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ABSTRACT. An extended triple system with no idempotent element (ETS) is a
collection of non —ordered triples of type {z,y,z} or {z,2,y} chosen from a v -set
in such a way that each pair (whether distinct or not) is contained in exactly one
triple. (For example, in the block {z,z,y}, the pair {z,y} is said to occur one
time.) Such a design has s, =v(v+3)/6 blocks and a necessary and sufficient
condition for existence is that v=0 (mod 3). Let J(v) denote the set of
non - negative integers k such that there exist two ETS(v) with precisely k blocks
in common. In this paper we determine J(v) for all admissible v, in particular we

show that J(9) = 1(9) - {13} and J(v) = I(v), where I(v) = {0,1,..., sy=3, sv}.

1. INTRODUCTION.

The concept of an extended triple system was introduced by D.M. Johnson
and N.S. Mendelsohn [11]. An extended triple system is a pair (V,B), where V is
a finite set and B is a collection of non —ordered triples from V , where each
triple may have repeated elements, such that every pair of elements of V, not
necessarily distinct, is contained in exactly one triple of B. The triple of B are of
three types (1) {2,2,2} , (2) {y,5,2} and (3) {a,b,c} , where the element « is called
an idempotent and y a non-idempotent of the system (V,B). We shall denote
by {v ; «} the class of all extended triple systems on v —elements containing

exactly a idempotent elements.
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Necessary and sufficient conditions for the existence of an extended triple
system{v ; o} with 0 <o <v are:
1) if v =0 (mod 3) , then o« =0 (mod 3) ;

2

/

(
(2) if v#£0 (mod 3), then e =1 (mod 3) ;
(3) if =0 (mod 2) , then « <55
(4) fo=v-1,thenv=2.
D.M. Johnson and N.S, Mendelsohn [11] showed necessity, while in 1978, F.E.
Bennet and N.5. Mendelsohn [1] showed the sufficiency of these conditions.

From now on we restrict our attention to extended triple systems with no

idempotent element (i.e. without the triples of type {z,r,2}). We shall denote

v(v+3)
6

and a necessary and sufficient condition for existence is that v=0 (mod 3).

such a design, based on a v —set, by ETS(v). An ETS(v) has

=s, blocks

Therefore in saying that a certain property concerning ETS(v) is true it is
understood that v=0 (mod 3).

Various papers have dealt with the investigation of possible numbers of
common blocks with two designs, with the same parameters, and based on the
same v-set, may have in common. C.C. Lindner and A. Rosa [12] considered this
problem for Steiner triple systems; M. Gionfriddo and C.C. Lindner [7], M.
Gionfriddo and M.C Marino [9], A. Hartman and Z. Yehudai [10] , H.L. Fu [6] ,
G. Lo Faro [14] and others, for Steiner quadruple systems ; R.A.R. Butler and
D.G. Hoffman [4] for group divisible triple systems ; E.J. Billington and D.G.
Hoffman [2] for certain balanced ternary designs and E. J. Billington and E.S.
Mahmoodian [3] for simple multi —set designs ; M. Gionfriddo, C.C. Lindner and
C.A. Rodger for K ,—e designs.
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Let J(v) denote the set of non —negative integers k such that there exist two

ETS(v) based on the same v-set , with k blocks in common and let
v{v+3 v{v+3
I(U) :{0713"'v ( 6 ) -3 3 ( 6 )=Sv} .

It is seen instantly that J(v) C I(v) ; in other words it is impossible to have

two ETS(v) based on the same v —set which have all but one block the same, or
all but two blocks the same.

The purpose of this paper is to prove the following result :

Main Theorem. J(v) = I(v) for v=0 (mod 3) ,v#9 and J(9) =1(9)- {13} .

In the following section we give useful design constructions ; the subsequent
section then deals with the adaption of the design constructions to obtain two
ETS(v) with specified intersection. A later section deal with small v in order to
start the recursive constructions.

From now on, where there is no confusion, we write blocks such as {z,y,2}
and {z,2,y} as 2yz and @2y for brevity ; it is not assumed that = , y and z are all

distinct elements when using this notation.

