blocks $\{(2i-1,j), (2i,j) \mid 1 \leq j \leq 4\}$ for $1 \leq i \leq m$, and $K_{4,4}$ blocks $\{(a,j) \mid 1 \leq j \leq 4\} \cup \{(b,j) \mid 1 \leq j \leq 4\}$ for all $1 \leq a < b \leq 2m$ and $\{a,b\} \neq \{2i-1,2i\}$ for $1 \leq i \leq m$. In the latter case there is a $\{K_9, K_{4,4}\}$ -decomposition of K_n ; the K_9 blocks have $\{\infty\}$ adjoined to each of the K_8 blocks above, otherwise blocks are the same as when n = 8m.

In Example 1.1 we showed that $IP_5(K_{4,4}) = \{0, 1, 2, 4\}$. We also need the following two examples.

EXAMPLE 2.9 $IP_5(8) = \{0, 1, 2, 3, 4, 5, 7\}.$

On the vertex set $\mathbb{Z}_7 \cup \{\infty\}$, developing the base block $\beta = (\infty, 0, 1, 3, 6)$ modulo 7 generates a P_5 -decomposition of K_7 . For each $i \in \mathbb{Z}_7$ the blocks $A_i = \{\beta + i, \beta + i + 1\}$ trade with $A'_i = \{(6, 3, 1, 0, 4) + i, (0, \infty, 1, 2, 4) + i\}$, and $B = \{\beta + 4, \beta + 5, \beta + 6\}$ trades with $B' = \{(3, 0, 5, \infty, 4), (\infty, 6, 5, 2, 0), (0, 6, 1, 4, 5)\}$. We observe that A_0, A_2 and A_4 are mutually disjoint and that B is disjoint from A_0 and A_2 . Consequently $IP_5(8) = \{0, 1, 2, 3, 4, 5, 7\}$.

EXAMPLE 2.10 $IP_5(9) = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}.$

On the vertex set Z₉, a P_5 -design is generated by developing the base block $\beta = (0, 1, 3, 7, 4) \pmod{9}$. For each $i \in \mathbb{Z}_9$ the blocks $A_i = \{\beta + i, \beta + i + 2\}$ trade with $A'_i = \{(0, 5, 3, 7, 4) + i, (2, 3, 1, 0, 6) + i\}$ and the blocks $B_i = \{\beta + i, \beta + i + 1, \beta + i + 2\}$ trade with $B'_i = \{(0, 1, 2, 3, 5) + i, (1, 3, 7, 4, 2) + i, (6, 0, 5, 8, 4) + i\}$.

Moreover, the blocks $C = \{\beta + 5, \beta + 7, \beta + 8\}$ trade with the blocks $C' = \{(7, 8, 3, 6, 5), (3, 0, 8, 6, 2), (8, 1, 5, 2, 0)\}$. The following table lists the disjoint trades which may be used in order to achieve the required intersection values.

trades	intersection achieved
B_0, B_3, B_6	0
A_0, A_1, A_4, A_5	1
C, A_0, A_1	2
B_0, B_3	3
A_0, B_6	4
A_0, A_1	5
B_0	6
A_0	7
nothing	9

Now applying Lemma 1.1 yields the following result for P_5 -designs.

THEOREM 2.3 The intersection numbers for P_5 -designs are given by $IP_5(n) = \{0, 1, \ldots, b-2, b\}$ where b = n(n-1)/8.

3 Stars with 3 and 4 edges

3.1 S_3 -designs

The number of blocks in an S_3 -design of order n is n(n-1)/6, and so $n \equiv 0$ or 1 (mod 3), and $n \ge 6$. (S_3 involves four vertices, and it is easy to see that K_4 has no S_3 -decomposition.)

We start with the following example.

EXAMPLE 3.1 $IS_3(K_{3,3}) = \{0, 3\}.$

Let $K_{3,3}$ have vertex set $\{1, 2, 3\} \cup \{4, 5, 6\}$. The following two S_3 -decompositions are disjoint.

$$D_1 = \{(1:4,5,6), (2:4,5,6), (3:4,5,6)\},\$$

$$D_2 = \{(4:1,2,3), (5:1,2,3), (6:1,2,3)\}.$$

 \square

 \Box

Moreover, it is straightforward to see that $1 \notin IS_3(K_{3,3})$.

