ON THE COLORABILITY OF GRAPHS DECOMPOSABLE INTO DEGENERATE GRAPHS WITH SPECIFIED DEGENERACY

R. Klein
Levinski College
Tel Aviv, Israel
J. Schönheim
School of Mathematical Sciences
Sackler Faculty of Exact Sciences
Tel Aviv University
Ramat Aviv 69978, Israel

Abstract

. An m-degenerate graph is a graph, every subgraph of which has minimal degree at most m. An $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed graph is a graph, the edge set of which can be partitioned into s sets generating respectively graphs being $m_{1}, m_{2}, \ldots, m_{3}$ degenerate. We conjecture that such a graph is $\sum_{i=1}^{s} m_{i}+\left\lfloor\frac{1}{2}\left(1+\sqrt{\left.\left.\begin{array}{l}1+8 \sum m_{i} m_{j} \\ 1 \leq i<j \leq s\end{array}\right)\right\rfloor}\right.\right.$ colorable. Partial results are obtained, but not even Tarsi's case: $m_{1}=1, m_{2}=2$ is settled.

1. Introduction

The following two definitions of m-degenerate graphs have been formulated and shown to be equivalent in [8]. The same paper contains a study of the most elementary properties of m-degenerate graphs we shall use below. Also we mention [1] for further results on this class of graphs.

Definition 1. A graph G is said to be m-degenerate, for m a nonnegative integer, if every subgraph of G has minimum degree at most m.

Definition 2. A graph G is said to be m-degenerate if there is a labelling $v_{1}, v_{2}, \ldots, v_{n}$ of its vertices such that for $i=1,2, \ldots, n$ there are among the neighbors of v_{i} at most m vertices v_{j} with $j>i$. Call such edges outgoing.

The following consequences of Definition 2 are also observed in [8] and [5].
Proposition 1. If G is m-degenerate and has n vertices, then

$$
\begin{equation*}
|E(G)| \leq m n-\frac{m(m+1)}{2} . \tag{1}
\end{equation*}
$$

Proposition 2. If G is m-degenerate, then G is ($m+1$)-colorable.
In papers $[4,5,6,7]$ we developed the concept of ($m_{1}, m_{2}, \ldots, m_{s}$)-composed graphs.

Definition 3. A graph G is said to be ($m_{1}, m_{2}, \ldots, m_{s}$)-composed if the edge set of G can be partitioned into the edge sets of graphs $M_{1}, M_{2}, \ldots, M_{s}$ being respectively $m_{1}, m_{2}, \ldots, m_{s}$ degenerate.

The main result of [5] is
Theorem 0. K_{n} is ($m_{1}, m_{2}, \ldots, m_{s}$)-composed if and only if

$$
\begin{equation*}
n \leq \sum_{i=1}^{s} m_{i}+\left\lfloor\frac{1}{2}\left(1+\sqrt{1+8 \sum_{1 \leq i<j \leq s} m_{i} m_{j}}\right)\right\rfloor . \tag{2}
\end{equation*}
$$

Denote the right side of (2) by $\nu\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ and by v_{s} for short. To prove the only if part of Theorem 0 , one uses the following generalization of Proposition 1. A constructive proof of the if part is given in [5].

Proposition 3. If G is ($m_{1}, m_{2}, \ldots, m_{s}$)-composed and has n vertices then

$$
|E(G)| \leq n \sum_{i=1}^{s} m_{i}-\sum_{i=1}^{s} \frac{m_{i}\left(m_{i}+1\right)}{2} .
$$

The generalization of Proposition 2 is difficult. The cases of $(1, m)$-composed and (m_{1}, m_{2})-composed graphs were considered in [4] and [5] respectively. This paper is an attempt to establish the colorability of ($m_{1}, m_{2}, \ldots, m_{s}$)-composed graphs using tools and methods similar to those in [4] and [5].

2. Bounds

An obvious bound is established in the next proposition.
Proposition 4. If G is $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed then it is $\prod_{i=1}^{s}\left(m_{i}+1\right)$ colorable.
Proof: By Proposition 2 the graphs M_{i} are $\left(m_{i}+1\right)$-colorable and the cartesian product of the colorings will do.

A bound better in general can be obtained as a consequence of the following fact.
erate.

Proof: One shows that every subgraph of G has a vertex of degree at most $2 \sum_{i=1}^{s} m_{i}-1$. This follows from the fact that, the average degree of an m degenerate graph is less than $2 m$.

This gives immediately:
Proposition 6. If G is $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed then G is $2 \sum_{i=1}^{s} m_{i}$ colorable.
Observe that the bound of Proposition 6 is never worse than the bound of Proposition 4 and is better except in the case $s=2, m_{1}=1$, and $m_{2}=m$. When $m=1$ the bound is exact.

