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ABSTRACT. An extended triple system with no idempotent element (ETS) is a 

collection of non ordered triples of type {x,y,z} or {x,x,y} chosen from a v - set 

in such a way that each pair (whether distinct or not) is contained in exactly one 

triple. (For example, in the block {x,x,y}, the pair {x,y} is said to occur one 

tinle.) Such a design has "'v = v(v + 3) /6 blocks and a necessary and sufficient 

condition for existence is that v ° (mod 3). Let J( v) denote the set of 

non - negative integers k such that there exist two ETS(v) with precisely k blocks 

in common. In this paper we determine J( v) for all admissible v, in particular we 

show that J(9) 1(9)-{13} and J(v) =1(v), where l{v) ={O,l, ... , sv-3, s~} 

1. INTRODUCTION. 

The concept of an extended triple system was introduced by D.M. Johnson 

and N.S. Mendelsohn [11]. An extended triple system is a pair (V,B), where V is 

a finite set and B is a collection of non - ordered triples from V , where each 

triple may have repeated elements, such that every pair of elements of V, not 

necessarily distinct, is contained in exactly one triple of B. The triple of B are of 

three types (1) {x,x,:r} , (2) {y,y,z} and (3) {a,b,c} , where the element x is called 

an idempotent and y a non - idempotent of the system (V,B). We shall denote 

by {v ; a} the class of all extended triple systems on v - elements containing 

exactly 0: idempotent elements. 
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Necessary and sufficient conditions for the existence of an extended triple 

system{v; a} with 0 ex v are: 

(1) if u = 0 3) , then a = 0 (mod 3) ; 

(2) if v # 0 (mod 3) , then a 

(3) if v = 0 (mod 2) , then a 

( 4 ) if a = - 1 , then v = 2 . 

D.M. Johnson and N Mendelsohn 

1 (mod 3) ; 

v . 
2' 

showed nec:eSS:lty while in 1978, F.E. 

Bennet and N.S. Mendelsohn [1] showed the sufficiency of these conditions. 

From now on we restrict our attention to extended triple systems with no 

idempotent element without the triples of type 

such a based on v - set, ETS(v). An 

). VVe shall denote 

v( v+3) 
has --6- = Sv blocks 

and a necessary and sufficient condition for existence is that v = 0 (mod 3). 

Therefore in that a certain property concerning ETS( v) is true it is 

understood that v = 0 

Various papers have dealt with the investigation of numbers of 

common blocks with two designs, with the same pararne1ters, and based on the 

same may have in common. C.C. Lindner and A. Rosa [12] considered this 

problem for Steiner triple M. Gionfriddo and C. C. Lindner [7], M. 

Gionfriddo and M.C Marino [9], A. Hartman and Z. Yehudai [10] , H.L. Fu [6] , 

G. La Faro and for Steiner quadruple QU"ttc>rYlQ ; R.A.R. Butler and 

D. G. Hoffman for group divisible triple E.J. .LHUU.LF,"'VH and D.G. 

Hoffman for certain balanced and E. J. -'-'U . .uUF,UV'u. and E.S. 

Mahmoodian for multi - set ; M. Gionfriddo, C.C. Lindner and 

C. A. Rodger for - e designs. 
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Let J( v) denote the set of non - negative integers k such that there exist two 

ETS( v) based on the same v - set ,with k blocks in common and let 

{ 
v(v+3) 

I(v) = 0,1, ... , -6- 3 , 

It is seen instantly that J( v) ~ I( v) ; in other words it is impossible to have 

two ETS( v) based on the same v - set which have all but one block the same, or 

all but two blocks the same. 

The purpose of this paper is to prove the following result. 

Main Theorem. J(v) I(v) for v 0 (mod 3) , v:l9 and J(9) 1(9) - {13} . 

In the following section we give useful design constructions, the subsequent 

section then deals with the adapt ion of the design constructions to obtain two 

ETS( v) with specified intersection. A later section deal with small v in order to 

start the recursive constructions. 

