ON THE COLORABILITY OF GRAPHS DECOMPOSABLE INTO DEGENERATE GRAPHS WITH SPECIFIED DEGENERACY

R. Klein J. Schönheim Levinski College School of Mathematical Sciences Tel Aviv, Israel Sackler Faculty of Exact Sciences Tel Aviv University Ramat Aviv 69978, Israel

Abstract.

An *m*-degenerate graph is a graph, every subgraph of which has minimal degree at most *m*. An (m_1, m_2, \ldots, m_s) -composed graph is a graph, the edge set of which can be partitioned into *s* sets generating respectively graphs being m_1, m_2, \ldots, m_s degenerate. We conjecture that such a graph is $\sum_{i=1}^{s} m_i + \lfloor \frac{1}{2}(1 + \sqrt{\frac{1+8\sum m_i m_j}{1 \le i < j \le s}}) \rfloor$ colorable. Partial results are obtained, but not even Tarsi's case: $m_1 = 1, m_2 = 2$ is settled.

1. Introduction

The following two definitions of m-degenerate graphs have been formulated and shown to be equivalent in [8]. The same paper contains a study of the most elementary properties of m-degenerate graphs we shall use below. Also we mention [1] for further results on this class of graphs.

Definition 1. A graph G is said to be m-degenerate, for m a nonnegative integer, if every subgraph of G has minimum degree at most m.

Definition 2. A graph G is said to be *m*-degenerate if there is a labelling v_1, v_2, \ldots, v_n of its vertices such that for $i = 1, 2, \ldots, n$ there are among the neighbors of v_i at most *m* vertices v_j with j > i. Call such edges outgoing.

Australasian Journal of Combinatorics 12(1995), pp.201-208

The following consequences of Definition 2 are also observed in [8] and [5]. **Proposition 1.** If G is m-degenerate and has n vertices, then

(1)
$$|E(G)| \le mn - \frac{m(m+1)}{2}$$
.

Proposition 2. If G is m-degenerate, then G is (m + 1)-colorable.

In papers [4,5,6,7] we developed the concept of (m_1, m_2, \ldots, m_s) -composed graphs.

Definition 3. A graph G is said to be (m_1, m_2, \ldots, m_s) -composed if the edge set of G can be partitioned into the edge sets of graphs M_1, M_2, \ldots, M_s being respectively m_1, m_2, \ldots, m_s degenerate.

The main result of [5] is

Theorem 0. K_n is (m_1, m_2, \ldots, m_s) -composed if and only if

(2)
$$n \leq \sum_{i=1}^{s} m_i + \left\lfloor \frac{1}{2} \left(1 + \sqrt{1 + 8 \sum_{1 \leq i < j \leq s} m_i m_j} \right) \right\rfloor$$

Denote the right side of (2) by $\nu(m_1, m_2, \ldots, m_s)$ and by v_s for short. To prove the only if part of Theorem 0, one uses the following generalization of Proposition 1. A constructive proof of the if part is given in [5].

Proposition 3. If G is (m_1, m_2, \ldots, m_s) -composed and has n vertices then

$$|E(G)| \le n \sum_{i=1}^{s} m_i - \sum_{i=1}^{s} \frac{m_i(m_i+1)}{2}$$

The generalization of Proposition 2 is difficult. The cases of (1,m)-composed and (m_1, m_2) -composed graphs were considered in [4] and [5] respectively. This paper is an attempt to establish the colorability of (m_1, m_2, \ldots, m_s) -composed graphs using tools and methods similar to those in [4] and [5].

2. Bounds

An obvious bound is established in the next proposition.

Proposition 4. If G is (m_1, m_2, \ldots, m_s) -composed then it is $\prod_{i=1}^s (m_i+1)$ colorable.

Proof: By Proposition 2 the graphs M_i are $(m_i + 1)$ -colorable and the cartesian product of the colorings will do.

A bound better in general can be obtained as a consequence of the following fact.

Proposition 5. If G is (m_1, m_2, \ldots, m_s) -composed then G is $2 \sum_{i=1}^{s} m_i - 1$ degenerate.

Proof: One shows that every subgraph of G has a vertex of degree at most $2\sum_{i=1}^{s} m_i - 1$. This follows from the fact that, the average degree of an m degenerate graph is less than 2m.