For every value of $m>1$ it is not known whether the bound $2(1+m)$ is exact. An interesting case is when $m=2$. There are 5 -chromatic (1,2)-composed graphs, for example K_{5}. The bound is 6 , but it is still not known whether there exists $(1,2)$-composed graphs which are 6 -chromatic. This question is due to Tarsi and raised in connection with [10].

Observe, that $\nu(1,2)=5$.
In general by Theorem 0 there are $\nu\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ chromatic $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ composed graphs and we close this section by conjecturing that a better bound than the bound of Proposition 6 can be obtained.

Conjecture 1. If a graph G is $\left(m_{1}, \ldots, m_{s}\right)$-composed then G is $\nu\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ colorable.

The only case for which this is a theorem is $m_{1}=m_{2}=\cdots=m_{s}=1$. Indeed, then $\nu(1,1, \ldots, 1)=2 s$ and this equals the bound $2 \sum_{i=1}^{s} m_{i}$. So we have

Theorem 1. Any $(1,1, \ldots, 1)$-composed graph is $2 s$ colorable.

3. Approach Based on Counting Edges

A natural way for proving Conjecture 1 would be to use the facts that a $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed graph has not too many edges and a $\left(\nu_{s}+1\right)$-chromatic critical graph has not too few. This idea works for the complete graph $K_{\nu_{s}+1}$ but for more general $\left(\nu_{s}+1\right)$-chromatic critical graphs it does not work.

Let us illustrate this by an example. Consider the case $m_{1}=1, m_{2}=2$. Then $\nu_{2}=5, K_{6}$ has 15 edges and this is more than a $(1,2)$-composed six vertex graph can have, namely 14, as shown in Proposition 3.

has 29 edges and a (1,2)-composed graph on 11 vertices can have this many edges. Proposition 3 gives $3.11-4=29$. The graph H contains two blocks $K_{6}-\epsilon$. Define H_{t},

a similar graph containing t such blocks. H_{t} is also 6-chromatic and critical, has $5 t+1$ vertices and the number of its edges is less than a (1,2)-composed graph on $5 t+1$ vertices can have. On the other hand, we will show by other methods that H_{t} is not (1,2)-composed for any t.

For more general ν_{s} the situation is similar.

4. The Structural Approach

We shall describe some constructions of Hajós [3] and Ore [9] starting with $K_{\nu+1}$ which provide all graphs that are not ν-colorablc.

Since $K_{\nu_{s}+1}$ is not $\left(m_{1}, \ldots, m_{s}\right)$-composed one could hope that non-composedness is preserved by the constructions.
4.1 Hajós's Construction. The following construction called conjunction is due to Hajós.

Definition 4. The conjunction G_{0} of two disjoint graphs G_{1} and G_{2} is the graph obtained by deleting the edges $e_{1}=\left(a_{1}, b_{1}\right), e_{2}=\left(a_{2}, b_{2}\right)$ of G_{1} and G_{2} respectively, identifying the vertices a_{1} and a_{2} to a single vertex a and adding a new edge (b_{1}, b_{2}).

One of the main results of this paper is the following, stating that the Hajós conjunction preserves the property of not being $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed.

Theorem 2. If the graphs G_{1} and G_{2} are not ($m_{1}, m_{2}, \ldots, m_{s}$)-composed then their conjunction G_{0} is also not $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed.

Proof: Suppose the contrary, then for some j the edge $\left(b_{1}, b_{2}\right)$ belongs to M_{j} and there is a labeling ι_{j} of M_{j} showing that M_{j} is m_{j} degenerate. Denote the graph $G_{1}-\epsilon_{1}$ and $G_{2}-e_{2}$ by G_{1}^{-}and G_{2}^{-}respectively. Then those graphs are ($m_{1}, m_{2}, \ldots, m_{s}$)-composed while G_{1} and G_{2} are not. Suppose without loss of generality that $\iota_{j}\left(b_{1}\right)<\iota_{j}\left(b_{2}\right)$ and that $\iota_{j}(a)>\iota_{j}\left(b_{1}\right)$. Then the edge $\left(b_{1}, b_{2}\right)$ can be replaced by ($\left.b_{1}, a\right)$ contradicting the assumption on G_{1}. If $\iota_{j}(a)<\iota_{j}\left(b_{1}\right)$, observe that the number of outgoing edges from a is at most m_{j} so it cannot be m_{j} in both graphs G_{1}^{-}and G_{2}^{-}. Let this number be smaller in G_{1}^{-}. Then the edge $\left(a, b_{1}\right)$ can be added having the same contradiction as above.

