Blocking set preserving embeddings of partial $K_4 - e$ designs

C. C. Lindner* and C. A. Rodger[†]
Department of Discrete and Statistical Sciences
Auburn University
Auburn, AL 36849-5307
USA

Abstract

In this paper we show that a partial $K_4 - e$ design of order n and index λ that has a blocking set S can be embedded in a $K_4 - e$ design of order $v \leq 10n + 20\sqrt{n} + 56$ and index λ that has a blocking set S^* such that $S \subseteq S^*$. This also improves upon the smallest known embedding for partial $K_4 - e$ designs.

1 Introduction

A (partial) H-design of a graph G is an ordered pair (V, B), where V is the vertex set of G and where B is a collection of edge-disjoint copies of H with the property that each edge of G is in (at most one) exactly one copy of H in B. If G is (a subgraph of) λK_n then we say that (V, B) is a (partial) H-design of order n and index λ .

An H-design (V, B) of G is said to be *embedded* in an H-design (V', B') of λK_n if $V \subseteq V'$ and $B \subseteq B'$. There have been many papers written on the embedding of H-designs, especially in the case where $H = K_3$ [1, 2], but also for example when H is a cycle [7, 8] and when $H = K_4 - e$ [6]. The most common embedding question asked seems to be: What is the smallest integer v such that any partial H-design of order n and index λ can be embedded in an H-design of λK_v ? Of course, v is a function of n, and conceivably also of λ . The most famous outstanding problem in this area is to show that if $H = K_3$ and $\lambda = 1$ then v = 2n + 1 (it has been shown that if $H = K_3$ and 4 divides λ then v = 2n + 1, and this is best possible).

To date, the smallest known embedding for any partial $K_4 - e$ design of order n and index λ is in a $K_4 - e$ design of order v = 15n + 46 [6], but this is certainly

^{*}This research was supported by NSF grant DMS 9300959

[†]This research was supported by NSF grant DMS 9225046

not the smallest possible value of v. However, even obtaining this embedding was a breakthrough, produced by using a generalization of Cruse's Theorem [5] for embedding partial idempotent commutative quasigroups to the embedding of partial groupoids (see Section 2). This construction is quite flexible, a fact that we demonstrate in this paper by showing that not only can a small embedding be produced, but also that any blocking set (see below) of the original partial $K_4 - e$ design can be extended to a blocking set of the containing $K_4 - e$ design of λK_v .

A blocking set of an H-design (V, B) is a set $S \subseteq V$ such that each copy $h \in B$ of H satisfies $V(h) \cap S \neq \emptyset$ and $V(h) \cap S \neq V(h)$. Again, there have been many papers written in this area. For example, a long series of papers finally culminated in the settling of the existence of K_4 -designs of λK_v that have a blocking set, with a couple of possible exceptions [3], and the existence of H-designs of K_v with blocking sets has also been settled for all connected graphs H with at most 5 edges [4, 9] (and in particular for $K_4 - e$ designs).

In this paper we show that any partial $K_4 - e$ design of order n and index λ that has a blocking set S, can be embedded in a $K_4 - e$ design of λK_v that has a blocking set S^* such that $S \subseteq S^*$ and $v \le 10n + 20\sqrt{n} + 56$; so in addition to extending the blocking set, we also improve upon the best known embedding for partial $K_4 - e$ designs for $n \ge 16$ (see the remark following Theorem 2.2).

Let (a, b, c, d) denote the copy of $K_4 - e$ with edge set $\{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}\}\}$.

2 Embedding Groupoids

A partial groupoid (P, \circ) is said to be idempotent if $x \circ x = x$ for all $x \in P$. A partial groupoid (P, \circ) is called an *embedding groupoid* if (1) (P, \circ) is idempotent, (2) if $x \neq y$ then either both or neither of the products $x \circ y$ and $y \circ x$ is defined, (3) (P, \circ) is row latin, and (4) each $x \in P$ occurs as a product an odd number of times.

Theorem 2.1 ([5]) Any partial embedding groupoid of order n can be embedded in an idempotent groupoid of order 2n + 1 which is (1) row latin, and (2) the main diagonal together with all products not defined in the given partial embedding groupoid form a partial symmetric idempotent quasigroup.

Remark The fact that in (2) we form a partial quasigroup and not just a partial groupoid is important in what follows.

Certainly a stronger result than the following can be proved, but this will suffice for our purposes. Let $(a; a_1, \ldots, a_m)$ denote the m-star $K_{1,m}$ on the vertex set $\{a, a_1, \ldots, a_m\}$ in which a has degree m.