2. AUXILIARY CONSTRUCTIONS OF ETS .
Let (V.B) an ETS(v) , where V ={ai pi=1,2 .., v} .

1) vto2v,veven.

Let ¥ = {Fz S 1,2,...,v-1} be a 1 —factorization of K, on X :{xl,mQ,...,xv} ,
where VNnX =9 Put S=VuX and T=BuCuD where C :{ai:cy:
zy € Fii=12,., v-1} and D ={a,zz , for each z€ X} . Then (S,T) is an ETS(2v)

that we denote by ((VuX) , (B,@)) .
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2) vto 2v, v odd.

Put X :{zl,xz,....,zv’zwl} with VNX =0. Let ‘EF:{Fi D= 1,2,...,1»} be a 1-
factorization of K,4; on X. Put S:VU(X——{xUH}) and T=BuCuUH where
C :{aixy coyeF; and Ty Eleytsi= 1,2,..,,v} , and H = {az:c];c] : wj%-yleFi ;
i=1,2,.., v} . Then (S,T) is an ETS(20).

Let & = {F si=1,2,.,20 — 1} be a 1-factorization of a complete graph Ko,
on N={1, 2,...2n}. If F; , Fye ¥ , the notation F,-F; will denote the following

seeey

set of blocks {llxi{)  LigTigtig

zihxihl s a:jlle:ch R xj2:z]-2:cj3 yeiny xjszjsle’m’
LT Ty 0 By v BT Ty By s 0 aytag v BT am Ty } , Where
mjl = min (N—{l, ziz, Iig’“" xih } ) ey Tqp = min ( {1 J: & ‘jl’ mj27...,
BBy Ty xtr}

a:{lxiQ, xigzci[;.,..‘, B 25y :cjslei,..., i T Ty
Ty Ty T Ty xq?)xq/l,...,zqm_lzqm} and
Fy :{mizxis, :ci4x,l-5,..., a:lhl, 5, i j4a:j5,.,., xjsle,.‘., TloPigr T,y T

Zgo¥qy ;L'q4xq5,...,a:quql}.
Note that (Fq-Fp)n(Fy-Fq)=0.

We illustrate this when 2n=12 ; N={1,2,..,9, 4, B, C} ; F,={12, 34,
56, 78, 94, BC} and F,={15, 26, 39, 44, 7B, 8C}. In this case F,-F} = {112, 226,

665, 551, 334, 444, AA9, 993, 778, 88C, CCB, BBT} .

3) vto 2v+3,vodd

Let & :{Fi Di= 2,...,v+2} be a 1-factorization of Kv+3 on X :{””1"”2 sy
z,.g) With VNX=p . Put S=VuX and T=BUCUF,-F,_, where
C={emy:ayeF,;,i=1 2.0} (5,T)is an ETS(20+3).
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Let Kg,, be a complete graph on 2n vertices (2n >8). The edges of K,,, fall
into n disjoint classes Py, Py,...,P,, where edge {i,k} is in P,;ifand only if i—k=
(mod 2n).

R.G. Stanton and L.P. Goulden proved in [15] the following results :
(1) I 224+1<n then Py, UP, , splits into four one —factors ;
(2) Ifniseven, then P, is a single one-factor . If n is odd , then
P, _1UP, can be split into three one —factors ;

(*) (3) The graph K,, may be factored into a set of 2n triangles

covering Py, P2j, P2j+1 and a set of 2n—7 one factors covering the

other P, .

4) vto 20+9, vodd.

Factor the complete graph K, o on vertex set X:{xi ti=1, 2., v+9} ,
VnX =0, by (3) of (%) . Let L:—.{{i, i+l, i3} : i=1, 2,...,v+9} be the set of
triangles and ¥ = {Fz ti=1, 2., v+2} be the set of one —factors.

Put S=VuX and T=BuCuLuF, -F o where C={quy:eyeF;, i=1,
2y.00y0}.

It is straightforward that (S,T) is an ETS(2v+9) .