This result does not prove our conjecture since not every non- $\left(\nu_{s}\right)$-colorable graph can be constructed in this way starting with $K_{\nu_{s}+1}$'s. It proves, however, that our claim that the graph H_{t} introduced at the end of section 3 is not $(1,2)$ composed for any t, since H_{t} can be obtained by successive conjunctions of K_{6} 's.

In order to obtain every not $\left(\nu_{s}+1\right)$-colorable graph, one can use a construction of Ore called merger.

Definition 5. A merger of the disjoint graphs G_{1} and G_{2} is the graph G^{0} obtained from G_{0}, the Hajós conjunction, by identifying $\alpha-1$ additional pairs of vertices $a^{\prime}, a^{\prime \prime} a^{\prime} \in V\left(G_{1}-a_{1}\right), a^{\prime \prime} \in V\left(G_{2}-a_{2}\right)$ excluding the pair b_{1}, b_{2}, but not $b_{1}, a^{\prime \prime}$ or a^{\prime}, b_{2}. Denote the set of identified vertices by A.

If the number of pairs including a_{1}, a_{2} is α the merger is called an α-merger. If $\beta \leq \alpha \leq \gamma$ it is called a $[\beta, \gamma]$-merger. If G^{0} is obtained from K_{ν} 's by applying successive mergers it is called a ν-amalgamation.

Ore proved that every graph which is not ν-colorable must contain a $(\nu+1)$ amalgamation, hence every critical $(\nu+1)$-chromatic graph is a $(\nu+1)$-amalgamation.

The statement generalizing Theorem 2 to mergers is not true. However, this does not disprove our conjecture 1 and we state the following equivalent conjecture.

Conjecture 2.

No $\left(\nu_{s}+1\right)$-amalgamation is $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed. In particular for $m_{1}=1, m_{2}=2$, no 6-amalgarnation is (1,2)-composed.

As a pessimistic observation we mention that by a theorem of Ore [9] the statement "No 5-amalgamation is planar" is equivalent to the 4 -color theorem.

Although a merger does not preserve the property of not being $\left(m_{1}, \ldots, m_{s}\right)$ composed, in general, the property is preserved by α-mergers if α is not too big.

Theorem 3. If G_{1} and G_{2} are not $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed then any α-merger G^{0} of them is not $\left(m_{1}, \ldots, m_{s}\right)$-composed provided

$$
\begin{equation*}
\alpha \leq \sum_{i=1}^{s} m_{i} \tag{3}
\end{equation*}
$$

Proof: First consider the case when the α-merger is b-free i.e. neither of b_{1}, b_{2} occurs in any of the α pairs identified. The first part of the proof is showing as in the proof of Theorem 2 that in the labelling of M_{j} in G^{0}, j being the index such that $\left(b_{1}, b_{2}\right)$ is an edge of $M_{j} . \iota_{j}(a)$ must be smaller than $\iota_{j}\left(b_{1}\right)$ and $\iota_{j}\left(b_{2}\right)$. Then observe that by (3), not for every i the number of outgoing edges from a and also from any other vertex in A can be m_{i} in both G_{1} and G_{2}. Let j be the index with less than m_{j} edges outgoing in say G_{1}.

One can remove edges conveniently from some M_{h} to another M_{k} and have precisely for j less outgoing edges from a than m_{j} say in G_{1}. Then G_{1} with $\left(a_{1}, b_{1}\right)$ returning to it is ($m_{1}, m_{2}, \ldots, m_{s}$)-composed -- a contradiction. It is not difficult to prove the non- b-free case.
Theorem 4. If G is a $\left(\nu_{s}+1\right)$-amalgamation obtained exclusively by $\left[1, \sum_{i=1}^{s} m_{i}\right]$ mergers, then G is not ($m_{1}, m_{2}, \ldots, m_{s}$)-composed

Proof: This is a corollary of Theorem 3.

5. Combined Structural and Counting Method

Combining the counting and structural arguments, we shall establish a theorem similar to Theorem 4, but for α-mergers restricted to a different interval.

For this purpose, we introduce two definitions.
Definition 6. A graph G on n vertices with more edges than a $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ composed graph on n vertices can have (namely, $\left.n \sum_{i=1}^{s} m_{i}-\sum_{i=1}^{s} \frac{m_{i}\left(m_{i}+1\right)}{2}\right)$ will be called ($m_{1}, m_{2}, \ldots, m_{s}$)-redundant.