This gives immediately:

Proposition 6. If G is (m_1, m_2, \ldots, m_s) -composed then G is $2 \sum_{i=1}^s m_i$ colorable.

Observe that the bound of Proposition 6 is never worse than the bound of Proposition 4 and is better except in the case $s = 2, m_1 = 1$, and $m_2 = m$. When m = 1 the bound is exact.

For every value of m > 1 it is not known whether the bound 2(1 + m) is exact. An interesting case is when m = 2. There are 5-chromatic (1, 2)-composed graphs, for example K_5 . The bound is 6, but it is still not known whether there exists (1, 2)-composed graphs which are 6-chromatic. This question is due to Tarsi and raised in connection with [10].

Observe, that $\nu(1,2) = 5$.

In general by Theorem 0 there are $\nu(m_1, m_2, \ldots, m_s)$ chromatic (m_1, m_2, \ldots, m_s) composed graphs and we close this section by conjecturing that a better bound than the bound of Proposition 6 can be obtained.

Conjecture 1. If a graph G is (m_1, \ldots, m_s) -composed then G is $\nu(m_1, m_2, \ldots, m_s)$ -colorable.

The only case for which this is a theorem is $m_1 = m_2 = \cdots = m_s = 1$. Indeed, then $\nu(1, 1, \ldots, 1) = 2s$ and this equals the bound $2\sum_{i=1}^{s} m_i$. So we have

Theorem 1. Any $(1, 1, \ldots, 1)$ -composed graph is 2s colorable.

3. Approach Based on Counting Edges

A natural way for proving Conjecture 1 would be to use the facts that a (m_1, m_2, \ldots, m_s) -composed graph has not too many edges and a $(\nu_s + 1)$ -chromatic critical graph has not too few. This idea works for the complete graph K_{ν_s+1} but for more general $(\nu_s + 1)$ -chromatic critical graphs it does not work.

Let us illustrate this by an example. Consider the case $m_1 = 1, m_2 = 2$. Then $\nu_2 = 5, K_6$ has 15 edges and this is more than a (1, 2)-composed six vertex graph can have, namely 14, as shown in Proposition 3.

However, the 6-chromatic critical graph H on 11 vertices

has 29 edges and a (1,2)-composed graph on 11 vertices can have this many edges. Proposition 3 gives 3.11 - 4 = 29. The graph *H* contains two blocks $K_6 - e$. Define H_t ,

a similar graph containing t such blocks. H_t is also 6-chromatic and critical, has 5t + 1 vertices and the number of its edges is less than a (1, 2)-composed graph on 5t + 1 vertices can have. On the other hand, we will show by other methods that H_t is not (1, 2)-composed for any t.

For more general ν_s the situation is similar.

4. The Structural Approach

We shall describe some constructions of Hajós [3] and Ore [9] starting with $K_{\nu+1}$ which provide all graphs that are not ν -colorable.

Since K_{ν_s+1} is not (m_1, \ldots, m_s) -composed one could hope that non-composedness is preserved by the constructions.

4.1 Hajós's Construction. The following construction called conjunction is due to Hajós.

Definition 4. The conjunction G_0 of two disjoint graphs G_1 and G_2 is the graph obtained by deleting the edges $e_1 = (a_1, b_1), e_2 = (a_2, b_2)$ of G_1 and G_2 respectively, identifying the vertices a_1 and a_2 to a single vertex a and adding a new edge (b_1, b_2) .

One of the main results of this paper is the following, stating that the Hajós conjunction preserves the property of not being (m_1, m_2, \ldots, m_s) -composed.

Theorem 2. If the graphs G_1 and G_2 are not (m_1, m_2, \ldots, m_s) -composed then their conjunction G_0 is also not (m_1, m_2, \ldots, m_s) -composed.

Proof: Suppose the contrary, then for some j the edge (b_1, b_2) belongs to M_j and there is a labeling ι_j of M_j showing that M_j is m_j degenerate. Denote the graph $G_1 - e_1$ and $G_2 - e_2$ by G_1^- and G_2^- respectively. Then those graphs are (m_1, m_2, \ldots, m_s) -composed while G_1 and G_2 are not. Suppose without loss of generality that $\iota_j(b_1) < \iota_j(b_2)$ and that $\iota_j(a) > \iota_j(b_1)$. Then the edge (b_1, b_2) can be replaced by (b_1, a) contradicting the assumption on G_1 . If $\iota_j(a) < \iota_j(b_1)$, observe that the number of outgoing edges from a is at most m_j so it cannot be m_j in both graphs G_1^- and G_2^- . Let this number be smaller in G_1^- . Then the edge (a, b_1) can be added having the same contradiction as above.