One slight difficulty in this case (and, indeed, for S_m -designs in general) is that the expected full set of intersection numbers for a design of order 6 (or 2m in general) cannot be achieved. In the case of S_3 -designs, each block involves 4 vertices, and it is impossible to find a trade consisting of two blocks when the design is of order 6. The smallest trade involves *seven* vertices, such as $\{(x : a, b, c), (x : d, e, f)\}$ trading with $\{(x : a, b, d), (x : c, e, f)\}$. We do however achieve the other expected intersection numbers, as the following example shows.

EXAMPLE 3.2 $IS_3(6) = \{0, 1, 2, 5\}.$

Let $V = \{0, 1, 2, 3, 4, 5\}$ and take

 $B = \{(0:5,1,2), (1:5,2,3), (2:5,3,4), (3:5,4,0), (4:5,0,1)\}.$

Let $\alpha = (012)$, $\beta = (345)$ and $\gamma = (01)$ be permutations on V. The result then follows from the table below.

blocks	intersection
$B \cap B\alpha$	0
$B \cap B\beta$	1
$B \cap B\gamma$	2
$B \cap B$	5

Three more necessary examples follow.

EXAMPLE 3.3 $IS_3(7) = \{0, 1, 2, 3, 4, 5, 7\}.$

Take the vertex set $\{0, 1, 2, 3, 4, 5, 6\}$, and blocks $B \cup \{(6:0, 1, 2), (6:3, 4, 5)\} = B \cup Y$ where B is as in Example 3.2. The permutations α , β and γ of Example 3.2 fix Y. Hence $\{2, 3, 4, 7\} \subseteq IS_3(7)$. Moreover, Y trades with $Y' = \{(6:0, 1, 3), (6:2, 4, 5)\}$, and so $0 \in IS_3(7)$. Also $|(B \cup Y) \cap (B\beta \cup Y')| = 1$ and $|(B \cup Y) \cap (B \cup Y')| = 5$, so the result follows.

Example 3.4 $IS_3(9) = \{0, 1, \dots, 10, 12\}.$

Let the vertex set be \mathbb{Z}_9 , and take blocks B as follows.

block	in subset(s)	block	in subset(s)
(0:1,3,6)	X	(6:1,2,7)	Y, T
(1:2,4,7)	Y	(7:2,0,8)	T
(2:0,5,8)		(8:0,1,6)	X, T
(3:1,4,6)	X	(3:2,7,8)	
(4:2,5,7)	Y	(4:0,8,6)	X
(5:0,3,8)	Z	(5:1,6,7)	Y, Z

The set X trades with $X' = \{(1:0,3,8), (0:3,4,8), (6:0,3,8), (4:3,6,8)\}$; the set Y trades with $Y' = \{(2:1,4,6), (1:4,5,6), (7:1,4,6), (5:4,6,7)\}$; the set Z trades with $Z' = \{(5:0,3,7), (5:8,1,6)\}$; and the set T trades with $T' = \{(6:1,2,8), (7:0,2,6), (8:0,1,7)\}$. Also Z and T are disjoint. The intersection values now follow from the table below, where numbers in parentheses are permutations on \mathbb{Z}_9 .

blocks	intersection
$B \cap B(678)$	0
$B \cap B(4758)$	1
$B \cap B(45)(78)$	2
$B \cap B(78)$	3
$B \cap ((B \setminus (X \cup Y)) \cup X' \cup Y')$	4
$B \cap B(45)$	5
$B \cap ((B \setminus (X \cup Z)) \cup X' \cup Z')$	6
$B \cap ((B \setminus (X \cup T)) \cup X' \cup T')$	7
$B \cap ((B \setminus X) \cup X')$	8
$B \cap ((B \setminus T) \cup T')$	9
$B \cap ((B \setminus Z) \cup Z')$	10
$B \cap \widehat{B}$	12

EXAMPLE 3.5 $IS_3(10) = \{0, 1, \dots, 13, 15\}.$

Take \mathbb{Z}_{10} and blocks *B* of Example 3.4 above, together with $P = \{(9:0,1,2), (9:3,4,5), (9:6,7,8)\}$. The blocks in *P* are fixed by the above permutations (except for (4758)) and by the trades on *B*, so $\{3,4,6,7,8,9,10,11,12,13,15\} \subseteq IS_3(10)$. Also *P* trades with $P' = \{(9:0,1,3), (9:2,4,6), (9:5,7,8)\}$, and so in particular $\{0,1,5\} \subseteq IS_3(10)$ also. Finally we see that $2 \in IS_3(10)$, using $1 \in IS_3(9)$ and the trade $\{(9:0,1,2), (9:3,4,5)\}$ with $\{(9:0,1,3), (9:2,4,5)\}$. This completes the example.