Lemma 2.1 For all $\ell \geq 1$ there exists a simple graph G on 2ℓ vertices with at least $\binom{2\ell}{2} - 3\ell$ edges for which there exists a $K_{1,4}$ -design with the additional property that each $K_{1,4}$ can be split into two copies of $K_{1,2}$ so that the resulting $K_{1,2}$ -design of G has a blocking set of size ℓ .

Proof: We construct such a graph on the vertex set $\mathbb{Z}_{\ell} \times \mathbb{Z}_2$, with blocking set $\mathbb{Z}_{\ell} \times \{0\}$. Define the set B of copies of $K_{1,4}$ as follows.

If $\ell = 4x + 1$ then $B = \{((i, k); (i + 2j + 1, k), (i + 2j + 2, k), (i + 2j + 1, k + 1), (i + 2j + 2, k + 1)) \mid i \in \mathbb{Z}_{\ell}, j \in \mathbb{Z}_{x}, k \in \mathbb{Z}_{2}\};$ there are ℓ edges in no copy of $K_{1,4}$ in B

If $\ell = 4x + 3$ then $B = \{((i, k); (i+2j, k), (i+2j+1, k), (i+2j, k+1), (i+2j+1, k+1)) \mid i \in \mathbb{Z}_{\ell}, 1 \leq j \leq x, k \in \mathbb{Z}_2\} \cup \{(i, 0); (i+1, 0), (i+1, 1), (i, 1), (i-1, 1) \mid i \in \mathbb{Z}_{\ell}\};$ there are ℓ edges in no copy of $K_{1,4}$ in B.

If $\ell = 4x$ then $B = \{(i, k); (i+2j, k), (i+2j+1, k), (i+2j, k+1), (i+2j+1, k+1)) \mid i \in \mathbb{Z}_{\ell}, 1 \leq j \leq x-1, k \in \mathbb{Z}_2\} \cup \{(i, 0); (i+1, 0), (i+1, 1), (i, 1), (i-1, 1) \mid i \in \mathbb{Z}_{\ell}\};$ there are 3ℓ edges in no copy of $K_{1,4}$ in B.

If $\ell = 4x + 2$ then $B = \{((i, k); (i + 2j + 1, k), (i + 2j + 2, k), (i + 2j + 1, k + 1), (i + 2j + 2, k + 1)) \mid i \in \mathbb{Z}_{\ell}, j \in \mathbb{Z}_{x}, k \in \mathbb{Z}_{2}\};$ there are 3ℓ edges in no copy of $K_{1,4}$ in B.

It is trivial to see that each copy of $K_{1,4}$ can be split into two copies of $K_{1,2}$ so that each copy of $K_{1,2}$ has a vertex in $\mathbb{Z}_{\ell} \times \{0\}$ and a vertex in $\mathbb{Z}_{\ell} \times \{1\}$, so indeed $\mathbb{Z}_{\ell} \times \{0\}$ is a blocking set.

Lemma 2.2 There exists a K_4 – e design of K_6 with a blocking set of size 3, and one of size 4.

Proof: $\{1,2,3\}$ and $\{1,2,3,4\}$ are each blocking sets for the K_4-e design $(\mathbb{Z}_6,\{(i,i+3,i+1,i+4)\mid i\in\mathbb{Z}_3\})$ of K_6 .

We are now ready for the main result.

Theorem 2.2 A partial K_4 – e design of order n and index λ that has a blocking set S can be embedded in a K_4 – e design of λK_v that has a blocking set S^* such that $S \subseteq S^*$ and $v \le 10n + 20\sqrt{n} + 56$.

Remark It may be worth noting that the theorem proves a slightly stronger result, namely that $v \leq 10n + 10\alpha + 6$, where α is at most the smallest even integer with $\alpha \geq 2\sqrt{n} + 3$. Also, the size of the blocking set produced is $|S| + 4n + 9\alpha/2 + 3$.

Proof: Let (P, B) be a partial $K_4 - e$ design of order n and index λ with a blocking set S.

For $1 \leq i \leq \lambda$, let G_i be the simple graph with vertex set P and with $\{u,v\} \in E(G_i)$ iff $\{u,v\}$ occurs in at least i copies of $K_4 - e$ in B.

Let $2x_i$ ($\leq n$) be the number of vertices of odd degree in G_i . Let α be the smallest even integer satisfying $\binom{\alpha}{2} - 3\alpha/2 \geq 2n$ (clearly $(2\sqrt{n} + 3)(2\sqrt{n} - 1)/2 \geq 2n$, so certainly $\alpha \leq 2\sqrt{n} + 5$). Let A be a set of $\alpha = 2\ell$ vertices with $P \cap A = \emptyset$. For $1 \leq i \leq \lambda$ let H_i be a graph with vertex set A containing $4x_i$ ($\leq 2n$) edges as described in Lemma 2.1. In each case, let $A' \subseteq A$ be a blocking set for the $K_{1,2}$ -design of H_i (A' is independent of i).

