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Abstract

The problem of finding good multiple coverings (with or without repeated
words) of the Hamming space FJ' is considered. Recently, extensive tables
of upper and lower bounds for such codes were presented (Hamélainen et al,
Bounds for binary multiple covering codes, Des. Codes Cryptogr. 3 (1993),
251-275). The new codes found in this work improve on 27 upper bounds in
those tables. The codes were found using tabu search. The implementation of
this method is discussed, and it is shown how it also can be used to search for
large codes.

1 Introduction and Definitions

The problem of finding good coverings of Hamming spaces has attracted a lot of at-
tention during the last decade. In this paper binary codes will be discussed. However,
many of the results can be generalized to codes over other (even mixed) alphabets.
We consider codes over FJ, where I, = {0,1} is the two-element Galois field. A code
is a nonempty set C' C F¥. In some particular cases we allow C to be a multiset. The
Hamming distance d(xz,y) between two words z,y € F3* is the number of coordinates
in which they differ. The Hamming distance between a word z € Fy and a code
C C F}is d(z,C) = mingec d(z, ¢).

A code C' is said to be an (n, |C|,r, u) multiple covering (MC) if for all z € F}'
there is a set of codewords €' C C, such that |C’| > p and d(z,c) < r for all c € C".
Furthermore, if we allow C and C” to be multisets we call the code a multiple covering
with repeated codewords (MCR). We are now interested in the functions

K(n,r,u) = min{M | there is an (n, M,r, x) MC} and
K(n,r,u) = min{M | there is an (n, M,r, ) MCR}.
It is in practice impossible to determine exact values of these functions in the

general case, so effort has been put into obtaining upper and lower bounds. Upper
bounds are constructive: they are proved by finding a corresponding code. If =1

*This research was supported by the Academy of Finland.

Australasian Journal of Combinatorics 12(1995), pp.145-155



we are conslaering traditional covering coaes, which have been extensively studied;
the most recent tables of upper and lower bounds on binary covering codes can be
found in [15] and [12], respectively.

Earlier results on multiple coverings include those by Clayton [3] and Van Wee et
al. [16]. Recently, Himaldinen et al. [6] collected bounds on K (n, 7, p) and K(n,r, 1)
forn < 16, r < 4, 4 < 4. At the end of their introduction they mention some reasons
why the codes in the paper can be considered reasonably good. Anyhow, in this
paper it is shown how efficient and extensive computer searches have led to as many
as 27 improvements on their upper bounds. New results on lower bounds for multiple
covering codes can be found in [2].

In Section 2 the optimization method used in the search, tabu search, is briefly
discussed. A matrix method that can be used to find large codes is presented, and
data structures employed to make the search more efficient are explained. It is also
mentioned how these can be slightly modified and used in search for other types
of coverings. In Section 3 the new upper bounds are tabulated and compared with
the best known old results. Codes corresponding to new bounds are listed in the
Appendix.

2 Computer Search for Coverings

The outlines of our search for codes (and in most other works in the same area) are
as follows: The size of the code, |C], is fixed (to a value slightly better than the
best known upper bound) for given values of n, r, and pu. Thereafter, starting from
an initial code, which is usually chosen at random, we try to perturb the codewords
to obtain a desired covering. Before going into the methods used in the search for
coverings, we display the data structures used.

2.1 Data Structures

The structures are displayed in Figure 1. The values in the tables are sampled from
a search for a (4,8,1,2) MC (which is known to exist). The two-dimensional array
tablel][] has one column for every word in FJ* (in lexicographical order). The
first element in each column indicates how many times the word is covered. The

”

other elements contain pointers to the 37 7; words that are within Hamming

distance r from the word. The codewords are saved in a single-dimension array
code[] as pointers that point to the corresponding entries in table table[J[1. To
help understanding our example, we have used indices instead of pointers in the
figure.