5) vto 3vu.
Let (V,B,); (V,B,); (V,Bs) and (V,B) be ETS(v) . Put S=V x {1,2,3} . We
define a collection T of blocks on § as follows :
(1) (2,)(v,i)(zi) e Tif and only if zyz€ B, ;i=1,2,3 ;
@) {EDE2E8) ) @EDEDE), BD)(E(3), (1:,1)(=2)(3) ,
(21)(2,2)(8,3) , (21)(9:2)(2,3)} € T if and only if zyz € B and
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[{xayaz}| :3:
{(w,l)(m,?)(y,i&), (y,1)(z,2)(2,3), (z,l)(y,Q)(m,ii)} ¢ T if and only if z2y € B.
It is straightforward to see that (S,T) is an ETS(3v) .

We close this section with two remarks:
REMARK 1. Let (W,R) be an STS(w) containing a parallel class = ¢ R (ie. the
blocks in 7 partition W). Obviously w=3 (mod 6). We can derive from (W,R) an
ETS(w) (W,B) putting B = (R~r)UL(r) where {szy , yyz , s22}C L(x) if and

only if zyz em.

REMARK 2. [1] Letws{m,...,w},w:O( od 3). Put E = HUZ where
w w 2

H:{myz:a:+y+z=0(mod w)}—{B%%,%-%ﬂwgl,www} and Z= %%%,2@
2§“w,ww~3— .

It a routine matter to see that (W, E) is an ETS(w) .

3. BASIC LEMMAS.

Take N:{LQ,.‘. 'Zn} and let ¥ and § be two 1-factorizations of N where
F = {F D= 1,2,,2n - 1} and § = {Gi ti=1,2, ,2n-1}. We will say that ¥ and §
have & edges in common if k= Zl [F.nG;l .
Let U(2n) be the set of k such ltl;at a pair of 1-factorizations of order 2n having &
edges in common exist. In [13] , C.C. Lindner and W.D. Wallis gave a complete
solution to the intersection problem for 1-factorization by showing that
U(2)={1}; v(4)={0,2,6}; v(6)=1{0,1,2,3,5,6,7,9,15} and
Un)={0,1,..,u=0(2n-1)} ~{u-5u0~3, u~-2,u~1} , foralln>4.

It is well known [5] that if n and m are even positive integers and n > 2m,
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then there exists a 1-factorization of order n containing a sub-1-factorization of

order m .

LEMMA 1. For v even, if (k,h)€ J(v) x U(v) then vik+he J(2v).

Proof. Let (V,B{) and (V,By) be two ETS(v) intersecting in k triples and let ¥
and § be two l-factorizations of K, on X , where |X| =v and VnX =40, such
that h = ﬁ |F;nG;|. It is a routine matter to see that ((VUX) , (B},9)) and

i=1

((V uX), (BQ,(})> are two ETS(2v) with exactly v+k+h blocks in common.

By construction 2 , the following can be shown in a similar fashion .

LEMMA 2. Forv odd, if (k,h) € J(v) x U({v+1) then k+he J(2v).

By Lemmas 1 and 2 , we obtain the following

LEMMA 3. Forv>9, J{(v)=I{(v) implies J(2v) = I{2v) .

Proof. If v is odd, it follows, without any undue difficulty, by Lemma 2 .

Suppose v even.By Lemma 1 , we obtain that k € J(2v) for k € v, v+1,.., 55,7 3, Szv}~
Put V={o;, : i=1, 2 ., op and let (V, B;) and (V, By) be two ETS(v)
intersecting in » triples, r ¢ {0, Lyeery 0= 1} and let ¥ and § be two 1-factorizations

v
on K, on X ({X[:v and XOV:(Z)) such that Z [F;,nG;| =0, then
r=1

(VuX), (B,9)=(S ,T)) and ((VUX), (Byg))=(S ,Ty) have vir blocks in
common. If Tl* is obtained from T; by removing the blocks a, oy (2y € F, q)
and ayez (¢ € X) and replacing them with ayey (ey € F, ;) and o, 2z (c€X) , we

see that Tl* N'Ty =r . This concludes the proof.