From now on, where there is no confusion, we write blocks such as {x,y,z} 

and {x,x,y} xyz and xxv for brevity; it is not assumed that x ,y and z are all 

distinct elements when using this notation. 

2. AUXILIARY CONSTRUCTIONS OF ETS. 

Let (V,B) an ETS(v) ,where V ={ai: i = 1 ,2, ... , v}. 

1) v to 2v , v even. 

Let '!f {Fi: i = 1,2, ... ,v -I} be a 1 factorization of Kv on X = {xl,X2'''''XV } , 

where VnX=0. Put S VuX and T=BuCuD where C={aiXY: 

xy E Fi,i = 1,2, ... , v -I} and D = {avxx , for each x E X} . Then (S,T) is an ETS(2v) 

that we denote by (CVuX) , (B,GJ)). 
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2) v to 2v , v odd. 

Put X {Xl,X2"",Xv,Xv+l} with V n 1,2, ... ,v} be a 1-

factorization of Kv+1 on X. Put S Vu(X {xv+1}) and T BuCuH where 

C {aiXY: xy E Fi and rt {X,Y} ; , and H 

1, 2, ... , v} Then IS an 

Let C5 = 1,2, ... ,2n I} be a I-factorization of a complete 

on N {I, 2,,,.,2n}. If , F b c:f, the notation will denote the 

set of blocks , ... , 

} , where 

Xi
h

_
1 
xi

h
' 

Xq Xq , ... ,Xq Xq} and 
3 4 m-l m 

1, XjsXh'"'' 

We illustrate this when 2n = 12 ; N {I, 2, ... ,9, A, B, C} 34, 

56, 78, 9A, and = {15, 26, 39, 4A, 7 B, In this case 

665, 551, 334, 44A, I1A9, 993, 778, 88e, CCB, 

3) "to 2" + 3 , v odd. 

1, 2, ... ,v + 2} be a I-factorization of 

xv+3} with V n X 0. Put S = V u X and T B u C u F v+1 . where 

, 1 1, (S ,T) is an + 
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Let K2n be a complete graph on 2n vertices (2n 8). The edges of K 2n fall 

into n disjoint classes PI' P 2""'P n where edge {i,k} is in P j if and only if i - k = j 

(mod 2n). 

R.G. Stanton and LP. Goulden proved in [15] the following results: 

(1) If 2x + 1 < n then P2x u P2x+1 splits into four one factors; 

(2) If n is even , then P n is a single one-factor . If n is odd , then 

P n _ 1 uP n can be split into three one - factors; 

(*) (3) The graph K2n may be factored into a set of 2n triangles 

covering PI' P 2j' P 2j + 1 and a set of 2n - 7 one factors covering the 

other Pi . 

4) v to 2v+9, v odd. 

Factor the complete graph Kv+9 on vertex set X = {Xi: i = 1, 2, ... , v + 9} , 

VnX 0, by (3) of (*) . Let L={{i, i+1, i+3} : i 1, 2, ... ,v+9} be the set of 

triangles and <!J = {Fi : i = 1,2, ... , v + 2} be the set of one -factors. 

Put S=VuX and T=BuCuLuFv+1 ·Fv+2 where C {aixy: xYEFi , i=l, 

2, ... ,v}. 

It is straightforward that (S,T) is an ETS(2v+9) . 

5) v to 3v. 

Let (V,B1) ; (V,B2); (V,B3) and (V,B) be ETS(v) . Put S = V x {1,2,3} . We 

define a collection T of blocks on S as follows : 

(1) (x,i)(y,i)(z,i) E T if and only if xyz E Bi ; i 1,2, 3 ; 

(2) {(x,1)(y,2)(z,3), (x,1)(z,2)(y,3) , (y,1)(x,2)(z,3) , (y,1)(z,2)(x,3) , 

(z,1)(x,2)(y,3) , (z,1)(y,2)(x,3)}~ T if and only if xyz E Band 
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l{x,y,z}1 3; 

(3) {(x,1)(x,2)(y,3), (y,l)(x,2)(x,3), (x,1)(y,2)(x,3)} ~ T if and only if xxy E B. 