Let C; = {c € C| d(c,w;) < r}, where w; € FJ* is the binary word that is ¢ in
decimal form. Now consider the function

2n—1

H(O) = % max(0,p~ |G} 1)
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code[]
[0]2[3]5]6]8]1L]15]

table[][]
(33 4] 3[ [ T[ o[ 4] a[ 2[ 3] 3[ 1] 2] 2] 7]

glo] O] v 0] 1] 2| 3} 0} 1} 2| 3] 4| 5] 6| 7
Tt1] 21 2] 41 4] 4, 5] 8| 8 81 9| 8} 911011
2131 3] 3] by 5| 6} 6} 9| 911010 |12]12|1213
41650 6] 7y 6 7] 7Ty 7|10|11)11{11 13|13 |14 |14
glol10111{12113 |14 (1512131415} 141151515

Figure 1: Data structures.

The code ' is a required covering if |C;] > p for all words in FJ’, that is, if
f(€) = 0. The problem of finding a multiple covering can now be scen as a combina-
torial optimization problem, where the cost function f(C) has to be minimized. The
example in Figure 1 has cost f(C) = 2.

In practically all previously published results on computer searches for covering
codes, the optimization method used has been simulated annealing, see, for exam-
ple, [11, 13, 17]. However, the author recently discovered [14] that tabu search [5]
adapted in a proper way to covering problems outperforms simulated annealing. That
conclusion is confirmed by the results in this paper.

2.2 Tabu Search

Tabu search is a local search method. A key concept of such methods is that of
neighborhood. The neighborhood of a solution is a set of solutions that are obtained
by changing (usually slightly) the current solution. In local search, the optimization
process gives a series of solutions, where a solution always is a neighbor of the previous
solution. A well-known such method is steepest descent, where we look at all neighbors
with lower cost and choose the one with least cost (or randomly one of these if there
are many).

In proceeding towards a minimum, tabu search obeys the steepest descent heuris-
tic. The process continues until a local minimum is reached. No neighbor of such
a solution has lower cost. To get out of this minimum we have to accept solutions
that do not improve on the present value of the cost function. The neighbor with
least cost is still chosen. Now, in the next step there is a risk that we will get back
into the minimum from which we are trying to escape, which would lead to a loop in
the optimization process. To avoid this, a list of prohibited changes, a tabu list, is
created. This list contains information about the L most recent changes, the inverses
of which are prohibited. The changes are usually not saved as such in the tabu list,
but in an encoded form. See [5] for further details.

In this way, tabu search goes through local minima in the part of the search space
where the costs are low. A global minimum will hopefully be found in this search.
The cost of a global minimum for the problem discussed here is 0, and the search can
be terminated when such a solution is encountered.
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The optimization process proceeds as follows: Go through the integers in {0,1,...,
2" —1} cyclically until an ¢ such that |C;] < p is encountered. Now the neighborhood
of the present solution consists of all solutions that are obtained by replacing one
codeword ¢ € C with a codeword ¢ such that d(c’ ,w;) < r. For MCs, we must also
check that ¢ ¢ C.

Let us again take a look at the example in Figure 1. We go through the first
clements of the columns of table[][] and find out that |Cs| = 1 < 2 = . The costs
of the solutions in the neighborhood is now displayed in Figure 2. The columns are
the old codewords (c), and the rows are the possible new codewords (¢’ ).

ANe|0 2 3 5 6 8 11 15
112 21333 2 4
4 |1 00213 2 3
LS T R . S R
70211324 2 3
i1 10122 0 1

Figure 2: Costs of solutions in neighborhood.

If we were searching for an MCR, we would also take into account the starred
moves in Figure 2. As can be seen in the figure, four of the moves lead to least cost.
Ome of these is chosen at random. Since the cost is now 0, the search is stopped and
the code is saved. If the cost had been positive, we would have continued the search
and added the position in codel] of the word that was changed to the tabu list. A
good rule of thumb is to choose a list length close to L = |C']/10.

