Blocking set preserving embeddings of partial

$K_{4}-e$ designs

C. C. Lindner* and C. A. Rodger ${ }^{\dagger}$
Department of Discrete and Statistical Sciences
Auburn University
Auburn, AL 36849-5307
USA

Abstract

In this paper we show that a partial $K_{4}-e$ design of order n and index λ that has a blocking set S can be embedded in a $K_{4}-e$ design of order $v \leq 10 n+20 \sqrt{n}+56$ and index λ that has a blocking set S^{*} such that $S \subseteq S^{*}$. This also improves upon the smallest known embedding for partial $K_{4}-e$ designs.

1 Introduction

A (partial) H-design of a graph G is an ordered pair (V, B), where V is the vertex set of G and where B is a collection of edge-disjoint copies of H with the property that each edge of G is in (at most one) exactly one copy of H in B. If G is (a subgraph of) λK_{n} then we say that (V, B) is a (partial) H-design of order n and index λ.

An H-design (V, B) of G is said to be embedded in an H-design $\left(V^{\prime}, B^{\prime}\right)$ of λK_{n} if $V \subseteq V^{\prime}$ and $B \subseteq B^{\prime}$. There have been many papers written on the embedding of H-designs, especially in the case where $H=K_{3}[1,2]$, but also for example when H is a cycle $[7,8]$ and when $H=K_{4}-e[6]$. The most common embedding question asked seems to be: What is the smallest integer v such that any partial H-design of order n and index λ can be embedded in an H-design of λK_{v} ? Of course, v is a function of n, and conceivably also of λ. The most famous outstanding problem in this area is to show that if $H=K_{3}$ and $\lambda=1$ then $v=2 n+1$ (it has been shown that if $H=K_{3}$ and 4 divides λ then $v=2 n+1$, and this is best possible).

To date, the smallest known embedding for any partial $K_{4}-e$ design of order n and index λ is in a $K_{4}-e$ design of order $v=15 n+46[6]$, but this is certainly

[^0]not the smallest possible value of v. However, even obtaining this embedding was a breakthrough, produced by using a generalization of Cruse's Theorem [5] for embedding partial idempotent commutative quasigroups to the embedding of partial groupoids (see Section 2). This construction is quite flexible, a fact that we demonstrate in this paper by showing that not only can a small embedding be produced, but also that any blocking set (see below) of the original partial $K_{4}-e$ design can be extended to a blocking set of the containing $K_{4}-e$ design of λK_{v}.

A blocking set of an H-design (V, B) is a set $S \subseteq V$ such that each copy $h \in B$ of H satisfies $V(h) \cap S \neq \emptyset$ and $V(h) \cap S \neq V(h)$. Again, there have been many papers written in this area. For example, a long series of papers finally culminated in the settling of the existence of K_{4} - designs of λK_{v} that have a blocking set, with a couple of possible exceptions [3], and the existence of H-designs of K_{v} with blocking sets has also been settled for all connected graphs H with at most 5 edges [4, 9] (and in particular for $K_{4}-e$ designs).

In this paper we show that any partial $K_{4}-e$ design of order n and index λ that has a blocking set S, can be embedded in a $K_{4}-e$ design of λK_{v} that has a blocking set S^{*} such that $S \subseteq S^{*}$ and $v \leq 10 n+20 \sqrt{n}+56$; so in addition to extending the blocking set, we also improve upon the best known embedding for partial $K_{4}-e$ designs for $n \geq 16$ (see the remark following Theorem 2.2).

Let (a, b, c, d) denote the copy of $K_{4}-e$ with edge set $\{\{a, b\},\{a, c\},\{a, d\},\{b, c\}$, $\{b, d\}\}$.

2 Embedding Groupoids

A partial groupoid ($P, 0$) is said to be idempotent if $x \circ x=x$ for all $x \in P$. A partial groupoid ($P, 0$) is called an embedding groupoid if $(1)(P, 0)$ is idempotent, (2) if $x \neq y$ then either both or neither of the products $x \circ y$ and $y \circ x$ is defined, (3) ($P, 0$) is row latin, and (4) each $x \in P$ occurs as a product an odd number of times.

