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ABSTRACT

The Deltahedron heuristic has been demonstrably effective for generating highly-
weighted maximal planar adjacency graphs for use in facilities layout problems. In this
paper, we present a linear-time algorithm for constructing an orthogonal block plan dual
to such an adjacency graph which guarantees that all prescribed adjacencies are
preserved, all facility area requirements are satisfied and facility shapes are at worst
topologically equivalent to T-shapes.

1. Introduction and background

The graph theoretic approach to facility layout can be implemented in two parts: firstly,
construct an adjacency graph, and, secondly, develop its orthogonal dual, frequently
called a block plan, block layout or floorplan. The vertex-weighted edge-weighted
adjacency graph specifies the pairwise adjacency of all facilities (rooms, machines) for a
given problem instance and may be based on the consideration of maximization of
relationship chart scores or on the minimization of overall transportation cost. We
assume that all edge weights are non-negative. The associated vertex weights prescribe
the area that each facility should have in the final layout. No facility shape requirements
can be prespecified, but block plans whose facilities are as regularly shaped as possible
are preferable.

Geometric duality requires that the adjacency graph be planar. In the optimization
context, this translates to maximal planarity, since adding further edges of zero weight to
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surmn. The maximal planarity assumption also provides structural regularity in an
adjacency graph, which may be used to advantage in constructing its corresponding
layout. Foulds (1983), Hammouche and Webster (1985), Hassan and Hogg (1987) and
Kusiak and Heragu (1988) discuss the major aspects of the graph theoretic approach to
layout in detail.

Several techniques exist for constructing adjacency graphs from relationship score or
transportation cost data. Foulds and Robinson (1978, 1979) introduced the Deltahedron
heuristic whereby a maximal planar adjacency graph is constructed by a sequence of
"insertions” of a new vertex and three edges into a triangular face, starting with a
complete graph on four vertices (K4). Green and Al-Hakim (1985) echoed these ideas.
Foulds and Giffin (1985, 1987) extended the basic relationship score approach to include
transportation costs and the concept of near-adjacency of facilities. Leung (1992) further
generalised the work of Foulds and Robinson (1978) in the form of a greedy constructive
heuristic. Al-Hakim (1991) and Eggleton and Al-Hakim (1991) provided a unified
approach to improvement schemes for increasing the total weight of previously
constructed graphs. Boswell (1992) presented a face-augmentation heuristic which she
proved could create any maximal planar graph using an appropriate edge-weighting
function.

Once the adjacency graph has been obtained, a corresponding block layout must then be
constructed. The layout must reflect the pairwise adjacency requirements of the
adjacency graph, and the area specification of each of the facilities. This more difficult
phase has been previously addressed in the graph theoretic context in Hassan and Hogg
(1989), where the (geometric dual of the) adjacency graph is translated into a block layout
defined on a grid pattern. They assume that the area of each facility comprises an integral
number of unit squares and that area variation between facilities is relatively small in
order that facility shape irregularity be reduced. Their approach appears to fail in cases
where the adjacency graph contains a separating triangle; Al-Hakim (1992) addresses this
difficulty and extends the approach to overcome it. Giffin et al (1994) present another
remedy using a modified insertion order. Giffin et at (1986) described a rudimentary
approach for the generation of block plans from a restricted class of adjacency graphs
generated by the Deltahedron heuristic in which any facility is to be placed at most two
walls from the building exterior. Rinsma et al (1990) provided a mechanism, based on
properties of maximal outerplanar graphs, for generating orthogonal duals from any
maximal planar adjacency graph, including arbitrary area specifications and allowing for
the possibility of non-convex plan boundaries. This technique, although theoretically
efficient, does not yet appear readily adaptable to computer implernentation. Welgama et
al (1994) present an alternative knowledge-based approach which does not guarantee to
provide in the layout all adjacencies specified in its dual graph.