2.4 A Matrix Method

With growing n, |C|, and/or 7, there comes a point when a direct search does not
work satisfactorily any more. This is due to two reasons. Firstly, the sizes of the
tables in Figure 1 must not exceed the size of the computer memory, and, secondly,
with many codewords and a large space (FJ*) the algorithm does not find good codes
very easily. Ome possible solution to this problem is to reduce the search space by
giving the code a structure. This can be accomplished by the following matriz method.

The method was presented for coverings with p = 1, 7 = 1 by Blokhuis and Lam
[1]. It turns out that it is straightforward to generalize it to many other types of
coverings, including multiple coverings [6]. Let A = [a; a; -+ a,] be a k x n matrix
over Fy. A set S C Ff is said to form a p-fold r-covering (or simply covering if the
value of 7 is understood) of F¥ using A if every 2 € FF can be expressed in at least
4 ways as a sum of one element of S and at most r columns of A.

Theorem 1 ([6]) If S forms a p-fold r-covering of F} using a k x n matriz A, then
K(n,r,p) <|S| 27k,
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A similar theorem can be stated for MCRs, see [6, Theorem 9]. Now, when we
try to apply this result (for given n, 7, and 1), we first have to choose an appropriate
k. Ifk =mnand A = I is the n x n identity matrix, we are faced with the direct
approach. The smaller the value of k is, the stronger the structure of the final code
is. In [6, Theorem 9] the rank of A is assumed to be k; however, even if the rank of
A is less than k, the approach in [10, Corollary 1] can be used to prove Theorem 1.

After fixing £, we try to find coverings for many different matrices A. We consider
matrices of form A = [I M|, and adopt the same approach as in [13]; the reader is
referred to that paper for further details. It should, however, be noted that for
multiple coverings also matrices A with all-zero and repeated columns should be
considered. In [13] 1-fold coverings were considered; in that case such coiumns are
superfluous.

The data structures presented in Figure 1 can also be used with this approach.
The pointers are set to point to the words obtained when any linear combination of
at most 7 columns of A are added to the original word.

We conclude the discussion of the matrix method by stating a theorem that is a
straight-forward generalization of a result in [15]. The elements sy, 89, .., 8¢ are not
necessarily distinct.

Theorem 2 Ift > 1 and sy, s2,..,5: form a p-fold 1-covering of F¥ using a k x n
matriz A, then K(t — 1,1, p) < (n+ 1) - 2751 If A contains no all-zero and no
repeated columms, then K (t — 1,1, p) < (n+1)- 2754

Proof. W.lo.g, assume that s; is the all-zero vector (we can add any vector to
all elements s;). Now let s = s1,8y = a1,83 = Goy.v oy Shyy = Gn and a4y =
Sy 0y = S3,...,a,_y = $. It is a straight-forward task to verify that the ele-
ments s}, 85, .. .,5h,, form a p-fold 1-covering of Ff using the k x (¢ — 1) matrix
A" =a, ¢} --- a_,]. Furthermore, if A contains no all-zero and no repeated columns,
the new words s/ are all different, so the new code is a MC. O

Corollary 1 K(K(n,1,u) —1,1) <(n+1)- 2E(mLp)—n=1,

These results can be used to get good bounds especially for large n. However,
also some best known codes of length at most 16 can be explained by these. From
K (4,1,2) = 7 [6] we get K(6,1,2) < 20. That bound was proved in [6] using the
matrix method, with ¢t = 10 and a 5 x 6 matrix A that has no all-zero and no repeated
columns. Using that construction and Theorem 2 we then obtain K (9,1,2) < 112,
another best known upper bound.

2.5 Other Covering Problems

In the cost function (1) we can, of course, set p = 1, so our approach works as such
also for the traditional covering problem.