Theorem 2.1 ([5]) Any partial embedding groupoid of order n can be embedded in an idempotent groupoid of order $2 n+1$ which is (1) row latin, and (2) the main diagonal together with all products not defined in the given partial embedding groupoid form a partial symmetric idempotent quasigroup.

Remark The fact that in (2) we form a partial quasigroup and not just a partial groupoid is important in what follows.

Certainly a stronger result than the following can be proved, but this will suffice for our purposes. Let $\left(a ; a_{1}, \ldots, a_{m}\right)$ denote the m-star $K_{1, m}$ on the vertex set $\left\{a, a_{1}, \ldots, a_{m}\right\}$ in which a has degree m.

Lemma 2.1 For all $\ell \geq 1$ there exists a simple graph G on 2ℓ vertices with at least $\binom{2 \ell}{2}-3 \ell$ edges for which there exists a $K_{1,4}$-design with the additional property that each $K_{1,4}$ can be split into two copies of $K_{1,2}$ so that the resulting $K_{1,2}$-design of G has a blocking set of size ℓ.

Proof: We construct such a graph on the vertex set $\mathbb{Z}_{\ell} \times \mathbb{Z}_{2}$, with blocking set $\mathbb{Z}_{\ell} \times\{0\}$. Define the set B of copies of $K_{1,4}$ as follows.

If $\ell=4 x+1$ then $B=\{((i, k) ;(i+2 j+1, k),(i+2 j+2, k),(i+2 j+1, k+$ 1), $\left.(i+2 j+2, k+1)) \mid i \in \mathbb{Z}_{\ell}, j \in \mathbb{Z}_{x}, k \in \mathbb{Z}_{2}\right\}$; there are ℓ edges in no copy of $K_{1,4}$ in B.

If $\ell=4 x+3$ then $B=\{((i, k) ;(i+2 j, k),(i+2 j+1, k),(i+2 j, k+1),(i+2 j+1, k+$ 1)) $\left.\mid i \in \mathbb{Z}_{\ell}, 1 \leq j \leq x, k \in \mathbb{Z}_{2}\right\} \cup\left\{(i, 0) ;(i+1,0),(i+1,1),(i, 1),(i-1,1) \mid i \in \mathbb{Z}_{\ell}\right\} ;$ there are ℓ edges in no copy of $K_{1,4}$ in B.

If $\ell=4 x$ then $B=\{(i, k) ;(i+2 j, k),(i+2 j+1, k),(i+2 j, k+1),(i+2 j+1, k+1)) \mid$ $\left.i \in \mathbb{Z}_{\ell}, 1 \leq j \leq x-1, k \in \mathbb{Z}_{2}\right\} \cup\left\{(i, 0) ;(i+1,0),(i+1,1),(i, 1),(i-1,1) \mid i \in \mathbb{Z}_{\ell}\right\} ;$ there are 3ℓ edges in no copy of $K_{1,4}$ in B.

If $\ell=4 x+2$ then $B=\{((i, k) ;(i+2 j+1, k),(i+2 j+2, k),(i+2 j+1, k+1)$, $\left.(i+2 j+2, k+1)) \mid i \in \mathbb{Z}_{\ell}, j \in \mathbb{Z}_{x}, k \in \mathbb{Z}_{2}\right\}$; there are 3ℓ edges in no copy of $K_{1,4}$ in B.

It is trivial to see that each copy of $K_{1,4}$ can be split into two copies of $K_{1,2}$ so that each copy of $K_{1,2}$ has a vertex in $\mathbb{Z}_{\ell} \times\{0\}$ and a vertex in $\mathbb{Z}_{\ell} \times\{1\}$, so indeed $\mathbb{Z}_{\ell} \times\{0\}$ is a blocking set.

Lemma 2.2 There exists a $K_{4}-e$ design of K_{6} with a blocking set of size 3 , and one of size 4 .

Proof: $\quad\{1,2,3\}$ and $\{1,2,3,4\}$ are each blocking sets for the $K_{4}-e$ design $\left(\mathbb{Z}_{6},\left\{(i, i+3, i+1, i+4) \mid i \in \mathbb{Z}_{3}\right\}\right)$ of K_{6}.