Rinsma (1988) showed that if the adjacency requirements are specified by a tree instead
of a maximal planar graph, a rectangular block plan (i.e. in which each facility is a
rectangle) with arbitrary facility areas may be constructively obtained in all cases. A
concept related to tree adjacency is that of a design skeleton, mainly applicable to spine
layouts and to layouts not specifying rectangular exteriors. Several papers discuss these
and related ideas, for example Montreuil and Ratliff (1989) and Montreuil et al (1987). If
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the adjacency graph is msteaa delined to be maximal outerplanar, the guarantce ol
rectangularity in general is lost if facility area requirements must be satisfied (Rinsma
(1987)). Rinsma et al (1990) provided an example of the smallest maximal planar
adjacency graph for which no block plan with each room rectangular or L-shaped exists,
irrespective of prescribed facility areas.

Other work is based upon various network representations in which cardinal point
orientations must be predefined, and "horizontal" and "vertical" wall direction problems
solved. In general, the graphs considered for dualization are not maximal planar, because
the output requirements for the problems investigated usually specify that the block plan
be rectangular. See, for example, Roth et al (1982).

Bhasker and Sahni (1988) provided a linear-time rectangular dualization procedure for
"properly triangulated" planar graphs in the context of boundary-oriented circuit design,
while Bhasker and Sahni (1987) develop a linear time algorithm for determining whether
or not a rectangular dual exists corresponding to an instance of such a graph. Lai and
Leinwand (1990) give a characterisation of adjacency graphs for which a rectangular
block layout exists, and show how constructing such a layout is equivalent to solving a
bipartite matching problem. Note, however, that none of these techniques allow for
predefinition of facility area.

2. Generating an orthogonal block plan

2.1 Generating the adjacency graph

The class of adjacency graphs for which the approach we present here is applicable are
those generated by the Deltahedron heuristic and its variants (Robinson and Foulds
(1978), Foulds and Giffin (1985, 1987, 1990)), which have been shown empirically to
construct highly-weighted maximal planar adjacency graphs, despite possessing an
asymptotically arbitrarily poor worst-case performance guarantee (Dyer et al (1985)). In
particular, we extend the approach of Giffin et al (1986) so that the dimensioned dual
layout of any adjacency graph generated by the Deltahedron heuristic may be constructed.

The basic version of the Deltahedron heuristic may be summarized as follows. For
simplicity, we consider only the objective of maximizing relationship scores. Consider a
layout problem with (n-1) facilities, and the exterior facility (denoted by vertex 1), each
represented by a vertex of the maximal planar weighted adjacency graph to be
constructed. The graph is built up one vertex and three edges at a time, starting with an
initial triangulation of four vertices, K4. Input requirements are the initial K4 and the
"insertion order" in which the vertices will be processed. If the relationship chart data is
given in the form of a matrix R = [rjj], define

n
w(i) = X 5 i=2 .,n
=1
and reindex the vertices so that w(2) = w(3) = ... = w(n). w(i) is a measure of the total
adjacency desirability score for facility i. The vertices of K4 are then taken to be {1,2, 3,

4} and the vertex insertion order is 5, 6, ..., n. Each vertex 5, 6, ..., n is successively
inserted into the face of the triangulation which results in the largest increase in edge
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inserted next, all faces in the triangulation built up so far are examined. The face (x,y, z)
with vertices x, y and z yielding the largest sum

Iyy + Fyy + Izy

is identified, edges xv, yv and zv, vertex v and faces (x, y, v), (x, z, v) and (y, z, v) are
added, and face (%, v, z) deleted. (This is called "inserting” vertex v in triangle (x, y, z)).
This process continues until all vertices have been inserted, yielding a maximal planar
adjacency graph whose construction required no planarity testing phases.

In this paper, we assume that the exterior facility (w.l.o.g. labelled 1) is one of the
vertices of the initial K,. If this is not the case it can be shown that a revised insertion
order can always be constructed in O(nz) time which does include 1 € K, and which
generates precisely the same adjacency graph (see Watson (1994)).