In [7] the problem of finding good codes that are multiple coverings of the farthest-
off points is considered. We have such a covering if for all w; € F7', d(w;, C) <,
and |C;| > p whenever d(w;, C) = r (C; and w; are defined as in Section 2.1). Now,
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we divide the pointers in table[J[] in Section 2.1 into two parts. For each word
(column), the pointers to words within distance at most r — 1 are separated from the
pointers to words at distance r. In the optimization process, words that belong to
the former group are considered as if they were covered p times instead of once. Cost
function (1) can then be used as in the search for MCs.

Other types of coverings, for example, nonbinary codes and weighted coverings
[4], can be considered by similar modifications. The interested reader is also referred
to [9].

3 New Binary Multiple Covering Codes
The new bounds that we have found and that improve on those in [6] are displayed
in Table I. Corresponding codes can be found in Table II in the Appendix or can be

derived from other codes as explained in this section. We will now briefly discuss
some of the new codes.

Table I. New upper bounds on K(n,r, ).

n r pu Lower bound [6] Upper bound [6] New upper bound
8 1 4 114 125 124
9 1 4 206 220 216
10 1 2 187 220 216
01 3 289 320 316
10 1 4 374 416 408
111 2 342 380 368
12 1 2 631 752 704
12 1 4 1262 1376 1344
13 1 3 1756 1984 1920
13 1 4 2342 2560 2628
14 1 3 3356 3776 3712
14 1 4 4370 4992 4864
&8 2 3 22 26 24
it 2 3 92 104 100
13 2 2 190 256 240
13 2 3 268 352 336
10 3 2 13 19 18
10 3 3 18 26 24
10 3 4 24 32 30
11 3 2 18 30 24
11 3 3 27 40 36
14 3 2 74 128 120
12 4 2 11 19 18
12 4 4 22 32 30
13 4 2 16 30 26
13 4 3 23 40 36
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In [6] only two cases are given where the best known upper bounds for K (n,7r, 1)
and K (n,r, ) differ. The first entry in Table I removes one of these (the other
oneis 7 = K(4,1,2) < K(4,1,2) = 8). We have been able to find one new MCR
that improves on the best known MC. The code is listed in Table II, and it proves
K(10,1,3) < 312 (K(10,1,3) < 316).

For definitions of the ADS construction and related concepts—such as normality
and subnormality —used in the next two paragraphs, the reader is referred to [6, 8].

The (8,24,2,3) code in Table II (listed in the Appendix) is normal, so the ADS
construction (with the code {000, 111}) can be used to get (8+ 21,24,2+,3) (i > 1)
MCs. Other families of new MCs obtained in the same way are (10 + 24, 18,3 + 1, 2),
(10 + 2i,30,3 + 4,4), and (11 + 2¢,36,3 + 4,3). The normality of the codes acting
as seeds for these families has been checked. Care must be taken when the ADS
construction is applied, since not all coordinates of these codes are acceptable.

Some best known codes are abnormal. An abnormal (13,112,3,4) MC can be
found in [6]. The (11,24,3,2) MC in Table II is also abnormal. This is interesting,
since the code is very good and might even be optimal. It is not even subnormal.
This was verified using a computer program that checked all 2** = 16777216 possible
partitions of the 24 codewords into two subcodes. If there is a normal (or subnor-
mal) MC with the same parameters, then a record-breaking (13,24,4,2) MC can be
constructed.

The following old bounds can be explained in an easy way using the results of
this paper. The bound K (12,4,3) < 24 follows from the results in the previous para-
graphs. The bound K (12,3,2) < 48 is obtained using K(n + 1,7, 1) < 2K (n,r, 1.
By taking the union of the new (11,24,3,2) MC and one of its translates (this is pos-
sible without getting multiple occurrences of codewords, since the code has minimum
distance 3), we get K (11,3,4) < 48.

The new bounds K (11,1,2) < 368 and K (11,3,2) < 24 are best known upper
bounds even if we only require the words w € FJ' with d(w,C) = r to be covered
=2 times [7].