In the general situation we deal with four cases: n = 6m, n = 6m + 1, n = 6m + 3and n = 6m + 4. In each case the vertex set is $V = \{(i, j) \mid 1 \leq i \leq 2m, j = 1, 2, 3\}$, or $V \cup \{\infty\}$, or $V' = V \cup \{(2m + 1, j) \mid j = 1, 2, 3\}$ or $V' \cup \{\infty\}$ (respectively).

First, when n = 6m + 1, there is a $\{K_7, K_{3,3}\}$ -decomposition of K_n with K_7 blocks $\{\infty\} \cup \{(2i - 1, j), (2i, j) \mid j = 1, 2, 3\}$ for $1 \leq i \leq m$ and $K_{3,3}$ blocks $\{(a, j) \mid j = 1, 2, 3\} \cup \{(b, j) \mid j = 1, 2, 3\}$, for all $1 \leq a < b \leq 2m$, excluding $\{a, b\} = \{2i - 1, 2i\}, 1 \leq i \leq m$.

From Lemma 1.1 it follows that $IS_3(6m + 1) = JS_3(6m + 1)$.

Secondly, when n = 6m + 4, we use a $\{K_{10}, K_7, K_{3,3}\}$ -decomposition of K_n , with one K_{10} block and m-1 K_7 blocks. Once again Lemma 1.1 then yields $IS_3(6m+4) = JS_3(6m+4)$.

Thirdly, when n = 6m, in order to achieve the intersection number "b - 2", with all but two blocks in common, since $5 - 2 = 3 \notin IS_3(6)$, we use a $\{K_9, K_6, K_{3,3}\}$ decomposition of K_n with two K_9 blocks and m - 3 K₆ blocks. This assumes that $m \ge 3$, so $n \ge 18$; the case of order 12, therefore, must be considered separately.

Then, for $m \ge 3$, as before we obtain $IS_3(6m) = JS_3(6m)$.

Fourthly, when n = 6m + 3, we use a $\{K_9, K_6, K_{3,3}\}$ -decomposition of K_n with one K_9 block and m - 1 K_6 blocks, and obtain $IS_3(6m + 3) = JS_3(6m + 3)$.

It now remains to consider the case of order 12.

EXAMPLE 3.6 $IS_3(12) = \{0, 1, \dots, 20, 22\}.$

First, all intersection numbers except 20 (that is, (b-2)) can be achieved with the following construction using two designs of order 6 and four lots of decompositions of $K_{3,3}$. Let A, B, C and D each stand for a set of three vertices. Then on sets $\{A, B\}$ and $\{C, D\}$, place S_3 -designs of order 6, and on the sets $\{A\} \cup \{C\}, \{A\} \cup \{D\}, \{B\} \cup \{C\}, \text{ and } \{B\} \cup \{D\}$, place S_3 -decompositions of $K_{3,3}$. The result is an S_3 -design of order 12, and we see that

$$IS_3(12) \supseteq 2 * IS_3(6) + 4 * IS_3(K_{3,3})$$

which includes all required intersection numbers except 20.

Secondly, in order to obtain this intersection number, note that in the above construction, one of the four decompositions of $K_{3,3}$ is on the sets $\{A\} \cup \{C\}$ while another is on the sets $\{A\} \cup \{D\}$; so there will be two blocks of the form (x : u, v, w)and (x : r, s, t). These may be traded with (x : u, v, t) and (x : r, s, w); so we have $20 \in IS_3(12)$ as required.

The results in this subsection have shown

THEOREM 3.1 The intersection numbers for S_3 -designs are given by $IS_3(n) = \{0, 1, \ldots, b-2, b\}$ where $n \equiv 0$ or 1 (mod 3), $n \ge 6$ and b = n(n-1)/6, except that $3 \notin IS_3(6)$.

3.2 S_4 -designs

Since the number of blocks in an S_4 -design of order n is n(n-1)/8, we must have $n \equiv 0$ or 1 (mod 8). First note that once we have intersection numbers $IS_4(8m)$, we can easily obtain $IS_4(8m+1)$. For in order to construct an S_4 -design of order 8m + 1 from one of order 8m we may simply adjoin one new vertex, say x, and 2m new blocks of the form $\{(x:a, b, c, d) \mid a, b, c, d \in V\}$ where V is the vertex set of the design of order 8m. Moreover, by judicious interchange of the 2m elements, we see that we may construct two S_4 -designs of order 8m + 1 so that

$$IS_4(8m+1) \supseteq IS_4(8m) + \{0, 1, 2, \dots, 2m-2, 2m\}.$$

Now consider the following examples.