We are now ready for the main result.
Theorem 2.2 A partial $K_{4}-e$ design of order n and index λ that has a blocking set S can be embedded in a $K_{4}-e$ design of λK_{v} that has a blocking set S^{*} such that $S \subseteq S^{*}$ and $v \leq 10 n+20 \sqrt{n}+56$.

Remark It may be worth noting that the theorem proves a slightly stronger result, namely that $v \leq 10 n+10 \alpha+6$, where α is at most the smallest even integer with $\alpha \geq 2 \sqrt{n}+3$. Also, the size of the blocking set produced is $|S|+4 n+9 \alpha / 2+3$.

Proof: Let (P, B) be a partial $K_{4}-e$ design of order n and index λ with a blocking set S.

For $1 \leq i \leq \lambda$, let G_{i} be the simple graph with vertex set P and with $\{u, v\} \in$ $E\left(G_{i}\right)$ iff $\{u, v\}$ occurs in at least i copies of $K_{4}-e$ in B.

Let $2 x_{i}(\leq n)$ be the number of vertices of odd degree in G_{i}. Let α be the smallest even integer satisfying $\binom{\alpha}{2}-3 \alpha / 2 \geq 2 n$ (clearly $(2 \sqrt{n}+3)(2 \sqrt{n}-1) / 2 \geq 2 n$, so certainly $\alpha \leq 2 \sqrt{n}+5$). Let A be a set of $\alpha=2 \ell$ vertices with $P \cap A=\emptyset$. For $1 \leq i \leq \lambda$ let H_{i} be a graph with vertex set A containing $4 x_{i}(\leq 2 n)$ edges as described in Lemma 2.1. In each case, let $A^{\prime} \subseteq A$ be a blocking set for the $K_{1,2}$-design of H_{i} (A^{\prime} is independent of i).

For $1 \leq i \leq \lambda$, arbitrarily gather the $2 x_{i}$ vertices of odd degree into x_{i} pairs, and to each pair arbitrarily assign one of the x_{i} copies of $K_{1,4}$ in the $K_{1,4}$ design of H_{i}.
$(a ; b, c, d, e)$, if $K_{1,4}$ is split into the two copies $(a ; b, c)$ and $(a ; d, e)$ of $K_{1,2}$ in Lemma 2.1 then let B_{i} contain the two copies $\left(u_{1}, a, b, c\right)$ and $\left(u_{2}, a, d, e\right)$ of $K_{4}-e$. Let G_{i}^{\prime} be the simple graph with vertex set $P^{\prime}=P \cup A$ formed from G_{i} by adding the edges in the copies of $K_{4}-e$ in B_{i}. If u has odd degree in G_{i}, then $d_{G_{i}^{\prime}}(u)=d_{G_{i}}(u)+3$, so u has even degree in G_{i}^{\prime}. Also, since the copies of $K_{1,2}$ can be paired to form copies of $K_{1,4}$, each vertex in A has even degree in G_{i}^{\prime}. So for $1 \leq i \leq \lambda$, each vertex in G_{i}^{\prime} has even degree. Clearly A^{\prime} is a blocking set for B_{i}.

For $1 \leq i \leq \lambda$ form a partial idempotent groupoid $\left(P^{\prime}, o_{i}\right)$ where
(i) $x \circ_{i} x=x$ for all $x \in P^{\prime}$, and
(ii) if $x \neq y$, then $x \circ_{i} y=y$ and $y \circ_{i} x=x$ if $\{x, y\} \in E\left(G_{i}^{\prime}\right)$ and otherwise $x \circ_{i} y$ and $y o_{i} x$ are undefined.

Then clearly (P^{\prime}, o_{i}) is an embedding groupoid, satisfying property (4) of embedding groupoids because each vertex in G_{i}^{\prime} has even degree. Therefore we can apply Theorem 2.1 to embed $\left(P^{\prime}, o_{i}\right)$ in a groupoid (Q, o_{i}) of order $2\left|P^{\prime}\right|+1$ which satisfies properties (1) and (2) of Theorem 2.1.