It is straightforward to see that (S,T) is an ETS(3v) . 

We close this section with two remarks: 

REMARK 1. Let (W,R) be an STS( w) containing a parallel class 7r R (i.e. the 

blocks in 7r partition W). Obviously w 3 (mod 6). We can derive from (W,R) an 

ETS(w) (W,B) putting B -1f)uL(7r) where {XXy, yyz, zzx}~L(7r) if and 

only if xyz E 7r. 

REMARK 2. Let W {I, 2, ... , w}, w = ° (mod 3). Put E H u Z where 

H { . + + 0 (nlc)d w),} - {J£3 J£3 :!L3) , :::: xyz. X y Z , www} and Z {J J 23 ' 
2w w} T W' wW3" . 

It a routine matter to see that (W, E) is an ETS(w) . 

3. BASIC LEMMAS. 

Take N:::: and let GJ and ~ be two I-factorizations of N where 

GJ::::{Fi: i 1,2, ... ,2n-l} and ~={Gi: i 1,2, ... ,2n-l} We will say that GJ and g 
2n-l 

have k edges in common if k:::: Lin Gi I . 
i = 1 

Let U(2n) be the set of k such that a of I-factorizations of order 2n having k 

edges in common exist. In [13] , C.C. Lindner and W.D. Wallis gave a complete 

solution to the intersection problem for I-factorization showing that 

U(2):::: {I}; U(4) = {O, 2, 6}; U(6) {O, 1, 2, 3, 5, 6,7,9, I5} and 

U(2n) {O, 1, ... , u:::: -I)} - {u - 5, u - 3, u - 2, u -I} , for all n 2: 4 . 

It is well known [5] that if nand m are even T\("),,,,h,uP integers and n 2: 2m, 
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then there exists a l-factorization of order n containing a sub-l-factorization of 

order m . 

LEMMA 1. For v even, if (k,h) E J(v) x U(v) then v+k+h E J(2v). 

Proof. Let (V,B 1) and (V,B2) be two ETS(v) intersecting in k triples and let '5 

and g be two l-factorizations of Kv on X , where I X I v and V n X = 0, such 
v-I 

that h L:: IFinGil. It is a routine matter to see that ((VuX) ,(B1,'5)) and 
i 1 

((VuX) , (B2,y)) are two ETS(2v) with exactly v+k+h blocks in common. 

By construction 2 , the following can be shown in a sirnilar fashion. 

LEMMA 2. For v odd, if (k,h) E J(v) x U(v+ 1) then k+h E J(2v). 

By Lemmas 1 and 2 , we obtain the following 

LEMMA 3. For v ~ 9, J(v) = l(v) implies J(2v) 1(2v). 

Proof. If v is odd, it follows, without any undue difficulty, by Lemma 2 , 

Suppose v even.By Lemma 1 , we obtain that k E J(2v) for k E {v, v+1, ... , s2V- 3, S2V}' 

Put V = {ai : i = 1, 2 , .. " v} and let (V, B1) and (V, B2) be two ETS(v) 

intersecting in r triples, r E {o, 1, ... , v-I} and let '5 and y be two l-factorizations 
v-I 

on Kv on X ( I X I v and X n V 0) such that ?: I n Gil = 0 , then 
z = 1 

((VuX) , (Bl''5))=(S ,T1) and ((VuX) , (B2,y))=(S ,T2) have v+r blocks in 

common. If T 1 * is obtained from T 1 by removing the blocks av-l xy (xy E F v-I) 

and avxx (xEX) and replacing them with avxy (xYEFv_1) and av_lxx (XEX), we 

see that T 1 * n T 2 = r . This concludes the proof, 

REMARK 3. We observe that the proof of Lemma 3 says also that for v 
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even J(v) ~ J(2v). 