EXAMPLE 3.7 $IS_4(K_{4,4}) \supseteq \{0,4\}.$

Imitate the construction in Example 3.1 above, but taking four vertices rather than three in each partite set. $\hfill \Box$

EXAMPLE 3.8 $IS_4(8) = \{0, 1, 2, 3, 4, 7\}.$

With vertex set $\{0, 1, 2, 3, 4, 5, 6, 7\}$, let blocks B be as follows.

(0:1,2,3,7),(1:2,3,4,7),(2:3,4,5,7),(3:4,5,6,7),(4:5,6,0,7),(5:6,0,1,7),(6:0,1,2,7).

The following table shows the intersection values achieved by applying the given permutations to the vertices.

permutation	intersection size
(0123)	0
$(\infty 012)$	1
(012)	2
$(\infty 0)$	3
(01)	4
identity	7

EXAMPLE 3.9 $IS_4(9) = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}.$

As indicated in the remark preceding Example 3.7,

$$IS_4(9) \supseteq IS_4(8) + \{0,2\}$$

= $\{0,1,2,3,4,7\} + \{0,2\}$
= $\{0,1,2,3,4,5,6,7,9\}.$

EXAMPLE 3.10 $IS_4(16) = \{0, 1, \dots, 28, 30\}.$

First, all intersection numbers except 28 (that is, (b-2)) can be achieved with the following construction using two designs of order 8 and four lots of decompositions of $K_{4,4}$. Let A, B, C and D each stand for a set of four vertices. Then on sets $\{A, B\}$ and $\{C, D\}$, place S_4 -designs of order 8, and on the sets $\{A\} \cup \{C\}, \{A\} \cup \{D\}, \{B\} \cup \{C\},$ and $\{B\} \cup \{D\}$, place S_4 -decompositions of $K_{4,4}$. The result is an S_4 -design of order 16, and we see that

$$IS_4(16) \supseteq 2 * IS_4(8) + 4 * IS_4(K_{4,4})$$

which includes all required intersection numbers except 28.

Secondly, in order to obtain this intersection number, take another design of order 16 with vertex set $\mathbb{Z}_{15} \cup \{\infty\}$ and 30 blocks as follows:

 $(i:i+1,i+2,i+3,i+4), (i:i+5,i+6,i+7,\infty), i \in \mathbb{Z}_{15}.$

The two blocks (0:1,2,3,4), $(0:5,6,7,\infty)$ trade with (0:5,6,7,4), $(0:1,2,3,\infty)$, changing just two blocks, and thus showing that $28 \in IS_4(16)$ as required.

Again, using the remark at the start of this subsection, using the above example it is easy to obtain $IS_4(17) = \{0, 1, \dots, 32, 34\}$.

Now the general construction for order 8m uses a $\{K_{16}, K_8, K_{4,4}\}$ -decomposition of K_{8m} with one K_{16} block and m-2 K_8 blocks. Explicitly, let the vertex set be $\{(i,j) \mid 1 \leq i \leq 2m, 1 \leq j \leq 4\}$, and let the K_{16} block be $\{(i,j) \mid 1 \leq i, j \leq 4\}$, the K_8 blocks be $\{(2i-1,j), (2i,j) \mid 1 \leq j \leq 4\}$ for $3 \leq i \leq m$, and the $K_{4,4}$ blocks be $\{(a,j) \mid 1 \leq j \leq 4\} \cup \{(b,j) \mid 1 \leq j \leq 4\}$ for all $a \neq b$ where a and b are not both first components of elements in the same K_{16} or K_8 blocks. Then $IS_4(8m) = JS_4(8m)$.

The only difference for order 8m + 1 is that, since $IS_4(9)$ includes all intersection numbers expected, including "b-2", we may merely use a $\{K_9, K_{4,4}\}$ -decomposition of K_{8m+1} , in order to achieve $IS_4(8m + 1) = JS_4(8m + 1)$.

We have now proved

THEOREM 3.2 The intersection numbers for S_4 -designs are given by $IS_4(n) = \{0, 1, \ldots, b-2, b\}$ where $n \equiv 0$ or 1 (mod 8), except that $5 \notin IS_4(8)$.

4 D, a triangle with pendant edge

Once again, since D has four edges, we find that a D-design of order n contains n(n-1)/8 blocks and so $n \equiv 0$ or 1 (mod 8). However, since D contains an odd cycle (a triangle!) there is no D-decomposition of any *bi*partite graph, so in this case we require a D-decomposition of a *tri*partite graph.