This result does not prove our conjecture since not every non- (ν_s) -colorable graph can be constructed in this way starting with K_{ν_s+1} 's. It proves, however, that our claim that the graph H_t introduced at the end of section 3 is not (1,2)composed for any t, since H_t can be obtained by successive conjunctions of K_6 's.

In order to obtain every not (ν_s+1) -colorable graph, one can use a construction of Ore called merger.

Definition 5. A merger of the disjoint graphs G_1 and G_2 is the graph G^0 obtained from G_0 , the Hajós conjunction, by identifying $\alpha - 1$ additional pairs of vertices a', $a'' a' \in V(G_1 - a_1)$, $a'' \in V(G_2 - a_2)$ excluding the pair b_1, b_2 , but not b_1, a'' or a', b_2 . Denote the set of identified vertices by A.

If the number of pairs including a_1, a_2 is α the merger is called an α -merger. If $\beta \leq \alpha \leq \gamma$ it is called a $[\beta, \gamma]$ -merger. If G^0 is obtained from K_{ν} 's by applying successive mergers it is called a ν -amalgamation.

Ore proved that every graph which is not ν -colorable must contain a $(\nu + 1)$ amalgamation, hence every critical $(\nu+1)$ -chromatic graph is a $(\nu+1)$ -amalgamation.

The statement generalizing Theorem 2 to mergers is not true. However, this does not disprove our conjecture 1 and we state the following equivalent conjecture.

Conjecture 2.

No $(\nu_s + 1)$ -amalgamation is (m_1, m_2, \ldots, m_s) -composed. In particular for $m_1 = 1, m_2 = 2$, no 6-amalgamation is (1, 2)-composed.

As a pessimistic observation we mention that by a theorem of Ore [9] the statement "No 5-amalgamation is planar" is equivalent to the 4-color theorem.

Although a merger does not preserve the property of not being (m_1, \ldots, m_s) composed, in general, the property is preserved by α -mergers if α is not too big.

Theorem 3. If G_1 and G_2 are not (m_1, m_2, \ldots, m_s) -composed then any α -merger G^0 of them is not (m_1, \ldots, m_s) -composed provided

(3)
$$\alpha \leq \sum_{i=1}^{s} m_i \; .$$

Proof: First consider the case when the α -merger is b-free i.e. neither of b_1, b_2 occurs in any of the α pairs identified. The first part of the proof is showing as in the proof of Theorem 2 that in the labelling of M_j in G^0 , j being the index such that (b_1, b_2) is an edge of M_j . $\iota_j(a)$ must be smaller than $\iota_j(b_1)$ and $\iota_j(b_2)$. Then observe that by (3), not for every i the number of outgoing edges from a and also from any other vertex in A can be m_i in both G_1 and G_2 . Let j be the index with less than m_j edges outgoing in say G_1 .

One can remove edges conveniently from some M_h to another M_k and have precisely for j less outgoing edges from a than m_j say in G_1 . Then G_1 with (a_1, b_1) returning to it is (m_1, m_2, \ldots, m_s) -composed – a contradiction. It is not difficult to prove the non-*b*-free case.

Theorem 4. If G is a $(\nu_s + 1)$ -amalgamation obtained exclusively by $[1, \sum_{i=1}^{s} m_i]$ mergers, then G is not (m_1, m_2, \ldots, m_s) -composed

Proof: This is a corollary of Theorem 3.

5. Combined Structural and Counting Method

Combining the counting and structural arguments, we shall establish a theorem similar to Theorem 4, but for α -mergers restricted to a different interval.

For this purpose, we introduce two definitions.

Definition 6. A graph G on n vertices with more edges than a (m_1, m_2, \ldots, m_s) composed graph on n vertices can have (namely, $n \sum_{i=1}^{s} m_i - \sum_{i=1}^{s} \frac{m_i(m_i+1)}{2}$) will be
called (m_1, m_2, \ldots, m_s) -redundant.