2.2 Constructing an orthogonal dual graph

The initial graph G = K4 may be drawn as in Figure 1(a). A (dual orthogonal) block plan
B(G) corresponding to G is shown in Figure 1(b), in which (recalling that vertex 1 refers
to the exterior facility) the areas of facilities 2, 3, and 4 need not yet be considered
explicitly, allowing the undimensioned representation of the layout to be used.
Subsequent simple scaling of facility areas in the orthogonal dual graph will incorporate
the actual area data. The wall intersections of B(G), labelled Jy, Jp, J3 and J4 in Figure
1(b), are called 3-joints (also sometimes referred to as dual points), whereas those
denoted by j1, j2, j3 and j4 we term 2-joints. Each 3-joint corresponds to the

. i J2
2
J2(2,3,4)
J1(1,2,3) 13(L2,
3 4
3 4 Ia Ja(1,3,4) 13
Figure 1{a) The initial adjacency graph, G = Ky Figure 1(b) Block plan B(G)

confluence of the walls of three facilities (for instance, J; corresponds to facilities 1, 2,
and 3, and Jo to 2, 3, and 4), whereas 2-joints are merely a consequence of the
orthogonalization process. Furthermore, following Foulds and Robinson (1978) and
Green and Al-Hakim (1985), each 3-joint in B(G) is in one-to-one correspondence with a
triangle in G (for example, J; with (1, 2, 3) and J with (2, 3, 4)). It is convenient to
directly implement this association in B(G) by labelling each 3-joint with its
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corresponding triangle i (, as depictea in Figure 1(p); this labeliing may DE casily
updated to reflect any subsequent triangle addition or deletion in G. As long as this
duality correspondence is maintained, explicitly constructing G becomes unnecessary for
the construction of B(G) since both depict equivalent information, provided that the initial
K4 and the Deltahedron insertion order are known a priori.

If a triangle (f1, fp, f3) in G is eliminated by the insertion of a new vertex, f, say, then, in
B(G). the facility corresponding to f must be placed adjacent to those facilities
corresponding to the vertices fy, f; and f3, in order that B(G) exactly reflect the new
adjacencies in G. In order to maintain regularity of the shapes of facilities f}, f; and f3 in
B(G) (and of facility f itself), an effective placement mechanism must be devised; a
suitable choice involves placing f exclusively "inside" one of fi, f; or f3, bordering the
other two facilities. (For simplicity, f; will denote vertex fj in any references to G, and
the corresponding facility f; in references to B(G)). The particular choice made must
allow each facility in B(G) to be later "inflated" to reflect its actual area, irrespective of
subsequent placements within it, whilst at the same time maintaining the required
adjacencies (as specified by the edges of G) and maintaining the regular facility shapes
that were defined during the placement process. Figure 2 shows the four possibilities for
the insertion of facility 5 in the initial B(G) that retain the most regular shapes for the
facilities. The 3-joints corresponding to the four original insertion triangles in G are
indicated in B(G) by an asterisk. We describe such insertions as being at a particular 3-
joint in B(G). Further, if a facility f, is being placed within a facility fJ we refer to f; as
the placement host of facility f,.