REMARK 3. We observe that the proof of Lemma 3 says also that for v
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even J{v) CJ(2v).

LEMMA 4. Letvodd, v>9. J(v)=I(v) implies J(2v + 3) = I(2v + 3) .

Proof. Put V={a; : i=12..,0} Let (V, By) and (V, By) be two ETS(v)
intersecting in k triples and & :{Fi ti= 1,2,...,v+2} be a 1-factorization on X ,
where |X| =v+3 and VNnX =0 . Let « be any permutation of {1,2,....,v} fixing
exactly p elements ; obviously such an a exists for a =0, 1,..., v =2, v .

Let now C = {ai:cy ceyeF. i=12..v}and C, = {aimy czyeF

IRl

agi) 1 1= 1,2, v}

C and C, have exactly p~% triples in common .

Let (S,Tl) = ((VUuX), B, UCUF,,, ‘Fyyy) and (S, Ty) =((VUX),B,uCqu
UF, 1 Fuy ) be as in costruction 3. Then the two ETS(2v +3) (S,TJ and (S,T2>

intersect in v+3+k+p-1—)——t§ triples. Taking into account that s,—3>%2  we
5 P £ v ]

obtain, by putting consecutively p=0, 1,...; -2, that k € J(20+3) for ke {v+3,v+4,

e 52v+3“(”+6)} (since (sv“3+(1‘“2)'v;3+”+3) =s9y13 ~ (v +6) ) :

On the other hand when p=v we have ke J(2v+3) for &

= Soups T o
Sopps = (Su= 1), oy 895,53 | 89,03 and so {v+3 y v+ ey sgua =3,
Sppa) €7 (2043) .
It remains to show that {0,1,..v+2} CJ(20+3). Let p=0 then

(Bl UCuUF,, 'Fv+2) and (B2 UCLUF,,- Fv+1) have exactly & blocks in common,

consequently J(2v+3) = I(2v+3) .

LEMMA 5. Let v odd, v> 15. J(v) = I(v) implies J(2v + ) = I(2v + 9) .
Proof. Taking into account that (FUH-FU+2)ﬂ(Fv+2~Fv+1):(I), we obtain from
constuction 4) by a similar argument as Lemma 4 , but with more effort, that :

{049, 0410 1oy 59,00 =35 59,0} S T(2049) .
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Let (V, By) and (V, B,) be two ETS(v) intersecting in k triples , where
A% :{ai ti=1,2 ,.,.,v} and let X be a (v+9) —set such that X NV =0. Let K, ¢ be
the the complete graph on vertex set X.
Put L, :{{i, i+l z‘+3}} and L, ::{{z‘, i+d, i+5}} ;i=1,2,..., v+9. From (1) of (),
P,uP, splits into four 1-factors Fy, F,, F; , F, and P,UP; splits into four 1-
factors Gy, G, , G3 , G, From () (3), we have two sets of one-factors {Fi :
i=1,2 .., v42 } covering all Pj , J=4, 5., -'52‘-9 and {Gi Ci=1,2,.,042 }
covering all Pj , i=2,3,6, T,.., ”;———Q We can assume that F; =G, , for i=5,
6y 042
Let o« be a permutation of {1,2,..0} fixing 0 element, C= {azy
wyeFuni=12,.,0} and C' ={amy : aye Ga(i) , i=12,.,0} , then
(B1 uCul, UFv+1-Fv+2> and (BQU C*aULZUF,}+2~FU+1) have exactly k blocks in
common and so  {0,1,...,0+8} C J(2v+9).

This completes the proof of the Lemma.

4. J(v) FOR SMALL v.
v=3.
There are precisely two ETS(3) ; call them designs A and B :

A={112,223,3831} ; B={113,221,332} . So we have J(3)={0, 3} .

v==6.
Applying Lemma 2 to J(3) we get {0, 2, 3, 5, 6, 9} C J(6) .
Take the following ETS(6) (V,T) based on theset V={1,2 ..., 6}:
T = {112, 223, 331, 441, 553, 662, 156, 245, 346}. Consider thé isomorphic designs got

from T by permuting elements ; let T, =(1,6)(2,3,4)T , Ty =(3,4)(5,6)T. Then it

217



is easy to check that |TnT,| =1 and |TnT,| =4 . So J(6) =I(6)

v=9.