For $1 \le i \le \lambda$, arbitrarily gather the $2x_i$ vertices of odd degree into x_i pairs, and to each pair arbitrarily assign one of the x_i copies of $K_{1,4}$ in the $K_{1,4}$ design of H_i .

For each such pair u_1 and u_2 of odd degree vertices and their corresponding $K_{1,4}$, say (a; b, c, d, e), if $K_{1,4}$ is split into the two copies (a; b, c) and (a; d, e) of $K_{1,2}$ in Lemma 2.1 then let B_i contain the two copies (u_1, a, b, c) and (u_2, a, d, e) of $K_4 - e$. Let G'_i be the simple graph with vertex set $P' = P \cup A$ formed from G_i by adding the edges in the copies of $K_4 - e$ in B_i . If u has odd degree in G_i , then $d_{G'_i}(u) = d_{G_i}(u) + 3$, so u has even degree in G'_i . Also, since the copies of $K_{1,2}$ can be paired to form copies of $K_{1,4}$, each vertex in A has even degree in G'_i . So for $1 \le i \le \lambda$, each vertex in G'_i has even degree. Clearly A' is a blocking set for B_i .

For $1 \leq i \leq \lambda$ form a partial idempotent groupoid (P', \circ_i) where

- (i) $x \circ_i x = x$ for all $x \in P'$, and
- (ii) if $x \neq y$, then $x \circ_i y = y$ and $y \circ_i x = x$ if $\{x, y\} \in E(G'_i)$ and otherwise $x \circ_i y$ and $y \circ_i x$ are undefined.

Then clearly (P', \circ_i) is an embedding groupoid, satisfying property (4) of embedding groupoids because each vertex in G'_i has even degree. Therefore we can apply Theorem 2.1 to embed (P', \circ_i) in a groupoid (Q, \circ_i) of order 2|P'|+1 which satisfies properties (1) and (2) of Theorem 2.1.

We can now define a $K_4 - e$ design $(\{\infty\} \cup (Q \times \mathbb{Z}_5), B^*)$ as follows.

- (i) For each $a \in Q$ let $(\{\infty\} \cup (\{a\} \times \mathbb{Z}_5), B_a)$ be a $K_4 e$ design of λK_6 in which $\{\infty, (a, 0), (a, 1), (a, 2)\}$ is a blocking set if $a \in S \cup A'$, and in which $\{\infty, (a, 1), (a, 2)\}$ is a blocking set if $a \notin S \cup A'$, and let $B_a \subseteq B^*$.
- (ii) For each $(a,b,c,d) \in B \cup (\bigcup_{i=1}^{\lambda} B_i)$ and for each $x, y \in \mathbb{Z}_5$ (including x=y) let $((a,x),(b,y),(c,x\otimes_1 y),(d,x\otimes_2 y)) \in B^*$, where (\mathbb{Z}_5,\otimes_1) and (\mathbb{Z}_5,\otimes_2) are defined by the following quasigroups.

\otimes_1	0	1	2	3	4
0	0	2	3	4	1
1	4	3	1	2	0
2	2	1	4	0	3
3	3	0	2	1	4
4	1	4	0	3	2

\otimes_2	0	1	2	3	4
0	0	4	2	1	3
1	1	2	3	4	0
2	4	3	1	0	2
3	2	0	4	3	1
4	3	1	0	2	4

(iii) For $1 \leq i \leq \lambda$, if $\{a,b\} \notin E(G'_i)$ then $((a,j),(b,j),(a \circ_i b,j+1),(a \circ_i b,j+3)) \in B^*$ for all $j \in \mathbb{Z}_5$ (reducing sums modulo 5).

Then we claim that $(\{\infty\} \cup (Q \times \mathbb{Z}_5), B^*)$ is a $K_4 - e$ design of λK_v with $v = 5(2(n + \alpha) + 1) + 1 \le 10n + 20\sqrt{n} + 56$ in which $S^* = \{\infty\} \cup ((S \cup A') \times \{0\}) \cup (Q \times \{1, 2\})$ is a blocking set. From these observations the result follows, because since $0 \otimes_1 0 = 0 = 0 \otimes_2 0$, from (ii) we have that for each $(a, b, c, d) \in B$, $((a, 0), (b, 0), (c, 0), (d, 0)) \in B^*$ and $S \times \{0\} \subseteq S^*$, so the embedding that preserves the blocking set has been produced.