LEMMA 4. Let v odd, v 9. J(v) lev) implies J(2v + 3) 1(2v + 3) 

Proof Put V =={ai: 1,2, ... ,v}. Let (V, B1) and (V, B2) be two ETS(v) 

intersecting in k triples and ':f == {Fi : i == 1,2, ... ,v+2} be a I-factorization on X , 

where I X I v+3 and V nX 0. Let 0: be any permutation of {1;2, ... ,v} fixing 

exactly p elements; obviously such an a exists for a 0 1 1,. v - 2, v . 

Let now C == {aixy : xy , i , i 

C d C h 1 v+3 t . 1 . an a ave exact y p. 2 ,np es m common. 

Let (S,Tl)= ((Vu ,B1 UCUFv+1·Fv+2) and (S, Tz) ((VuX),B2 uCa u 

uFv+I .Fv+z) be as in costruction 3. Then the two ETS(2v 3) (S,T1) and (S,T2) 

intersect in v+3+k+p triples. Taking into account that sv 3 > we 

obtain, by putting consecutively p 0, 1, ... , v-2 , that k E J(2v+3) for k E {v+3,v+4, 

... , S2v+3-(v+6)} (since (sv-3+(v-2). +v+3) (v+6)). 

On the other hand when p = 11 we have k E for k 

S2V+3 - (sv - 1), ... , s2V+3 - 3 , s2v+3 and so {v+3, v+4 , ... , s2V+3 - 3 

S2v+3} ~ J( 2v+3) . 

It remams to show that {0,1, ... ,v+2} ~ J(2v+3). Let p == 0 then 

(Bl uCUFV+1 ·Fv+z) and (BzUCauFv+2·Fv+I) have .ov-,,,"'l"''<' k blocks ill common, 

consequently J(2v+3) == J(2v+3) . 

LEMMA 5. Let v odd, v ~ 15. J(v) = lev) implies J(2v + 9) = I{2v + 9) . 

Proof Taking into account that (Fv+1·Fv+2)n(Fv+2·Fv+I) 0, we obtain from 

constuction 4) by a similar argument as Lemma 4 , but with more effort, that: 

{v+9 , v+l0 , ... , s2v+9 - 3 , S2v+9} ~ J(2v+9) . 
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Let (V, B1) and (V, B2) be two ETS( v) intersecting in k triples , where 

V ={ai' = 1,2 , ... ,v} and let X be a (v+9)-set such that XnV 0. Let Kv+9 be 

the the complete graph on vertex set X. 

Put L1 = {{ i, i+l, i+3}} and L2 {{ i, i+4, i+5}} ; i = 1,2, ... , v+9. From (1) of (*) , 

uP 3 splits into four I-factors F 1, F 2 1 F 3 , F 4 and P 4 U P 5 splits into four 1-

factors GIl G2 , , G4 • From (*) (3), we have two sets of one-factors {Fi : 

1,2 , ... , v+2 } covering all P j , j 

covering all P j ,j 2, 3, 6, 7, ... , 

6, ... ,v+2. 

4, 5, ... , and {G i : 

We can assume that F i 

1,2, ... ,v+2 } 

5, 

Let a be a permutation of {1,2, ... ,v} fixing 0 element, C = {aixy 

:xy E Fi,i 1,2, ... ,v} and C*a = {aixy xy E Ga(i) i = 1,2, ... ,v} then 

(Bl uCu uFV+1 ·Fv+2) and (B2UC*auL2uFv+2·Fv+!) have exactly k blocks in 

common and so {O,1, ... ,v+8} S; J(2v+9). 

This completes the proof of the Lemma. 

4. J( v) FOR SMALL v. 

v=3. 

There are precisely two ETS(3) ; call them designs A and B : 

A {112, 223 , 331} B = {113 ,221 , 332} . So we have J(3) = {O , 3} . 

v=6. 

Applying Lemma 2 to J(3) we get {O, 2, 3, 5, 6, 9} S; J(6) . 

Take the following ETS(6) (V,T) based on the set V = {I , 2 , ... , 6} : 

T {112, 223, 331, 441, 553, 662, 156, 245, 346}. Consider the isomorphic designs got 

from T by permuting elements; let T1 (l,6)(2,3,4)T, T2 = (3,4)(5,6)T. Then it 
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is easy to check that I TnT 1 I 1 and I Tn 4 . SO J(6) = 1(6) 

v 9 

By a similar argument as Lemma 4, it IS easy to see that 

{O,3,6,9,12,15,18} J( 9) 

, D3 be the following ETS(9) . 