The rationale behind the configuration in Figure 2(a) is as follows, and is typical of the
insertion process at any stage of the construction of B(G). Facility 5 is being inserted at
to 3-joint (1, 2, 3), i.e. adjacent to facilities 1, 2 and 3. To retain the rectangular
boundary of the block plan, the placement host in B(G) will be either facility 2 or 3. If 2
were chosen as in Figure 3, B(G) would take in its most regular form one equivalent to
Figure 3; all existing facilities (together with 5) would retain their regular (rectangular)
shapes, and the required new adjacencies (15, 25, 35) would be assured, irrespective of
the actual facility areas. However, if a,ds 2 4,8, (where aj denotes the area of facility 1)
and the rectangular shape facility of each facility is maintained, adjacency 23 would be
lost. Therefore, this form of placement will never be allowed; instead, the form of Figure
2(a) would be used, in which 3 is the placement host for 5. Areas a, and a, may, as the
result of subsequent placement operations within them, be implicitly inflated by the areas
of the facilities they then host, and this possibility is allowed for by ensuring that any
subsequent placement is made consistently on the same "side” of a wall. A consequence
of this requirement is that facility 2 (or whichever facility is placed at the “top” of the
layout) will never be a placement host. Note that the relative facility areas here have been
used only to motivate one aspect of the placement process; the final construction phase
must proceed independently of such data. The resulting facility shapes should remain as
regular as possible, and all required adjacencies in the plan must be provided for
irrespective of variations in the areas of the facilities. As noted above some 3-joint
descriptions require updating to reflect the insertion of vertex 5: face (1, 2, 3) is deleted
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and replaced by faces (1, 2, 5), (1, 3, 5) and (2, 3, 5); 3-joint (1, 2, 5) therefore replaces
(1,2, 3), and the new 3-joints (1, 3, 5) and (2, 3, 5) are created, as shown in Figure
2(a). The placements of Figure 2(b) and 2(c) are similar to that of Figure 2(a), but
placing 5 relative to (2, 3, 4) differs, since 5 must not be adjacent to 1. This cannot be
accomplished whilst maintaining the rectangular shape of all facilities; either 3 or 4 will
become L-shaped, depending on which is chosen as the placement host. The updated 3-
joint descriptions, however, follow the previous pattern, giving the plan of Figure 2(d).

w
~

Figure3 A rejected placement format

Before providing further details we illustrate the construction. Suppose that the insertion
order and 3-joint (or insertion triangle) sequence for a given problem is:

(1,2,3)
(1,3, 4)
(3. 4. 6)
(1,2, 4
2,3,5)
(1,3,5)
(2,3, 4)

— O D 00~ ON N

1
1
A block plan B(G) corresponding to this data set is depicted in Figure 4, where the 3-

joint descrip-tions have been suppressed. Note that, in terms of the placements outlined
in Figure 2, .

5 : (1,2,3) has the form of 2(a)
6 : (1,3, 4) has the form of 2(a), rotated through 90°
and reflected about a horizontal axis
7 : (3, 4, 6) has the form of 2(d)
8 : (1,2, 4) has the form of 2(d), reflected about a
. vertical axis
9 : (2,3,5) has the form of 2(d), reflected about a

vertical axis
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10 : (L, 2,2) nas a rorm sirular to that of Z(a)

11 : (2,3,4) has a form similar to that of 2(d)
2
5|9 3 11 8
4
7 6
10

Figure4 B(G) for the given insertion data

Clearly, the placement hosts have not been assigned arbitrarily; so-called placement
directions (indicated by the arrows in Figure 2) specify these, and will be discussed later.
Facility 7 has been placed within 6 rather than 4, this ensures (see later) that 4 will at
worst become topologically equivalent to a T-shape. Facility 9 was placed within S rather
than 3 because 5 contained a 2-joint at that stage, but 3 did not; shape regularity can be
maintained (or worsened less) by placement within facilities possessing a 2-joint, if
possible. Facility 10 was placed within 5 instead of 3, since, otherwise, the adjacency 35
could be lost if a4 and a,, happened to be too large in relation to a; and as, as discussed
above. We reiterate that knowledge of the actual facility areas is not required, in
choosing the placement host.