By a similar argument as Lemma 4, it is easy to see that
{0,3,6,9,12,15,18} c J(9) .

Let Dy, D, , Dy be the following ETS(9) :
D, = {114, 221, 335, 442, 557, 669, 773, 886, 998, 136, 159, 178, 239, 258, 267, 438, 456, 479};
D,= {112, 224, 336, 441, 559, 668, 775, 883, 997, 135, 167, 189, 237, 258, 269, 439, 456, 478} ;
D= {112, 223, 331, 445, 556, 664, 778, 889, 997, 147, 159, 168, 249, 258, 267, 438, 537, 639} .
Then |DynD,| =2, |D;nD,| =4.

Now let D, come from D by replacing 112, 445, 159, 249 by the blocks 115,
442, 129, 459 and let Dy come from Dy with 112, 445, 778 | 889 , 997, 249, 159
replaced by 115, 442, 779, 998, 887, 129, 459. We have |D,nD,| =14 and
|DsnD;| =11 .

Take the following ETS(9) :
E, :{]12, 223, 331, 445, 556, 664, 778, 889, 997, 148, 157, 169, 247, 259, 268, 349, 358, 367}
and consider the isomorphic design got from E, by permuting elements; let
E,=(14)E,
Now let E; come from E; by replacing 778, 889, 997 by the blocks 779, 998, 887 .
Next let E, come from E; by replacing 112, 223, 331, 445, 556, 664, 778, 889, 997
by the blocks 113, 332, 221, 446, 665, 554, 779, 998, 887 and let E; come from E,
with 112, 223, 331, 445, 556, 664 replaced by 113, 332, 221, 446, 665, 554 . It is seen
that |E,nE,| =10, |E,nE;| =7, |E;nE, | =5, |E,nEg| =8 without any
undue difficulty .

Finally, if D have the following blocks {118, 221, 335, 443, 554, 667, 779, 882,
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996, 139, 147, 156, 237, 246, 259, 368, 489, 578} then 1€ J(9) because |DND;| = 1.

Thus we have I1(9) - {13} c J(9) C 1(9) .

Let (V,B) an ETS(9) , it is straightforward to show that each element has to
occur singly in four blocks and twice in one block.Using graph theoretic
terminology we will say that each element z of V has degree d(z) = 6.

Forevery HCV, |H| =h , put:

Ty={beB:bcH}andIy={beTy:|b| =2}.

From Inclusion — Exclusion Principle, we have

h(h+1
| Tal + | Tyl =18-6-h+ 2D yp ) o
=18-6(9-h)+ 2=RA0=D) gy
and so
9-h)-(10-h) , h-(7-h
| Tl <18-6.(9-h) 4 E=L (0N g ho(7-h),

Suppose (V,B;) and (V,By) are two ETS(9) with }BynBy| =13 . This
means that the triples not in common to the two ETS(9) , namely By -B, and
By-B, , are disjoint sets, each containing 5 triples which are mutually balanced
That is , the 5 triples in Q) =B, -B, covering precisely the same pairs of
elements , not necessarily distinct , as Qy = By~ By . Let the triples of Q and Q,
involve h elements , so necessarily 6 <h < 7.

Flementary considerations show that there is not possible to find Q; and Q, .

Thus 13 ¢ J(9) and then J(9) = I(9) - {13}.

v=12.

Applying Lemma 1 to J(6) and U(6) we get k € J(12) for all ke I(12) except
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for k=0, 1,..., 5. By Remark 3, since {0, 1,..., 5} € J(6) we have J(12) = 1(12) .

v=15.