Definition 7. Define

$$\lambda(m_1, m_2, \dots, m_s) = \sum_{i=1}^s m_i + \left\lceil \frac{1}{2} \left(1 - \sqrt{1 + 8 \sum_{1 \le i < j \le s} m_i m_j} \right) \right\rceil$$

This will be denoted by λ_s for short.

Theorem 5. If G_1 and G_2 are (m_1, m_2, \ldots, m_s) -redundant graphs then any $[\lambda_s, \nu_s]$ merger G of them is also (m_1, m_2, \ldots, m_s) -redundant.

Proof: Let the number of vertices of G_1 and G_2 be respectively n_1 and n_2 . Suppose, contrary to the assertion in the theorem, that for some α -merger

(4)
$$|E(G)| \le (n_1 + n_2 - \alpha) \sum_{i=1}^s m_i - \frac{1}{2} \sum_{i=1}^s m_i (m_i + 1) .$$

By the assumptions on G_1 and G_2 one has for $\ell = 1, 2$

(5)
$$|E(G_{\ell})| \ge \sum_{i=1}^{s} \left(n_{\ell} m_i - \frac{1}{2} \cdot m_i (m_i + 1) \right) + 1,$$

therefore

(6)
$$|E(G)| > (n_1 + n_2) \sum_{i=1}^{s} m_i - 2 \sum_{i=1}^{s} \frac{m_i(m_i + 1)}{2} - \frac{\alpha(\alpha - 1)}{2}$$

From (4) and (6), one gets

$$lpha^2 - (1+2\sum m_i)lpha + \sum m_i(m_i+1) > 0$$
 .

This contradicts the assumption that $\lambda_s \leq \alpha \leq \nu_s$.

Theorem 6. If G is a $(\nu_s + 1)$ -amalgamation obtained exclusively by $[\lambda_s, v_s]$ -mergers then G is not (m_1, m_2, \ldots, m_s) -composed.

Proof: This is a consequence of Theorem 5.

6. Final Remarks

The main results of this paper are Theorems 4 and 6. We mention here without proof some more results of the same kind which may help others to accomplish the proof of our conjectures.

Theorem 7. If G_1 and G_2 are (m_1, m_2, \ldots, m_s) -redundant graphs then any b-free α -merger with $\alpha \geq \lambda_s$ contains an (m_1, \ldots, m_s) -redundant graph and therefore is not (m_1, m_2, \ldots, m_s) -composed.

Theorem 8. If each of G_1 and G_2 contain an (m_1, \ldots, m_s) -redundant graph then every *b*-free merger G of them is not (m_1, m_2, \ldots, m_s) -composed.

Finally we mention two recent papers [2] and [11] dealing with more specific decompositions into degenerate graphs.

References

- 1. Bollobas, B., Extremal graph theory, Academic Press, London 1978, 222,280.
- Fleischner, H. and Stiebitz M., A solution to a colouring problem of P. Erdös, Discrete Math. 101 (1992) 39-48.
- Hajós, G., Uber eine Konstruktion nicht n-färbbarer Graphen, Wissenchaftliche Zeitschrift der Martin Luther Universität, Halle-Wittenberg 1961, 116-117.
- Klein, R., On the colorability of m-composed graphs, Discrete Mathematics 133 181-190 (1994).
- 5. Klein, R. and Schönheim, J., Decomposition of K_n into two graphs respectively m_1 and m_2 degenerated and Colorability of graphs having such a decomposition. Report No. 91/43 Combinatorics and its Application Report No. 91/107 Diskrete Structure in der Mathematic, Bielefeld University.
- 6. Klein, R. and Schönheim, J., Decomposition of K_n into degenerate graphs, In Combinatorics and Graph Theory Hefei, 6-27, April 1992. World Scientific. Singapore, New Jersey, London, Hong Kong, 141-155.
- 7. Klein, R., On (m_1, m_2, \ldots, m_s) -composed graphs, Thesis, Tel Aviv University 1992.
- Lick, Don R. and White, A.T., k-Degenerate graphs, Canad. J. Math. vol. XXII, No.5 1970, 1082-1096.
- 9. Ore, D., The four color problem, Academic Press 1967.
- Seymour, P.D., Nowhere-Zero G-flow, J. Combinatorical Theory, Ser B 30 1981, 130-135.
- Stiebitz, M., The forest plus stars colouring problem, Communication at the Technical University of Ilmenau 1994.

(Received 26/1/95; revised 5/6/95)