EXAMPLE 4.1 $ID(K_{2,2,2}) \supseteq \{0,3\}$, and $ID(K_{4,4,4}) \supseteq \{0,3,6,9,12\}$.

For $K_{2,2,2}$, take the vertex sets $\{1, 1'\} \cup \{2, 2'\} \cup \{3, 3'\}$. Then disjoint *D*-decompositions are given by $\{(1, 3, 2)-1', (3, 2', 1')-3', (1, 2', 3')-2\}$ and $\{(1', 3', 2')-1, (3', 2, 1)-3, (1', 2, 3)-2'\}$. Thus $\{0,3\} \subseteq ID(K_{2,2,2})$.

Now let the vertex sets for $K_{4,4,4}$ be $\{A, D\} \cup \{B, E\} \cup \{C, F\}$, where each letter here is itself a set of two points. Then we may take four decompositions of $K_{2,2,2}$ on the four sets $A \cup B \cup F$, $A \cup E \cup C$, $D \cup B \cup C$ and $D \cup E \cup F$, yielding 12 blocks for a *D*-decomposition of $K_{4,4,4}$. Then using the intersection values for $ID(K_{2,2,2})$ we obtain $ID(K_{4,4,4}) \supseteq \{0,3,6,9,12\}$.

For the general construction, we take the vertex set $V = \{(i, j) \mid 1 \leq i \leq 2m, 1 \leq j \leq 4\}$ if n = 8m, or $V \cup \{\infty\}$ if n = 8m + 1.

Then if $2m \equiv 0$ or 2 (mod 6), $2m \ge 6$, we may use a GDD with group size 2 and block size 3 on $\{1, 2, \ldots, 2m\}$, while if $2m \equiv 4 \pmod{6}$, $2m \ge 10$, we may use a GDD with one group of size 4 and the rest of size 2, and block size 3 on $\{1, 2, \ldots, 2m\}$. These exist; see for instance Lemma 2.1 in [1], or the general result in [7]. Then for each group $\{x_1, \ldots, x_g\}$ of the GDD, place a *D*-design on the set $\{(x_i, j) \mid 1 \le i \le g, 1 \le j \le 4\}$ or on this set together with ∞ . Since the group sizes are 2 or 4, this means we require *D*-designs of orders 8, 9, 16 and 17. And for each block $\{a, b, c\}$ of the GDD, place a *D*-decomposition of $K_{4,4,4}$ on $\{(a, j) \mid 1 \le j \le 4\} \cup \{(b, j) \mid 1 \le j \le 4\} \cup \{(c, j) \mid 1 \le j \le 4\}$.

It now remains to deal with orders 8, 9, 16 and 17.

EXAMPLE 4.2 $ID(8) = \{0, 1, \dots, 5, 7\}.$

Take the vertex set $\{\infty\} \cup \mathbb{Z}_7$, and blocks $B = \{(i, 1+i, 3+i) - \infty \mid i \in \mathbb{Z}_7\}$. Note the following trades.

$$\begin{split} X &= \{(1,2,4) - \infty, (3,4,6) - \infty\} \text{ trades with } X' = \{(1,2,4) - 3, (\infty,4,6) - 3\}, \\ Y &= \{(2,3,5) - \infty, (4,5,0) - \infty\} \text{ trades with } Y' = \{(2,3,5) - 4, (\infty,5,0) - 4\}, \\ Z &= \{(5,6,1) - \infty, (0,1,3) - \infty\} \text{ trades with } Z' = \{(5,6,1) - 0, (\infty,1,3) - 0\}, \\ A &= \{(0,1,3) - \infty, (2,3,5) - \infty, (5,6,1) - \infty\} \text{ trades with } \\ A' &= \{(0,3,1) - \infty, (2,5,3) - \infty, (6,1,5) - \infty\}. \end{split}$$

Here X, Y and Z are pairwise disjoint, and A is also disjoint from X. Thus we achieve the following intersection values, where α below denotes the permutation (1∞) applied to B.

trades	blocks changed	intersection achieved
Βα	7	0
X, Y, Z	6	1
X, A	5	2
X, Y	4	3
A	3	4
X	2	5
nothing	0	7