Let (V,B) be an STS(7) where V ={a, :

jii= 1,2,...,7} and aya,a, € B.

let “.F:{Fi: i=1,2,1 ...,7} be the following 1-factorization of Kg with the
vertex —set X = {1, 24eey 8} :
Py ={12,34,56, 78} 5 Fy={13,24,57, 68} ; Fy={14,23 58,67} ; F, = {15,26, 37, 48};
Fy={16,25,38, 47} ; F, ={17, 28, 35,46} 5 Fy={18,27.36, 15} .
Put VUX =S and C={ay : sy€F; , i=1, 2] ..., 7} .Then ($,BuC)is an
STS(15).
= {a156, a,13, ag47, ag28, a3a4a7} is a parallel class of (S,B u C) and so by Remark
1, we can construct an ETS(15) (S,T) , with T' = ((B uC)- r)u L(r) .
So, now :
i) if T, is obtained from T by removing the blocks a,15, 0,26, a516, a,25 and
replacing them with a15, a,26, a,16, 0,25 ,
ii) if T, is obtained from T by removing the blocks ay14, 323, 358, a567, a,15,
426, 4,37, a,48 and replacing them with a,14, a,23, ,58, a,67, a315, a,26, 0,37, 0,48
iii) if Ty is obtained from T by removing the blocks a,14, 4,23, a;58, az67, ¢ 15,
426, a,37, a48, a,18, a,27, a;36, a,45 and replacing them with a,14, ,23, 0,58, 4,67,
715, 4,26, a;37, 0,48, a;18, 0527, 4536, agd5 |
iv) if L(r) and L,(x) have precisely 3r blocks in common, r =0, 1,...,5 ,
v) noting that we can find two STS(7) (S,Bl) and (S,BZ) such that
agaa, € BiNBy, with|B;nBy| =k, & e{l, 3, 7}, 1t is easy to check that :
45-»(7—lc+15-—3r+q)=(23+k+3r—q)6J(lf)),

k=1,3,7;r=0,1,.,5 and ¢=04,8,12. So {12, 14, 15,..., 39, 41,42,45}g.1(15).
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Let o = (l, 2) (3, 4, 7) (5, 6) be a permutation on {1, 2,..., 7} ,and C, = {aixy:
ry € Fa(i) } , then (S, Bu Ca) is an STS(15) containing the parallel class 7* = {a113,
4,56, as28, agdl, agagar). Put T’ :((Buca) mw*)uL(m. Then (S, T°) is an
ETS(15).

Noting that we can find L(r) and L(#*) with precisely 0.1,...,7 blocks in
common, it is not difficult to see that i+k—1¢ J(15) 7i=0,1,..,7,k=1,3,7.
So {0, 1,.., 13} c J(15) .

It remains to show that 40 = (5,5 —5) € J(15).

Let (W, E) be the ETS(15) construct in Remark 2. If E* is obtained from E
removing the blocks {{14,14,2};{2,2,11};{11,11,8};{5,11,14};{5,2,8}} and replacing
them with {{14,14@1};{11,11,2};{2,2,8};{5,11,8};{5,2,14}}, we see that |EnE*| =40.

Hence J(15) = I(15) .

v=18 .
Applying Lemma 2 to J(9) and U(10) we get k € J(18) for all k € I(18) — {58}
By Construction 5) , since sg—5=4€J(6) , it is readily verified that

51— 5 =58 € J(18) and so J(18) = I(18) .

v=21.

By a similar argument as Lemma 4, it is easy to see that
J(21) 2 1(21) - {79}. |

Let (V,B) be an ETS(9) where V ={ai = 1,2,...,9} . Let & :{Fi :
i:l,Z,...,ll} and G:{Gj D i=1, 2, 3} be two l-factorizations of K;, and K,
respectively with the vertex —set X :{1, 2,...,12} and X' = {1, 2, 3, 4} , such that
GycF, ; GyCFy, and G3CFy; . Suppose G, :{14 , 23} ;i Gy ={12 , 34} ;
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Gy={13, 24}. Put S=VUX and T=BUCUF,y-Fy; where C={azy: zyeF;,
i=1,2..,9} (S,T)isan ETS(21).