Dl {11 4, 221, 3:35, 442, 557, 669, 773, 886, 998, 136, 159, 178, 239, 258, 267, 438, 456, 479}; 

D2 {112, 224, 336,441, 559, 668, 775, 883,997,135,167,189,237,258,269,439,456, 478} 

D3 {112, 223, 3:31, 445, 556, 664, 778, 889, 997, 147, 159, 168, 249, 258, 267,438, 537, 639} , 

Then I Dl n 2 , I D1 n D31 4. 

Now let come from D3 replacing 112, 445, 159, 249 by the blocks 115, 

442, 129, 459 and let Ds come from D3 with 112, 445, 778 , 889 , 997, 249, 159 

replaced by 115, 442, 779, 998, 887, 129, 459. We have I n D41 = 14 and 

ID3nDsi =11. 

Take the following ETS( 9) : 

El = {112, 22:3, 331, 445, 556, 664, 778, 889, 997, 148, 157, 169, 247, 259, 268, 349, 358, 367} 

and consider the isomorphic design got from El by permuting elements; let 

Now let come from by replacing 778, 889, 997 by the blocks 779, 998, 887 . 

Next let E4 come from El by replacing 112, 223, 331, 445, 556, 664, 778, 889, 997 

by the blocks 113, 332, 221, 446, 665, 554, 779, 998, 887 and let come from El 

with 112, 223, 331, 445, 556, 664 replaced by 113, 332, 221, 446, 665, 554 . It is seen 

undue difficulty. 

Finally, if D have the following blocks {118, 221, 335, 443, 554, 667, 779, 882, 
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996, 139, 147, 156, 237, 246, 259, 368,489, 578} then 1 E J(9) because I D n D31 = l. 

Thus we have 1(9) - {13} ~ J(9) ~ 1(9) . 

Let (V,B) an ETS(9) , it is straightforward to show that each element has to 

occur singly in four blocks and twice in one block. Using graph theoretic 

terminology we will say that each element x of V has degree d(x) 6. 

For every H ~ V, I H I = h , put : 

From Inclusion - Exclusion Principle, we have 

h(h + 1) 
IT HI + IT V-H I = 18 6· h + 2 + IIH I = 

= 18 6(9-h)+ (9-h)~10-h) + I IV_H I 

and so 

ITHI ::;18_6.(9_h)+(9-h)·2(10 h)=9_ h .(7
2
-h). 

Suppose (V,B1) and (V,B2) are two ETS(9) with I B1 nB21 13. This 

means that the triples not in common to the two ETS (9) , namely B 1 - B2 and 

B2 - B1 ' are disjoint sets, each containing 5 triples which are mutually balanced 

.That is , the 5 triples in Q1 = B1 - B2 covering precisely the same pairs of 

elements, not necessarily distinct, as Q2 = B2 - B1 . Let the triples of Q1 and Q2 

involve h elements, so necessarily 6::; h ::; 7. 

Elementary considerations show that there is not possible to find Q1 and Q2 . 

Thus 13 ~ J(9) and then J(9) = 1(9) - {13}. 

v= 12. 

Applying Lemma 1 to J(6) and U(6) we get k E J(12) for all k E 1(12) except 
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for k 0, 1, ... ,5. By Remark 3, since {O, 1, ... , 5} ~ J(6) we have J(12) = 1(12) . 

v 15. 

Let (V,B) be an STS(7) where V = {ai : i = 1,2, ... ,7} and a3a4a7 E B. 

let ~ = {Fi: = 1,2,1 ... ,7} be the following I-factorization of K8 with the 

vertex-set X {I, 2, ... , 8}: 
Fl = {12, 34, 56, 78} 

F5 = {16, 25, 38, 47} 

F 2 = {13, 24, 57, 68} F 3 = {14, 23, 58, 67} ; F 4 = {15, 26, 37,48}; 

F6 = {17, 28, 35, 46} j F7 {18, 27, 36, 45} . 