Definition 7. Define

$$
\lambda\left(m_{1}, m_{2}, \ldots, m_{s}\right)=\sum_{i=1}^{s} m_{i}+\left\lceil\frac{1}{2}\left(1-\sqrt{1+8 \sum_{1 \leq i<j \leq s} m_{i} m_{j}}\right)\right\rceil
$$

This will be denoted by λ_{s} for short.
Theorem 5. If G_{1} and G_{2} are $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-redundant graphs then any $\left[\lambda_{s}, \nu_{s}\right]$ merger G of them is also ($m_{1}, m_{2}, \ldots, m_{s}$)-redundant.

Proof: Let the number of vertices of G_{1} and G_{2} be respectively n_{1} and n_{2}.
Suppose, contrary to the assertion in the theorem, that for some α-merger

$$
\begin{equation*}
|E(G)| \leq\left(n_{1}+n_{2}-\alpha\right) \sum_{i=1}^{s} m_{i}-\frac{1}{2} \sum_{i=1}^{s} m_{i}\left(m_{i}+1\right) \tag{4}
\end{equation*}
$$

By the assumptions on G_{1} and G_{2} one has for $\ell=1,2$

$$
\begin{equation*}
\left|E\left(G_{\ell}\right)\right| \geq \sum_{i=1}^{s}\left(n_{\ell} m_{i}-\frac{1}{2} \cdot m_{i}\left(m_{i}+1\right)\right)+1 \tag{5}
\end{equation*}
$$

therefore

$$
\begin{equation*}
|E(G)|>\left(n_{1}+n_{2}\right) \sum_{i=1}^{s} m_{i}-2 \sum_{i=1}^{s} \frac{m_{i}\left(m_{i}+1\right)}{2}-\frac{\alpha(\alpha-1)}{2} \tag{6}
\end{equation*}
$$

From (4) and (6), one gets

$$
\alpha^{2}-\left(1+2 \sum m_{i}\right) \alpha+\sum m_{i}\left(m_{i}+1\right)>0
$$

This contradicts the assumption that $\lambda_{s} \leq \alpha \leq \nu_{s}$.
Theorem 6. If G is a $\left(\nu_{s}+1\right)$-amalgamation obtained exclusively by $\left[\lambda_{s}, v_{s}\right]$ mergers then G is not $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed.

Proof: This is a consequence of Theorem 5.

6. Final Remarks

The main results of this paper are Theorems 4 and 6 . We mention here without proof some more results of the same kind which may help others to accomplish the proof of our conjectures.

Theorem 7. If G_{1} and G_{2} are $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-redundant graphs then any b-free α-merger with $\alpha \geq \lambda_{s}$ contains an $\left(m_{1}, \ldots, m_{s}\right)$-redundant graph and therefore is not ($m_{1}, m_{2}, \ldots, m_{s}$)-composed.

Theorem 8. If each of G_{1} and G_{2} contain an $\left(m_{1}, \ldots, m_{s}\right)$-redundant graph then every b-free merger G of them is not $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$-composed.

Finally we mention two recent papers [2] and [11] dealing with more specific decompositions into degenerate graphs.

References

1. Bollobas, B., Extremal graph theory, Academic Press, London 1978, 222,280.
2. Fleischner, H. and Stiebitz M., A solution to a colouring problem of P. Erdös, Discrete Math. 101 (1992) 39-48.
3. Hajós, G., Über eine Konstruktion nicht n-färbbarer Graphen, Wissenchaftliche Zeitschrift der Martin Luther Universität, Halle-Wittenberg 1961, 116-117.
4. Klein, R., On the colorability of m-composed graphs, Discrete Mathematics 133 181-190 (1994).
5. Klein, R. and Schönheim, J., Decomposition of K_{n} into two graphs respectively m_{1} and m_{2} degenerated and Colorability of graphs having such a decomposition. Report No. 91/43 Combinatorics and its Application Report No. 91/107 Diskrete Structure in der Mathematic, Bielefeld University.
6. Klein, R. and Schönheim, J., Decomposition of K_{n} into degenerate graphs, In Combinatorics and Graph Theory Hefei, 6-27, April 1992. World Scientific. Singapore, New Jersey, London, Hong Kong, 141-155.
7. Klein, R., On ($m_{1}, m_{2}, \ldots, m_{s}$)-composed graphs, Thesis, Tel Aviv University 1992.
8. Lick, Don R. and White, A.T., k-Degenerate graphs, Canad. J. Math. vol. XXII, No. 5 1970, 1082-1096.
9. Ore, D., The four color problem, Academic Press 1967.
10. Seymour, P.D., Nowhere-Zero G-flow, J. Combinatorical Theory, Ser B 30 1981, 130-135.
11. Stiebitz, M., The forest plus stars colouring problem, Communication at the Technical University of Ilmenau 1994.