If T* is obtained from T removing the blocks 112, 224, 443, 4,14, 0,23  and
replacing them with 114, 223, 442, a;34, 0,12 , we see that |TnT* =79. Hence

J(21) =1(21) .

v=24 .

Since J(li!) = 1(1‘2) , applying Lemma 3 we obtain J(24) = 1(24) .

v=27.

By a similar argument as Lemma 5, it is a routine matter to check
J(27) 2 I1(27) ~ {112, 115, 116, 130}. By Construction 5) , it is readily verified that
if ;€ 5g,i=1,2,3 then sy, —((18 = hy) + (18 = hy) + (18 ~ hy) ) = 81+ hy +hy + hy €
€ J(27) and so {112, 115, 116} c J(27) .

Let (V,B) be an ETS(9) where V:{ai D= 1,2,‘..,9}. By (3) of (%) , we can
factor the complete graph K.z on vertex set X:{l, 2,..., 18} into a set of 18
triangles covering P;, Py, Py and a set of 11 one factors covering the other P;
(1=4,5,..,9).

Let L = {{i, i+1, 43} i =1, 2,..., 18} be the set of triangles and %f:{Fi: i=1, 2,..,
11} be the set of one —factors , where :

F, = {{1.5},{2, 11}, {3,12},{4,13},{6,16},{7,14},{8,15},(9,18},{10,17}} :

F,= {{1,6},{2, 7}, {3,8},{4,9},{5,10},{11,15},{12,16},{13,17},{14,18)} ;

Fy= {{1,7},{1 6), (3.9).(4,18),(5,14),(8,13) (10,15} (11,16}, (12,17} } ;

F,= {{1,8},{2, 9}, {3,10},{4,12},{5,16},{6,14},{7,15},{11,17},{13,18}} :

Fy = {{19),(2 143, (3.13).(4 815,16}, (6.171(7.12),(10.16},(11,18)}
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Fg= {{1,10},(2, 163}, {3,7},{4,11},{5,17},{6,13},{8,14},{9,15},{12,18}};

F,= {{1,12},(2, 13}, {3,17}44,15},{5,9},{6,11},{7,16},{8,18},{10,14}} :

Fg= {{1,13}.{2, 8}, {3,15},{4,14},{5,11},{6,12},{7,17},{9,16},{10,18}} ;

Fg= {{1,15},{2, 12}, {3,14},{4,10},{5,13},{6,18},{7,11}.{8,16},{9,17}};

Fio= {{1,11},{2, 15}, {3,16},(4,17},{5,18},{6,10},{7,13},{8,12},{9,14}} ;

Fiy = {(L141,02, 10, (3,11),4,161(5,12),(6,151,(7,18) (8,17),(9,13} } ;

Put S=VuX and T=BUCuLUF,;-F;; where C={amy : ayeF; , i=1,
2,...,9}.

If T* is obtained from T removing the blocks {2,2,15}, {15,15,6}, {6,6,10}, {as,2,6},
{as,10,15} and replacing them with {2,2,6},{15,15,10},{6,6,15} {a5,2,15},{a3,6,10}, we

see that | TnT*| =130. Hence J(27) = 1(27) .

5. CONCLUSION.
We now have our required result :
MAIN THEOREM. J(v) = I(v) for v=0 (mod 3), v# 9 and J(9) =1(9) - {13} .
Proof. For v=3-t,t=1,2, .., 9 our statement follows from Section 4 .
Assume therefore v > 30, and assume that for all w<v (w > 15), J(w) = I(w).
If v=0 or 6 (mod 12) then 3 =0 or 3 (mod 6) and §> 15. Therefore J(3)=1(3)

2
and by Lemma 3 , J{v) = I(v) as well.

If v=3 (mod 12) then v59=3 (mod 6) and ¥52>15. Therefore

J(” 5 9) = I("; 9) and by Lemma 5, J(v) = I(v) as well.
If v=9 (mod 12) then ”53 =3 (mod 6) and ¥53>15. Therefore

J(vg3) = I(” 5 3) and by Lemma 4 , J(v) = I(v) as well.
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