Two "basic placement operations” are readily identifiable as those of Figures 2(a) and
2(d); each has the special variation in which the placement host is L-shaped rather than
rectangular. It still has to be decided, however, which facility should be chosen as the
placement host at each 3-joint of B(G) in order to apply these operations. To this end,
call the placement operations of Figure 2(a) and 2(d) PO and PO2 respectively. The
general form of PO1 is given in Figure 5(a), in which f, has been placed in f, at 3-joint J.
For simplicity, the fact that f, is chosen as the placement host at J is indicated by a
placement direction arrow emanating from J, the notation used in Figure 2. New
3-joints J1 and J; are created by the placement of f. In the undimensioned dual layout,
J; and J, are created by bisecting the wall connecting the adjacent joints. The placement
direction at J; is as shown in order that any further facility placed relative to it impacts the
least on the shape of f; and fi; placement of f3, say, in fy, will leave f| and f>
rectangular, whereas placement of f3 in f| would leave f; rectangular but f; L-shaped.
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(This is the same rationale as for POI 1tself, arter appropridic relection aid 1owauoly).
Once the placement direction for J has been established, the direction for J| must follow
as indicated, in order to maintain the f1f; adjacency irrespective of subsequent placements
in either T; or Jo. When applying PO1 to an L-shaped placement host, the 3-joint J;
bisects the wall connecting J and the 3-joint adjacent to J, with J, equidistant from the 2-
joint, and orthogonality maintained .

I 1 C, (3-joint)

I 3-joint -
B | & L

: (If C, a 2-joint)
. G BN Gy
2-joint Ty 3-joint {7 (If C; a 3+joint)

Figure 3(a)  Placement Operation PO1 Figure 5(b)  Placement operation PO2

The placement directions for J1 and J; are defined analogously as for PO1, whereas those
for the other existing 3-joints of f have already been defined as a result of a previous
application of PO2, which is considered next. The "pature" of 3-joint J in terms of its
placement direction has not changed, so further placement at J, now within fp, will take
the same form as before the insertion of fp. The general form of placement operation
PO2 is given in Figure 5(b) for the case of a rectangular placement host. When the
placement host is L-shaped, the obvious modifications are applied. Again the placement
is of f in f} at 3-joint J.

The two cases where joint C, is a 2-joint or a 3-joint may be considered together, as only
the placement direction at 3-joint C, is affected in each case. Note that C, must be a 3-
joint here, otherwise PO1 would be applied. The new 3-joints created are again labelled
J, and J, and the reasons for choosing their placement directions are as follows. Had
either been directed within f; instead of f), f; would prematurely lose its L-shape, as
shown, for example, in Figure 6, in the case of inserting f; atJ;. Note in Figure 5(b),
however, that C; must be a 3-joint; otherwise, f3 would have been placed within | using
PO1L. Itis evident from their definitions that application of PO1 and PO2 will result in no
prescribed adjacencies being lost, up to an (arbitrary) tolerance of minimum adjacency
width. We also note that the insertion of only one further facility into the initial layout
uniquely specifies all future placement directions.
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Figure 6 Incorrect insertion option following PO2

We reiterate that, in the undimensioned version of B(G), the locations of the 3-joints of a
newly placed facility at 3-joint J are determined by simply halving the wall-length
distance to the 3-joint adjacent to J (in the case of PO1) and to both of the 3-joints
adjacent to J (in the case of PO2). It turns out that this may be done without
compromising the actual required area of the facilities; the arbitrary areas in B(G) will
assume their correct values in the subsequent "inflation” phase. Clearly, the amount of
work required for the placement of each new facility is bounded above by a constant, so
that the placement process is linear in the number of facilities.

In order to prove that we will indeed obtain a worst case room shape of T we will assume
that the first insertion has been made already into the layout. Recall the four possibilities
for this in Figures 2(a) to 2(d). We note that the placement directions as shown are by
now completely specified. The insertion of the entering facility is made totally within the
appropriate placement host, therefore at each insertion only the placement host can
possibly have its room shape worsened. Note that any application of PO! does not
worsen the shape of f, therefore only PO2 can. Similarly if we perform PO2 when f is
a rectangle, then we easily see that f; becomes L-shaped. Hence the only way to create a
T-shape is by performing PO2 on an L-shape placement host. Consider, therefore, PO2
with f, L-shaped. Referring again to Figure 5(b) the only way in which f; can become
T-shaped is if C, is a 3-joint and we insert at C;. (If C; is a 2-joint we are performing
PO1). If we perform this placement, f, will become T-shaped, but, by construction, no
placement directions will now lie within f;. Hence f; can never again be a placement host
and so cannot become any worse than T-shaped.