Put VuX=S and C={aiXY: xyEF i , i 1,2,1 ... , 7} .Then (S,BUC) is an 

STS(15). 

11' = {a156, a2 13, a547, a628, a3a4a7} is a parallel class of (S,B U C) and so by Remark 

1, we can construct an ETS(15) (S,T) , with T ((B U C) - ~)U L(~) . 
So, now: 

i) if T 1 is obtained from T by removing the blocks a4 15, a426, a516, a525 and 

a426, a437, a448 and replacing them with a414, a423, a458, a467, a315, a326, a337, a348 , 

iii) if T3 is obtained from T by removing the blocks a314, a323, a358, a367, a415, 

a426, a437, a448, a718, a727, a736, a745 and replacing them with a414, a423, a458, a467, 

iv) if Ll (11') and L2( 11') have precisely 3r blocks in common, r = 0, 1, ... ,5 , 

v) noting that we can find two STS(7) (S,B1) and (S,B2) such that 

a3a4a7 E Bl n B2 with I Bl n B21 = k , k E {I, 3, 7} , it is easy to check that: 

45 - (7 - k + 15 - 3r + q) = (23 + k + 3r - q) E J( 15) , 

k = 1,3,7 ; r = 0,1, ... ,5 and q = 0,4,8,12 . So {12, 14, 15, ... , 39, 41,42,45} ~ J(15) . 
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Let 0: =(1,2) (3,4,7) (5,6) be a permutation on {I, 2,. 7}, and Co: {aiXY: 

xy E F O:(i)}' then (S, B U Co:) is an STS(15) containing the parallel class 11"* = {a I 13, 

a,56, a647, a3a,a,}. Put T' ((BUCa ) ")UL("). Then (5, T') is an 

ETS(15)' 

Noting that we can find L(1I") and L(1I"*) with precisely 0,1, ... ,7 blocks in 

common, it is not difficult to see that i + k 1 E J( 15) ; i 0, I, ... , 7 , k = 1, 3, 7. 

So {O, 1, ... , 13}~ J(15). 

It remains to show that 40 -5) E J(15). 

Let (W, E) be the ETS(15) construct in Remark 2. If E* is obtained from E 

removing the blocks {{l4,14,2};{2,2,1l};{1l,1l,S};{5,1l,14};{5,2,S}} and replacing 

them with {{14,14,11};{11,1l,2};{2,2,S};{5,1l,S};{5,2,14}}, we that I EnE*1 40. 

Hence J(15) = 1(15) . 

v IS. 

Applying Lemma 2 to J(9) and U(lO) we get kEJ(lS) for all kE1(lS)-{58} 

By Construction 5) , since 56 - 5 4 E J( 6) , it is readily verified that 

8 18 5 58 E J(lS) and so J(lS) [(18). 

v 21. 

a similar argument Lemma 4, it IS easy to see that 

1(21) - {79}. 

Let (V,B) be an ETS(9) where V {ai :i 1,2, ... ,9} . Let '5 = {Fi : 
1,2, ... ,11} and y = {G j : j = 1, 2, 3} be two I-factorizations of K12 and K4 

respectively with the vertex-set X={l, 2, ... ,12} and X'={l, 2, 3, 4}, such that 

GI ~ FI ; G2 ~ FlO and G3 ~ Fn . Suppose G1 = {14 ,23} ; G2 = {12 ,34} ; 
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G3 {13, 24}. Put S VuX and T BuCuFlO·Fll where C {aixy: xYEFi 1 

1,2, ... ,9} (S ,T) is an ETS(21). 

If T* is obtained from T removing the blocks 112, 443, a114, a123 and 

replacing them with 114, 223, 442, a134, a1 12 , we that IT n T*I 79. Hence 

J(21) 

v=24. 

v 27. 