EXAMPLE 4.3 $ID(9) = \{0, 1, \dots, 7, 9\}.$

With vertex set \mathbb{Z}_9 , let $D = \{(i, i+1, i+4) - (i+6) \mid i \in \mathbb{Z}_9\}$. The following trades are disjoint:

$$\begin{array}{l} X = \{(1,2,5)-7, \ (4,5,8)-1\} \ \text{trades with} \ X' = \{(8,4,5)-7, \ (2,5,1)-8\}, \\ Y = \{(2,3,6)-8, \ (5,6,0)-2\} \ \text{trades with} \ Y' = \{(3,6,2)-0, \ (0,5,6)-8\}, \\ Z = \{(0,1,4)-6, \ (3,4,7)-0, \ (6,7,1)-3\} \ \text{trades with} \\ Z' = \{(3,1,7)-6, \ (0,7,4)-3, \ (6,4,1)-0\}. \end{array}$$

Now denote permutations by $\alpha = (01)$, $\beta = (125)$, $\gamma = (1234)$, and let $T = \{(7,8,2)-4, (8,0,3)-5\}$. The following table then completes this example.

blocks	intersection size
$D\cap D\gamma$	0
$D \cap D\beta$	1
$D \cap \{X' \cup Y' \cup Z' \cup T\}$	2
$D\cap Dlpha$	3
$D \cap \{X \cup Y' \cup Z' \cup T\}$	4
$D \cap \{X' \cup Y' \cup Z \cup T\}$	5
$D \cap \{X \cup Y \cup Z' \cup T\}$	6
$D \cap \{X' \cup Y \cup Z \cup T\}$	7
$D \cap D$	9

EXAMPLE 4.4 $ID(16) = \{0, 1, \dots, 28, 30\}.$

With vertex set $\mathbb{Z}_{15} \cup \{\infty\}$, a design is given by

 $\{(i, 1+i, 6+i) - (8+i), (i, 3+i, 7+i) - \infty\}$ where $i \in \mathbb{Z}_{15}$.

Now blocks A_i trade with A_i' for $0 \leqslant i \leqslant 6$ where

$$\begin{array}{rcl} A_i &=& \{(i,3+i,7+i) - \infty, & (7+i,10+i,14+i) - \infty\} \ \, \text{and} \\ A'_i &=& \{(i,3+i,7+i) - (10+i), & (7+i,\infty+i,14+i) - (10+i)\}. \end{array}$$

Disjoint from these trades are the following five trades, B_i with B'_i , for $0 \leq i \leq 4$, where

$$B_i = \{(i, 1+i, 6+i) - (8+i), \ (5+i, 6+i, 11+i) - (13+i), \ (10+i, 11+i, 1+i) - (3+i)\}$$

and

$$B'_i = \{(i,6+i,1+i) - (3+i), (5+i,11+i,6+i) - (8+i), (10+i,1+i,11+i) - (13+i)\}$$

(addition in \mathbb{Z}_{15}). Thus we have trades on 2a + 3b blocks, where $0 \leq a \leq 7$ and $0 \leq b \leq 5$. This means that we may trade 2a + 3b = c blocks for $2 \leq c \leq 29$. Thus $\{1, 2, \ldots, 28\} \subseteq ID(16)$. And trivially $30 \in ID(16)$. Finally, to show $0 \in ID(16)$, let

$$X = \{(6,9,13) - \infty, (13,1,5) - \infty, (14,2,6) - \infty\}$$

which trades with

 $X' = \{(14, 2, 6) - 9\lambda, (1, 15, 13) - 9, (13, 6, \infty) - 15\}.$

Thus trading $\{B_i\}_{i=0}^4 \cup \{A_i\}_{i=0}^5 \cup \{X\}$ will change all the blocks, so $0 \in ID(16)$. This concludes the example.

EXAMPLE 4.5 $ID(17) = \{0, 1, \dots, 32, 34\}.$

Let the vertex set be \mathbb{Z}_{17} . Then a design is given by

$$D = \{(i, i+3, i+8) - (i+12), (i, i+1, i+7) - (i+9) \mid i \in \mathbb{Z}_{17}\}.$$

Let permutations on \mathbb{Z}_{17} be given by

$$egin{aligned} lpha_0 &= (0\,1\,2\,3\,4\,5\,6\,7\,8\,9\,10), \ lpha_2 &= (0\,1)(2\,3\,4\,5\,6), \ lpha_3 &= (0\,1)(2\,3\,4\,5\,6), \ lpha_4 &= (0\,1\,2\,3\,4). \end{aligned}$$

Then $|D \cap D\alpha_i| = i$, $0 \leq i \leq 4$, so $\{0, 1, 2, 3, 4\} \subseteq ID(17)$. For the remaining intersection values we consider trades as follows.