We can now define a $K_{4}-e$ design $\left(\{\infty\} \cup\left(Q \times \mathbb{Z}_{5}\right), B^{*}\right)$ as follows.
(i) For each $a \in Q$ let $\left(\{\infty\} \cup\left(\{a\} \times \mathbb{Z}_{5}\right), B_{a}\right)$ be a $K_{4}-e$ design of λK_{6} in which $\{\infty,(a, 0),(a, 1),(a, 2)\}$ is a blocking set if $a \in S \cup A^{\prime}$, and in which $\{\infty,(a, 1),(a, 2)\}$ is a blocking set if $a \notin S \cup A^{\prime}$, and let $B_{a} \subseteq B^{*}$.
(ii) For each $(a, b, c, d) \in B \cup\left(\cup_{i=1}^{\lambda} B_{i}\right)$ and for each $x, y \in \mathbb{Z}_{5}$ (including $x=y$) let $\left((a, x),(b, y),\left(c, x \otimes_{1} y\right),\left(d, x \otimes_{2} y\right)\right) \in B^{*}$, where $\left(\mathbb{Z}_{5}, \otimes_{1}\right)$ and $\left(\mathbb{Z}_{5}, \otimes_{2}\right)$ are defined by the following quasigroups.

\otimes_{1}	0	1	2	3	4
0	0	2	3	4	1
1	4	3	1	2	0
2	2	1	4	0	3
3	3	0	2	1	4
4	1	4	0	3	2

\otimes_{2}	0		1	2	3
0	0	4	2	1	3
1	1	2	3	4	0
2	4	3	1	0	2
3	2	0	4	3	1
4	3	1	0	2	4

(iii) For $1 \leq i \leq \lambda$, if $\{a, b\} \notin E\left(G_{i}^{\prime}\right)$ then $\left((a, j),(b, j),\left(a \circ_{i} b, j+1\right),\left(a \circ_{i} b, j+3\right)\right) \in$ B^{*} for all $j \in \mathbb{Z}_{5}$ (reducing sums modulo 5).

Then we claim that $\left(\{\infty\} \cup\left(Q \times \mathbb{Z}_{5}\right), B^{*}\right)$ is a $K_{4}-e$ design of λK_{v} with $v=5(2(n+$ $\alpha)+1)+1 \leq 10 n+20 \sqrt{n}+56$ in which $S^{*}=\{\infty\} \cup\left(\left(S \cup A^{\prime}\right) \times\{0\}\right) \cup(Q \times\{1,2\})$ is a blocking set. From these observations the result follows, because since $0 \otimes_{1} 0=0=$ $0 \otimes_{2} 0$, from (ii) we have that for each $(a, b, c, d) \in B,((a, 0),(b, 0),(c, 0),(d, 0)) \in B^{*}$ and $S \times\{0\} \subseteq S^{*}$, so the embedding that preserves the blocking set has been produced.

To see that S^{*} is a blocking set, consider (ii) and (iii) in the construction. Notice that for all x, y other than $x=0=y$, at least one of $x, y, x \otimes_{1} y$ and $x \otimes_{2} y$ is in $\{1,2\}$ and at least one is in $\{3,4\}$, so S^{*} is a blocking set for the copies of $K_{4}-e$ arising from these values of x and y in (ii). If $x=0=y$ then also $x \otimes_{1} y=0=x \otimes_{2} y$, so $\left(S \cup A^{\prime}\right) \times\{0\}=S^{*} \cap(Q \times\{0\})$ ensures that S^{*} is a blocking set for the copies of $K_{4}-e$ arising from these values of x and y in (ii). Finally, in (iii), for each $j \in \mathbb{Z}_{5}$, at least one of $j, j+1$ and $j+3$ is in $\{1,2\}$ and at least one is in $\{3,4\}$, so S^{*} is a blocking set for the copies of $K_{4}-e$ defined in (iii) since $Q \times\{1,2\} \subseteq S^{*}$ and $Q \times\{3,4\} \cap S^{*}=\emptyset$. Therefore S^{*} is a blocking set as claimed.