By a similar argument as Lemma 5, it is a routine matter to check 

J(27) 2 I(27) {112, 115, 116, 130}. By Construction 5) , it is readily verified that 

if hiESg1 i 1,2,3 then S27-((1S-h1)+(18 h2)+(18 h3)) 81+hl +h2+h3E 

E J(27) and so {112, 115, 116} ~ J(27) . 

Let (V,B) be an ETS(9) where V = {ai: = 1,2, ... ,~)}. (3) of (*) I we can 

factor the complete K 18 on vertex set X {I, 2, ... , IS} into a set of 18 

triangles covering p}, P 2' P 3 and a set of 11 one factors covering the other Pj 

(j = 4,5, ... ,9) 

Let L {{i, i+l, i+3}: = 1, 2, ... , 18} be the set of triangles and ':f = {Fi: i = 1, 2, ... , 

11} be the set of one factors, where: 

F 1 {{l,5} ,{2, 11}, {3, 12},{ 4,13},{6,16},{7,14 },{8,15},{9,18},{lO,17}} ; 

F 2 = {{l,6},{2, 7}, {3,S},{4,9},{5,lo},{11,15},{l2,16},{13,17},{14,18}} ; 

F 3 = {{l,7},{2, 6}, {3,9},{ 4,18},{5,14},{8,13},{lo,15},{11,16},{12,17}} ; 

F 4 = {{l,8},{2, 9}, {3,10},{4,12},{5,16},{6,14},{7,15},{11,17},{13,18}}; 

F 5 = {{l,9},{2, 14}, {3.13},{4,8},{5,15},{6,17},{7,12},{l0,16},{11,18}}; 
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F 6 {{l ,1 O}.{2, 16}. {3,7},{ 4,1l},{5, 17},{6,13}.{8,14},{9,15 },{12,18}} ; 

F7 = {{l.12}.{2, 13}, {3,17},{4,15},{5,9}.{6,1l}.{7,16},{8,18},{10,14}}; 

F 8 = {{l,13},{2, 8}, {3,15},{ 4,14},{5,1l},{6,12}'{7,17},{9,16},{lO,18}} ; 

F 9 = {{l,15},{2, 12}, {3,14},{4,lO},{5,13},{6,18},{7,1l},{8,16},{9,17}}; 

F 10 {{1.1l},{2, I5}. {3,l6},{4,17}.{5,18},{6,lO}.{7,13},{8,12},{9,14}} ; 

F 11 {{1,14},{2, IO}, {3,1l},{ 4,16},{5,12},{6,15},{7,18},{8,17},{9,13}} ; 

Put S VuX and T=BuCuLuF10·Fll where C {aixy xYEFi , i=l, 

2, ... ,9}. 

If T* is obtained from T removing the blocks {2,2,15}, {15,15,6}, {6,6,10}, {a3 ,2,6}, 

{a3 ,1O,15} and replacing them with {2,2,6},{15,15,10},{6,6,15}{a3 ,2,15},{a3 ,6,10}, we 

see that 1 Tn T*I = 130. Hence J(27) 1(27). 

5. CONCLUSION. 

We now have our required result : 

MAIN THEOREM. J(v) = lev) for v = 0 (mod 3), v:f. 9 and J(9) = 1(9) - {ll} . 

Proof. For v = 3· t, t = 1, 2 , ... , 9 our statement follows from Section 4 . 

Assume therefore v 2: 30, and assume that for all w < v (w ~ 15), J( w) = 1( w). 

If v = 0 or 6 (mod 12) then ~ = 0 or 3 (mod 6) and ~ ~ 15. Therefore J(~) = 1(~) 

and by Lemma 3 , J( v) J( v) as well. 

If v 3 (mod 12) then v;- 9 = 3 (mod 6) and v;- 9 ~ 15. Therefore 

J(v;-9) 1(v;-9) and by Lemma 5, J(v) = I(v) as well. 

If v = 9 (mod 12) then v;- 3 = 3 (mod 6) and v"2 3 ~ 15. Therefore 

J(v;-3) = I(v;-3) and by Lemma 4, J(v) = l(v) as well. 
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