The set $A_i = \{(1,4,9)-13, (13,16,4)-8\} + i \pmod{17}$ trades with $A'_i = \{(16,4,13)-9, (9,1,4)-8\} + i \pmod{17}, 0 \le i \le 4$. Disjoint from this are the blocks

 $B_i = \{(1,2,8)-10, (9,10,16)-1\} + i \pmod{17}$

trading with

$$B'_i = \{(8,2,1)-16, (9,16,10)-8\} + i \pmod{17},\$$

 $0 \leq i \leq 7$. Also let

$$C_i = \{(0,3,8) - 12, (12,15,3) - 7, (11,12,1) - 3\} + i,$$

which trades with

$$C'_i = \{(0,8,3)-7, (12,15,3)-1, (1,11,12)-8\} + i,$$

for $0 \leq i \leq 4$.

Note that	C_0	is disjoint from A_i ,	i = 0, 1, 2, 3,
	C_1	is disjoint from A_i ,	i = 1, 2, 3, 4,
	C_2	is disjoint from A_i ,	i = 0, 2, 3, 4,
	C_3	is disjoint from A_i ,	i = 0, 1, 3, 4,
	C_4	is disjoint from A_i ,	i = 0, 1, 2, 4.

Thus we may obtain trades of sizes 2, 3, ..., 28, 29, yielding $\{5, 6, \ldots, 31, 32\} \subseteq ID(17)$. Finally, $34 \in ID(17)$ trivially. This completes the example.

Now combining the results of this section we have

THEOREM 4.1 The intersection numbers for D-designs are given by $ID(n) = \{0, 1, \dots, b-2, b\}$ where b = n(n-1)/8.

5 The graph Y

A Y-design of order n contains n(n-1)/8 blocks, and so $n \equiv 0$ or 1 (mod 8). The only ingredients we need are Y-designs of orders 8 and 9, a Y-decomposition of $K_{4,4}$, and their intersection numbers. (In fact, it suffices to use $IY(K_{4,4}) \supseteq \{0,4\}$.)

EXAMPLE 5.1 $IY(K_{4,4}) \supseteq \{0,4\}$.

Let the vertex set be $\{1, 2, 3, 4\} \cup \{5, 6, 7, 8\}$. Then two disjoint decompositions are given by

$$\{(4,7,1;5,6), (1,8,2;6,7), (2,5,3;7,8), (3,6,4;5,8)\}$$

and

$$\{(8,3,5;1,2), (5,4,6;2,3), (6,1,7;3,4), (7,2,8;1,4)\}.$$

EXAMPLE 5.2 $IY(8) = \{0, 1, 2, 3, 4, 5, 7\}.$

With vertex set $\{\infty\} \cup \mathbb{Z}_7$, take blocks $D = A \cup B \cup C$ where

$$A = \{(0,1,3;6,\infty), (1,2,4;0,\infty)\}, B = \{(2,3,5;1,\infty), (3,4,6;2,\infty)\}, C = \{(4,5,0;3,\infty), (5,6,1;4,\infty), (6,0,2;5,\infty)\}.$$

Blocks A trade with $A' = \{(6,3,1;0,2), (3,\infty,4;0,2)\}$, blocks B trade with $B' = \{(1,5,3;2,4), (5,\infty,6;2,4)\}$ and blocks C trade with $C' = \{(4,5,0;3,2), (4,1,6;5,0), (5,2,\infty;1,0)\}$. Now let α denote the permutation (01) and β the permutation (012). We obtain the following intersection numbers, which completes the result.

blocks	intersection
$D\cap Deta$	0
$D\cap Dlpha$	1
$D \cap \{A \cup B' \cup C'\}$	2
$D \cap \{A' \cup B' \cup C\}$	3
$D \cap \{A \cup B \cup C'\}$	4
$D \cap \{A \cup B' \cup C\}$	5
$D \cap D$	7

EXAMPLE 5.3 $IY(9) = \{0, 1, \dots, 7, 9\}.$

Let the vertex set be \mathbb{Z}_9 , and blocks be $D = \{(0+i, 1+i, 3+i; 6+i, 7+i) \mid i \in \mathbb{Z}_9\}$ (addition mod 9). The blocks

$$A_i = \{(i-1, i, 2+i; 5+i, 6+i), (i, 1+i, 3+i; 6+i, 7+i)\}, \ 1 \leqslant i \leqslant 4,$$

trade with

$$A'_i = \{(5+i,2+i,i;i-1,i+1), (2+i,6+i,3+i;1+i,7+i)\}, \ 1 \leqslant i \leqslant 4.$$

Also the blocks

$$egin{array}{rcl} B_{i} &=& \{(3i-3,3i-2,3i;3i+3,3i+4),\ && (3i-2,3i-1,3i+1;3i+4,3i+5),\ (3i-1,3i,3i+2;3i+5,3i+6)\}, \end{array}$$