An outline of the procedure for constructing the undimensioned dual layout of a given
maximal planar adjacency graph is-given below in Algorithm Deltahedron_Dual.
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Algorithm Deltahedron_BDual
Input: Deltahedron insertion order, DIO, in form (vertex, triangle), of maximal planar
adjacency graph G; initial K4 (*1 € K4*)

Output: an undimensioned orthogonal layout, dual to G.

begin
Create initial B(G) configuration (*Figure 7*)
(* reflections and rotations required for POi are implicit*)
for each (vertex, triangle) of DIO do
begin
f, = new facility (vertex) to be inserted
J = 3-joint (triangle)
f, = placement host indicated by placement direction from J
if thereis a2-joint J’ adjacent to J then
begin
apply PO1 atJ
add placement directions for f;.
end
else begin
apply PO2 at J
add placement directions for f,
end
end
end

[

(1,2,

(92}
Nl

(1,2,4)

(1,3,4)

Figure 7  The initial B(G) configuration
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block plan construction process. Again suppose that the initial Ky has vertices 1, 2, 3
and 4, that the insertion order is 5, 6, ..., 14, and that the insertion triangle (vertex)
sequence is given as in Table 1. Included in Table I is the required placement operation
for each insertion. In some cases, for instance the insertion of 7 in (1, 4, 6), operation
PO1 is applied with rotation and reflection, but the basic principle is unchanged. The
resulting undimensioned B(G) is given in Figure 8, and the corresponding adjacency
graph is shown for completeness in Figure 9. Note that the arbitrary initial placement
directions (defined in Figure 7) as within facility 4 had to be redirected within facility 3
following the insertion of facility 5; this is the only case where this can occur. Further
placements in B(G) would take place from 3-joints in the directions indicated by the
arrows in Figure 8.

w
3
N
o
»
3

6

%

3

Figure 9 The adjacency graph for the example problem
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Table 1 Data for the Example Problem

Facility Triangle Placement Operation
5 (1,2,4) POl
6 (1,3,4) Reorient placement directions for

(1, 3, 4), (2, 3, 4) since 2-joint
adjacent at left of (1, 3, 4); PO1

7 (1,4, 6) PO1
8 4,6,7) PO2

(1,6,7) POl
10 (2,4, 5) PO2
11 (1,4, 5) POl
12 (1,2,5) PO2
13 (2,3,4) PO2
14 (4,5, 10) POl

2.3 Constructing the dimensioned layout by "inflation"

Inflating the undimensioned plan to reflect this data turns out to be straightforward, by
sequentially considering any "blocks" of facilities created by either the initial B(G)
configuration or by applications of placement operation PO1.

Firstly the exterior dimensions of the building need to be defined. The exterior envelope
n

is assumed to be rectangular, and the enclosed layout area concomitant with Y, a; for an
i=2

(n~1) facility problem. We motivate the ideas behind the general inflation procedure by

example. Suppose that the areas (a;) of facilities 2 through 14 are

[10,6,10,9,6,7,2,27,4,2,3,2, 12]
so that the area of the final block plan is 100 units.
Referring to Figure 8, the horizontal interior wall of facility 2 is placed one-tenth of the
vertical distance from the top of the layout, since az = 10. The vertical interior walls of

facility 4 may be placed according to the relative block areas,

az+ag+ay+ag+ag+ajzraq:as+ajgt+ay; +app +ayg.
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az+ajz:ag.ay+ag+ao
and
as+ajp+ap+ayg:ay]

respectively. The definition of the vertical interior wall for facility 9 then corresponds to
the ratio
a9 : a7+ ag.

The walls of facilities 8 and 13, which resulted from application of PO2, may be defined
in the relative proportions a3 : aj3 and a7 : ag. A sensible approach for these is to define
the shape of 13 to be similar (in the geometric sense) to that of 3; likewise, the shape of 8
should be similar to that of 7.