The search required about 4 CPU-months of computation time on SUN work-
stations. More effort would certainly have given more and better improvements;
however, a trade-off always has to be made between computation time and quality
of results in studies where probabilistic methods are used.

Appendix

New multiple coverings are here listed in hexadecimal form. All but one of these
codes were found by the matrix method. The columns of M and the words of S are
listed in Table II, separated by a semi-colon. The number of rows in the matrix (k)
is also given for each code. All the words of a (9,216,1,4) code are listed. All codes
are MCs, except for the (10,312, 1,3) MCR.
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1aD1€ 11. INeW INuitipi€ COVErings.

Code k Words of M and S

(8,124, 1, 4) 7 7C;0,1,2 3,4,7,8 B,C, D, B F, 12, 14, 17, 1D, 21, 27,
28, 2K, 31, 32, 34, 37, 38, 39, 3A, 3B, 3D, 3E, 42, 48, 4B,
4D, 50, 51, 53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5E, 5F,
61, 62, 64, 65, 66, 67, 68, 6B, 6D, 6E, 72, 74, 7B, 7D.

(9,216, 1,4) 3,4,5,6,9, D, 10, 12, 17, 19, 1A, 1C, 1D, 20, 23, 24, 28,
2A, 2, 31, 33, 37, 3A, 3D, 3E, 3F, 43, 46, 47, 48, 49, 4B,
4C, 4F, 50, 54, 56, 57, 59, 5A, 60, 61, 62, 65, 6B, 6C, 6E,
6F, 72, 74, 75, 79, TA, 7D, 81, 82, 83, 89, 8A, 8E, 8F, 90,
95, 97, 9B, 9C, 9E, A4, A6, A7, A8, A9, AD, AF, B0, BI,
B4, B6, B8, BB, C2, C4, C5, C8, CA, CC, D0, D1, D3, D5,
DB, DD, DE, DF, E1, E2, E5, E7, EB, EC, F2, F3, F6, F8,
FB, FC, FD, FE, 100, 105, 106, 108, 10A, 10B, 10E, 10F,
111, 112, 115, 11B, 11C, 11F, 123, 125, 126, 127, 128, 129,
12B, 12D, 131, 132, 134, 136, 138, 13C, 140, 141, 143, 145,
14A, 14D, 151, 153, 154, 15A, 15C, 15E, 15F, 160, 162, 166,
16C, 16D, 16E, 173, 174, 177, 178, 179, 17B, 17F, 180, 181,
183, 184, 18C, 18F, 192, 195, 196, 197, 198, 199, 19B, 19C,
1A2, 1A3, 1A4, 1AA, 1AC, 1AD, 1B1, 1B2, 1B5, 1BA, 1BB,
1BD, 1BE, 1BF, 1C4, 1C6, 1C7, 109, 1CA, 1CD, 1CF, 1D2,
1D3, 1D6, 1D8, 1D9, 1DD, 1E0, 1E1, 1E7, 1E9, 1EA, 1EB,
1EE, 1F0, 1F4, 1F5, 1F7, 1F8, 1FE.

(10,216,1,2) 9  100; 6, C, 10, 11, 15, 1C, 21, 26, 2C, 31, 33, 3A, 3F, 45, 47,
48,4C, 52, 5A, 5F, 62, 69, 6F, 74, 79, 7F, 80, 82, 8D, 97, 99,
9E, A7, A8, AA, AD, B4, BA, BB, C1, C3, CE, CF, D3, D4,
D9, E3, E4, EA, F0, F4, F5, F6, FC, 103, 109, 10A, 10B,
10F, 114, 116, 11B, 120, 125, 12B, 136, 138, 13D, 140, 14B,
14C, 151, 156, 15D, 160, 162, 165, 16E, 173, 177, 178, 17E,
184, 185, 18B, 192, 197, 198, 19E, 1A1, 1A7, 1AC, 1AE,
1B1, 1B2, 1BD, 106, 1C7, 1C8, 1D1, 1D8, 1DA, 1DD, 1E2,
1E9, 1ED, 1FB, 1FF.