To see that S^* is a blocking set, consider (ii) and (iii) in the construction. Notice that for all x, y other than x = 0 = y, at least one of $x, y, x \otimes_1 y$ and $x \otimes_2 y$ is in $\{1, 2\}$ and at least one is in $\{3, 4\}$, so S^* is a blocking set for the copies of $K_4 - e$ arising from these values of x and y in (ii). If x = 0 = y then also $x \otimes_1 y = 0 = x \otimes_2 y$, so $(S \cup A') \times \{0\} = S^* \cap (Q \times \{0\})$ ensures that S^* is a blocking set for the copies of $K_4 - e$ arising from these values of x and y in (ii). Finally, in (iii), for each $j \in \mathbb{Z}_5$, at least one of j, j + 1 and j + 3 is in $\{1, 2\}$ and at least one is in $\{3, 4\}$, so S^* is a blocking set for the copies of $K_4 - e$ defined in (iii) since $Q \times \{1, 2\} \subseteq S^*$ and $Q \times \{3, 4\} \cap S^* = \emptyset$. Therefore S^* is a blocking set as claimed.

To see that B^* defines a K_4-e design of λK_v , consider the edge $e=\{(u,s),(w,t)\}$. If u = w then e is in λ copies of $K_4 - e$ defined in (i), so suppose that $u \neq w$. For each graph G'_i containing the edge $\{u,w\}$ there is a copy of $K_4 - e$ in $B \cup (\bigcup_{i=1}^{\lambda} B_i)$ containing $\{u, w\}$, and corresponding to this copy of $K_4 - e$, say (a, b, c, d) there are copies $((a, x), (b, y), (c, x \otimes_1 y), (d, x \otimes_2 y))$ in B^* . Since $(\mathbb{Z}_5, \otimes_1)$ and $(\mathbb{Z}_5, \otimes_2)$ are quasigroups, it is easy to check that regardless of which of a, b, c and d u and w happen to be, x and y are uniquely determined by s and t. So if $\{u, w\}$ occurs in ℓ of the λ graphs G_1, \ldots, G_{λ} then we have just found ℓ copies of $K_4 - e$ in B^* that contain $\{u,w\}$. Now $\lambda-\ell$ of the graphs G_1,\ldots,G_λ do not contain $\{u,w\}$, so for each such graph G_i the product $u \circ_i w$ in (P', \circ_i) is undefined, and so there is no $z \in P'$ such that $u \circ_i z = w$ (since from (ii) if such a z existed it would be $u \circ_i w = w$). So by (1) of Theorem 2.1 there is a unique $z \in Q$ such that $u \circ_i z = w$ in (Q, o_i) , and by (2) of Theorem 2.1 we have that $u o_i z = w = z o_i w$. So, if s = tthen $\{u,w\}$ is in the copy $((u,s),(w,s),(u\circ_i w,s+1),(u\circ_i w,s+3))$ defined in (iii), and if $s \neq t$ then we can assume that $t - s \pmod{5} \in \{1, 3\}$ and so $\{u, w\}$ is in the copy $((u, s), (z, s), (u \circ_i z = w, s + 1), (u \circ_i z = w, s + 3))$ defined in (iii).

References

- [1] L. D. Andersen, A. J. W. Hilton and E. Mendelsohn, Embedding partial Steiner triple systems, J. London Math. Soc., 41 (1980), 557-576.
- [2] A. J. W. Hilton and C. A. Rodger, The embedding of partial triple systems when 4 divides λ , J. Combin. Theory Ser. A, 56 (1991), 109-137.
- [3] D. G. Hoffman, C. C. Lindner and K. T. Phelps, Blocking sets in designs with block size four, European J. Combin., 11 (1990), 451-457.
- [4] C. C. Lindner, M. Gionfriddo and C. A. Rodger, 2-coloring $K_4 e$ designs, Australas. J. Combin., 3 (1991), 211-229.
- [5] C. C. Lindner and C. A. Rodger, Generalized embedding theorems for partial latin squares, Bulletin of the ICA, 5 (1992), 81-99.
- [6] C. C. Lindner and C. A. Rodger, A small embedding for partial $K_m \setminus K_{m-2}$ designs, Ars Combin., 35-A (1993), 193-201.

- [7] C. C. Lindner and C. A. Rodger, Embedding directed and undirected partial cycle systems of index $\lambda > 1$, J. Combin. Designs, 2 (1993), 113-123.
- [8] C. C. Lindner and C. A. Rodger, A partial m = (2k+1)-cycle system of order n can be embedded in an m-cycle system of order (2n+1)m, Discrete Math., 117 (1993), 151-159.
- [9] C. A. Rodger and S. El-Zanati, Blocking sets in G-designs, Ars Combin., 35 (1993), 237-251.

(Received 8/12/94)