Inflation after an instance of PO2 applied to an L-shaped placement host is slightly more
complicated. The two rectangles containing facilities 10, 12, and 14, within facility 5
require this. In this case it is necessary to partition the block of area as + ajq + a5+ a4
so that the rectangle comprising 10 and 14 and the rectangle comprising 12 do not
"overlap”, i.e. the adjacency between 2 and 5 is retained. This can always be easily
achieved.

Finally, the area containing facilities 10 and 14 may be partitioned in accordance with the
ratio of ajg and aj4. Figure 10 shows the final scaled plan.

2

3 13 4 10 5112
14

6

9 718
11

Figure 10  The final scaled block plan
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The first step of the general intlation procedure is to determine the revisea 5-joint
positions for the facilities corresponding to the initial 3 vertices (other than 1) of K4 (2, 3
and 4 in the example), by simple proportionality. From then on, the general principle is
to find the revised 3-joint positions for all those facilities subsequently placed using the
placement operations in priority order PO1, then PO2, (e.g. a PO2 cannot usually be
performed before a PO1, except directly on the initial B(G)). Inflations arising from PO1
involve only simple rectangular proportionality conditions. PO?2 requires the further use
of similarity, or other simple schemes when placement hosts are L-shaped. The inflation
procedure takes O(n) time, where n is the number of facilities, so that the complete
orthogonal dualization scheme is also O(n).

3. Summary and conclusions

Given the insertion order of a maximael planar adjacency graph produced using the basic
Deltahedron heuristic, we have shown how to construct its dimensioned dual orthogonal
block plan, irrespective of the relative area specifications of the facilities, in time linear in
the number of facilities. We note that it is not so straightforward to incorporate into the
block plan any adjacency modifications caused by improvement phases developed for the
Deltahedron heuristic (edge-interchange or vertex relocation). These would likely require
extensive rearrangement of the plan using a sequence of new placement operations not
possessing the simplicity of PO1 or PO2, or the necessity of restarting the layout phase
from scratch.

If the dual of any given maximal planar adjacency graph is required, the techniques of
Rinsma et al (1990) could be applied, with one exception: a check of the given adjacency
graph should be made to test if a Deltahedron insertion order may be imposed upon it by
successively deleting vertices of degree 3 from the graph; if this process may be
continued until only Ky is left, a reversal of the vertex deletion order yields the required
insertion order.

If problem data is provided in the form of relationship score data or transportation cost
data, available variations of the Deltahedron heuristic can provide an effective means of
generating a highly-weighted adjacency graph and the required insertion order (see
Foulds and Giffin (1985) and (1987)).

The rather rigid structure of the final (dimensioned) plan has some drawbacks, which are
mitigated somewhat by the ease of its development. For instance, the facility placed at
the "top" of the plan will end up a long and narrow "through room". Similarly, the other
two rooms of the initial configuration will often end up extended and distended by the
very nature of the placement process. Resorting to different definitions of K4 (perhaps
including the three largest facilities that should be adjacent to the exterior) or permitting a
permutation of the positions of the first three facilities may result in an improved final
layout.

Most of the difficulties outlined above are caused by the maximal planarity requirement.
Its associated triangulation property may be used to advantage (only two placement
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necessarily result in "tentacle-like" corridors within some facilities. The incorporation of
circulation zones in the form of communication paths (Gawad and Whitehead (1976)) or
courtyards (Baybars (1982)) may reduce this difficulty. A certain amount of post-
construction ornamentation, whereby some asthetic rearrangement of subgroups of
facilities is undertaken, may reduce some shape distortion. In particular, for the example
problem, facilities 10 and 14 could be placed within 4 instead of 5, given that the area of
facility 11 is small enough to make any reshaping unnecessary. Such ornamentation
would prove very difficult to automate, and firstly requires a rigorous definition of shape
regularity.

Work is currently progressing on adapting the techniques in Hassan and Hogg (1989)
and Rinsma et al (1990) to cater for arbitrary facility areas and to minimize shape
distortion as much as is possible.
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