(10,312,1,3) 7 70,E, F;0,1,3, 4,8, 11,18, 1A, 1C, 1F, 20, 25, 25, 28, 2D,
37, 39, 3A, 3C, 3E, 44, 46, 49, 4D, 4E, 53, 56, 5B, 5E, 62,
65, 66, 6D, 6F, 70, 72, 73, 77, TB.

(10,316,1,3) 8 EO,1F; 0,4, B, D, 12, 13, 14, 17, 18, 19, 21, 25, 26, 28, 2A,
9B, 2C, 39, 3D, 3E, 3F, 42, 43, 48, 49, 4D, 4E, 51, 57, 5A,
5B, 63, 64, 67, 70, 72, 73, 74, 7B, 7D, 80, 81, 89, 8A, SE, §F,
95, 96, 98, 9C, A2, A6, AC, AF, B0, B1, B5, B6, BA, BB,
BC, BF, C4, C5, C7, D0, D2, D3, D4, DB, DD, E1, E7, ES,
E9, EA, EE, FD, FE.

(10,408,1,4) 7 60, 50, 38; 2, 3, 5, 6, 7, A, B, E, F, 11, 12, 14, 15, 19, 1D,
20, 22, 27, 2C, 2D, 30, 31, 34, 3A, 3B, 3E, 40, 42, 49, 4B,
4C, 4E, 52, 55, 57, 58, 5C, 60, 61, 64, 67, 68, 69, 73, 76, 77,
78, 7B, 7D, TE, 7F.
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Table II. (Cont.)

(11,368, 1, 2)

(12,704,1,2)

(12,1344,1,4)

(13,1920,1,3)

(13,2528,1,4)

(14,3712,1,3)

(14,4864, 1,4)
(8,24,2,3)
(11,100,2,3)

(13,240,2,2)

(13,336,2,3)

(10,18, 3,2)
(10,30, 3, 4)

)

©

NeBN]

10

<o

180, 17F, 7, C, 12, 19, 1F, 20, 21, 2A, 34, 35, 3F, 43, 44, 48
4D, 4E, 51, 5C, 63, 6C, 76, TA, 7B, 80, 81, 8B, 94, 95, 9E,
A6, AD, B3, B8, BE, C2, CD, D7, DA, DB, E2, E5, E9, EC,
EF, F0, FD, 106, 107, 10A, 118, 119, 11F, 120, 12A, 12D,
133, 134, 143, 14D, 150, 151, 156, 165, 169, 16C, 16F, 176,
17A, 17D, 181, 18B, 18C, 192, 195, 1A6, 1A7, 1AB, 1BS,
1BY, 1BE, 104, 1C8, 1CD, 1CE, 1D7, 1DB, 1DC, 1E2, 1EC,
1F0, 1F1, 1F7.

80, C0, A0, 7F: 9, A, 11, 17, 1E, 29, 2F, 31, 32, 3E, 43, 4A,
57, 58, 5D, 63, 6F, 72, 78, 7D, 80, 84, 85, 86, 8C, 94, 9B,
A3, AA, B7, B8, BD, (9, CF, D1, D2, DE, E0, E4, E5, E6,
EC, F4, FB.

60, 50, 28, 18, 47, 4,7, 9, A, C, F, 10, 15, 16, 1B, 21, 22, 29
924, 20, 30, 33, 35, 36, 38, 3D, 3E, 40, 41, 42, 44, 49, 4A,
4F, 53, 5C, 5D, 5E, 60, 67, 6F, 73, 75, 76, 78, 7B, 7C.