To see that B^{*} defines a $K_{4}-e$ design of λK_{v}, consider the edge $e=\{(u, s),(w, t)\}$. If $u=w$ then e is in λ copies of $K_{4}-e$ defined in (i), so suppose that $u \neq w$. For each graph G_{i}^{\prime} containing the edge $\{u, w\}$ there is a copy of $K_{4}-e$ in $B \cup\left(\cup_{i=1}^{\lambda} B_{i}\right)$ containing $\{u, w\}$, and corresponding to this copy of $K_{4}-e$, say (a, b, c, d) there are copies $\left((a, x),(b, y),\left(c, x \otimes_{1} y\right),\left(d, x \otimes_{2} y\right)\right)$ in B^{*}. Since $\left(\mathbb{Z}_{5}, \otimes_{1}\right)$ and $\left(\mathbb{Z}_{5}, \otimes_{2}\right)$ are quasigroups, it is easy to check that regardless of which of a, b, c and $d u$ and w happen to be, x and y are uniquely determined by s and t. So if $\{u, w\}$ occurs in ℓ of the λ graphs $G_{1}, \ldots, G_{\lambda}$ then we have just found ℓ copies of $K_{4}-e$ in B^{*} that contain $\{u, w\}$. Now $\lambda-\ell$ of the graphs $G_{1}, \ldots, G_{\lambda}$ do not contain $\{u, w\}$, so for each such graph G_{i} the product $u \circ_{i} w$ in $\left(P^{\prime}, o_{i}\right)$ is undefined, and so there is no $z \in P^{\prime}$ such that $u \circ_{i} z=w$ (since from (ii) if such a z existed it would be $u \circ_{i} w=w$). So by (1) of Theorem 2.1 there is a unique $z \in Q$ such that $u \circ_{i} z=w$ in (Q, \circ_{i}), and by (2) of Theorem 2.1 we have that $u \circ_{\mathfrak{i}} z=w=z \circ_{i} w$. So, if $s=t$ then $\{u, w\}$ is in the copy $\left((u, s),(w, s),\left(u \circ_{i} w, s+1\right),\left(u \circ_{i} w, s+3\right)\right)$ defined in (iii), and if $s \neq t$ then we can assume that $t-s(\bmod 5) \in\{1,3\}$ and so $\{u, w\}$ is in the copy $\left((u, s),(z, s),\left(u \circ_{i} z=w, s+1\right),\left(u \circ_{i} z=w, s+3\right)\right)$ defined in (iii).

References

[1] L. D. Andersen, A. J. W. Hilton and E. Mendelsohn, Embedding partial Steiner triple systems, J. London Math. Soc., 41 (1980), 557-576.
[2] A. J. W. Hilton and C. A. Rodger, The embedding of partial triple systems when 4 divides λ, J. Combin. Theory Ser. A, 56 (1991), 109-137.
[3] D. G. Hoffman, C. C. Lindner and K. T. Phelps, Blocking sets in designs with block size four, European J. Combin., 11 (1990), 451-457.
[4] C. C. Lindner, M. Gionfriddo and C. A. Rodger, 2 -coloring $K_{4}-e$ designs, Australas. J. Combin., 3 (1991), 211-229.
[5] C. C. Lindner and C. A. Rodger, Generalized embedding theorems for partial latin squares, Bulletin of the ICA, 5 (1992), 81-99.
[6] C. C. Lindner and C. A. Rodger, A small embedding for partial $K_{m} \backslash K_{m-2}$ designs, Ars Combin., 35-A (1993), 193-201.
[7] C. C. Lindner and C. A. Rodger, Embedding directed and undirected partial cycle systems of index $\lambda>1$, J. Combin. Designs, 2 (1993), 113-123.
[8] C. C. Lindner and C. A. Rodger, A partial $m=(2 k+1)$-cycle system of order n can be embedded in an m-cycle system of order $(2 n+1) m$, Discrete Math., 117 (1993), 151-159.
[9] C. A. Rodger and S. El-Zanati, Blocking sets in G-designs, Ars Combin., 35 (1993), 237-251.

[^0]: *This research was supported by NSF grant DMS 9300959
 \dagger This research was supported by NSF grant DMS 9225046