 $1 \leqslant i \leqslant 3$, trade with the blocks

$$egin{array}{rll} B_i' &=& \{(3i+3,3i,3i-2;3i-3,3i-1),\ && (3i,3i+4,3i+1;3i-1,3i+5),\ (3i+2,3i+5,3i+1;3i+4,3i-1)\}, \end{array}$$

 $1 \leq i \leq 3$. Thus we obtain the required intersection numbers:

blocks	intersection
$D \cap \{B_1' \cup B_2' \cup B_3'\}$	0
$D \cap \{\{(8,0,2;5,6)\} \cup \{A'_i \mid 1 \leqslant i \leqslant 4\}\}$	1
$D\cap \{A_1\cup A_2'\cup A_3'\cup B_3'\}$	2
$D \cap \{A_1' \cup A_2' \cup A_3' \cup B_3\}$	3
$D\cap \{A_1\cup A_2\cup A_3'\cup B_3'\}$	4
$D\cap \{A_1'\cup A_2'\cup A_3\cup B_3\}$	5
$D\cap \{A_1\cup A_2\cup A_3\cup B'_3\}$	6
$D\cap \{A_1'\cup A_2\cup A_3\cup B_3\}$	7
$D \cap D$	9

Thanks to Lemma 1.1 we now have

THEOREM 5.1 The intersection numbers for Y-designs are given by $IY(n) = \{0, 1, \dots, b-2, b\}$ where b = n(n-1)/8.

6 Summary

The following table summarises the intersection results for G-designs where G is a connected graph on at most four vertices or at most four edges.

In the table, b denotes the number of blocks in a *G*-design of order n, and the impossible intersection values are b - x where x is as given. A reference is listed if the result is not in this paper.

G	Ь	x	Comments Ref
K ₂	n(n-1)/2	all except b	unique design!
P3 • •	n(n-1)/4	1	$n\equiv 0,1 \pmod{4}$
P4	n(n-1)/6	1	$egin{array}{ll} n\equiv 0,1 \pmod{3},\ n\geqslant 4 \end{array}$
P ₅	n(n-1)/8	1	$n\equiv 0,1 \pmod{8}$
	n(n-1)/6	1, 2, 3, 5	$n \equiv 1,3 \pmod{6}, 5,8 \notin IK_3(9).$ [8]
D	n(n-1)/8	1	$n\equiv 0,1 \pmod{8}$
Y	n(n-1)/8	1	$n\equiv 0,1 \pmod{8}$
S ₃	n(n-1)/6	1	$n \ge 6, n \equiv 0, 1 \pmod{8}, \ 3 \notin IS_3(6)$
S4	n(n-1)/8	1	$n \equiv 0,1 \pmod{8}, \\ 5 \notin IS_4(8)$
	n(n-1)/8	1	$n \equiv 1 \pmod{8}$ [4]
K4 - e	n(n-1)/10	1, 2	$n \equiv 0, 1 \pmod{5}, \ n \ge 6; \ 7, 8 \notin I(11)$ [5]
	n(n-1)/12	1, 2, 3, 4, 5, 7	$n \equiv 1,4 \pmod{12};$ 7,9,10,11,14 $\notin I(16);$ [6] several unknown values for $n = 25,28,37.$

References

- P. Adams, E.J. Billington and C.C. Lindner, k-perfect 3k-cycle systems, J. Combin. Math. Combin. Computing 15 (1994), 141-154.
- [2] J.C. Bermond and J. Schönheim, G-decomposition of K_n , where G has four vertices or less, Discrete Math. 19 (1977), 113-120.
- [3] E.J. Billington, The intersection problem for combinatorial designs, Congressus Numerantium 92 (1993), 33-54.
- [4] E.J. Billington, The intersection problem for m-cycle systems, J. Combinatorial Designs 1 (1993), 435-452.
- [5] E.J. Billington, M. Gionfriddo and C.C. Lindner, The intersection problem for $K_4 e$ designs, J. Stat. Plann. Inference (to appear).
- [6] C.J. Colbourn, D.G. Hoffman and C.C. Lindner, Intersections of S(2,4,v) designs, Ars Combinatoria 33 (1992), 97-111.
- [7] C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs with block size three, J. Combinatorial Theory, series A 59 (1992), 73-89.
- [8] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math. 27 (1975), 1166-1175. Corrigendum: Canad. J. Math. 30 (1978), 896.

(Received 15/2/95)