E0, DO, B0, 70, CF; 1, A, 10, 17, 18, 19, 1A, 1C, 21, 22, 26,
9D, 2F, 39, 3F, 43, 44, 46, 4B, 4D, 56, 58, 60, 67, 6D, 71,
79, 75, 7, 7F, 81, 82, 85, 8, 8F, 92, 9C, A4, A5, AB, B3,
B4, B6, BB, BD, C3, C8, D0, D7, D8, D9, DA, DC, E3, E4,
E5, EB, EE, F8, FF.

C0, A0, 60, EO, 9F; 1, 3, 5, 6, 7, 8, B, D, F, 16, 18, 19, 22,
94, 29, 2C, 31, 32, 35, 3A, 3F, 43, 47, 4C, 4E, 50, 53, 57, 58,
5C, 5D, 62, 67, 69, 6A, 70, 72, 7C, 7D, TF, 81, 85, 86, 88,
89, 8A, 8B, 8D, 96, 97, 99, AD, A7, A9, AE, B0, B3, B4, BB,
BC, 2, C4, C9, CF, D1, D4, D5, DA, DE, DF, E0, B4, E9,
EE, F3, F5, FA, FB, FE.

€0, A0, 90, 70, F0, 6C; 0, 2, 3,4, 7, 1A, 1D, 20, 2E, 2F, 31,
35, 38, 3B, 3C, 3F, 49, 4B, 51, 55, 5A, 5E, 60, 63, 64, 65, 67,
7A, 7D, 80, 83, 8D, 8E, 91, 92, 9C, A4, A9, B2, B6, B9, BD,
C5, C6, CE, D2, D6, D8, DB, DC, DF, E4, E7, B9, EA, F3,
F7, F8.

40, 20, 60, 10, 70, 6E, 11; 0, 3, 8, D, 15, 16, 1B, 1E, 24, 2A,
31, 34, 35, 37, 39, 3A, 3B, 3F, 41, 42, 43, 47, 49, 4C, 4D, 4F,
52, 5C, 63, 66, 68, 6D, 6E, 70, 75, 78, 7B, 7E.

7F: 11, 1F, 20, 2E, 42, 44, 48, 67, 6B, 6D, 70, 7E.

100, 3E: 44, 48, 4F, 57, 6A, 7F, 85, 89, 8E, 96, AB, B0, BE,
113, 118, 122, 124, 131, 13D, 1D2, 1D9, 1E3, 1E5, 1F0, 1FC.
300, 338, 307; A, D, 3E, 4D, 79, 7E, BD, CE, 116, 126, 155
165, 193, 1A0, 1D0, 1E3, 216, 265, 293, 2A0, 2D0, 2E3, 309
33C, 33F, 34C, 34F, 37A, 38E, 3FD.

1C0, 1B0, 168, 154; 3, 6, 19, 31, 3D, C7, CA, D1, ED, EF,
F6, 148, 14B, 160, 176, 17A, 194, 19A, 1A4, 1B7, 1BC.
1F0; 28, 91, F1, 153, 155, 1B6, 1BE, 1BF, 1C8

1FC; 18, 1B, 23, 29, 31, 46, 7B, C2, FA, 100, 149, 151, 161,
186, 1BE.
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Table II. (Cont.)

(11,24,3,2) 10 3FF,; 5, 42, 57, CF, 19B, 1A6, 1B3, 1EL, 27C, 9A3, 347, 308,

(11,36,3,3) 10 3F0; 3, 50, 86, BC, 139, 163, 1D5, 1DA, LE0, 22F, 273, 2CC,
9F9, 315, 31A, 346, 30F, 3AC.

(14,120,3,2) 11 7C0, 73C, 6B3; DA, DC, E7, ES, 15E, 161, 17E, 287, 298,
2A7, 2B7, 2BS, 301, 32F, 331.

(13,26,4,2) 12 FFF; C, F6, 210, 25C, 2A6, 2EA, 31E, 3E4, 562, 582, 598,
63C, 6C6.
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