Vertex Disjoint Cycles in a Directed Graph

C.H.C. Little and H. Wang Department of Mathematics, Massey University Palmerston North, NEW ZEALAND

Abstract

Let D be a directed graph of order $n \ge 4$ and minimum degree at least (3n-3)/2. Let $n = n_1 + n_2$ where $n_1 \ge 2$ and $n_2 \ge 2$. Then D contains two vertex-disjoint directed cycles of lengths n_1 and n_2 respectively. The result is sharp if $n \ge 6$: we give counter-examples if the condition on the minimum degree is relaxed.

1 Introduction

We discuss only finite simple graphs and strict digraphs and use standard terminology and notation from [3] except as indicated.

In 1963, Corrádi and Hajnal [4] investigated the maximum number of vertexdisjoint cycles in a graph. They proved that if G is a graph of order at least 3k with minimum degree at least 2k, then G contains k vertex-disjoint cycles. In particular, when the order of G is exactly 3k, then G contains k vertex-disjoint triangles. In 1984 El-Zahar [5] proved that if G is a graph of order $n = n_1 + n_2$ with $n_i \ge 3$, i = 1, 2 and minimum degree at least $\lfloor n_1/2 \rfloor + \lfloor n_2/2 \rfloor$, then G contains two vertex-disjoint cycles of lengths n_1 , n_2 , respectively. In 1991, Amar and Raspaud [1] investigated vertexdisjoint dicycles in a strongly connected digraph of order n with (n-1)(n-2) + 3arcs. In this paper, we discuss two vertex-disjoint dicycles in a digraph, proving the following result and showing that it is sharp for all $n \ge 6$.

THEOREM Let D be a digraph of order $n \ge 4$ such that the minimum degree of D is at least (3n-3)/2. Then D contains two vertex-disjoint dicycles of lengths n_1 and n_2 , respectively, for any integer partition $n = n_1 + n_2$ with $n_1 \ge 2$ and $n_2 \ge 2$.

To prove our result, we recall some terminology and notation. Let G be a graph and D a digraph. We use V(G) and E(G) to denote the vertex set and the edge set respectively, of G. We use V(D) and E(D) to denote the vertex set and arc set respectively, of D. A similar notation is used for the vertex sets and edge sets or arc sets of paths and cycles. The degree $d_G(x)$ or $d_D(x)$ of a vertex x in G or D respectively is the number of edges or arcs incident on it. We use $\delta(G)$ and $\delta(D)$ for the minimum degree of a vertex in G or D respectively.

Australasian Journal of Combinatorics 12(1995), pp.113-119

For a vertex $u \in V(G)$ and a subgraph H of G, we define $d_G(u, H)$ or d(u, H) to be the number of vertices of H that are adjacent to u in G. For a vertex $x \in V(D)$ and a subdigraph F of D we define $d_D(x, F)$ similarly. If F_1 and F_2 are vertex-disjoint subdigraphs of D, then $e_D(F_1, F_2)$ denotes the number of arcs of D joining a vertex of $V(F_1)$ to a vertex of $V(F_2)$. For a subset U of V(G), G[U] is the subgraph of Ginduced by U. Similarly, D[X] is the subdigraph of D induced by X for any subset X of V(D). A graph or digraph is said to be *traceable* if it contains a Hamiltonian path or a Hamiltonian dipath, respectively.

For any integer n we define ϵ_n to be 0 or 1 according to whether n is even or odd. If x and y are vertices of G, we define $\epsilon(xy)$ to be 1 if x and y are adjacent, and 0 otherwise.

2 Proof of the Theorem

We begin with some elementary lemmas.

LEMMA 1 Let P be a path in a graph G. Let $z \in V(G) - V(P)$. If $d(z, P) \geq \frac{1}{2}|V(P)|$, then $G[V(P) \cup \{z\}]$ is traceable.

Proof: The lemma is immediate, since z must be adjacent to consecutive vertices of P or to an end vertex of P.

LEMMA 2 Let x and y be the ends of a path P of positive length in a graph G. If $d(x, P) + d(y, P) \ge |V(P)|$, then G[V(P)] is Hamiltonian or isomorphic to K_2 .

Proof: See [6].

LEMMA 3 Let G_1 , G_2 be vertex-disjoint traceable induced subgraphs of a graph G, where $|G_1| = n_1$ and $|G_2| = n_2$, and suppose that $|E(G_1)| + |E(G_2)|$ is as large as possible subject to those conditions. Let x and y be vertices of G_1 and G_2 respectively. Let $H_1 = G_1 - x + y$ and $H_2 = G_2 - y + x$. If H_1 and H_2 are also traceable, then

$$d(x,G_1)+d(y,G_2)\geq d(x,G_2)+d(y,G_1)-2\epsilon(xy).$$

Proof: By hypothesis,

$$egin{aligned} |E(G_1)|+|E(G_2)|&\geq |E(H_1)|+|E(H_2)|\ &= |E(G_1)|+|E(G_2)|-d(x,G_1)-d(y,G_2)+d(x,G_2)+d(y,G_1)-2\epsilon(xy), \end{aligned}$$

and the result follows.

Proof of the theorem: Let G be an undirected simple graph with V(G) = V(D), where two distinct vertices u and v are adjacent if and only if $(u, v) \in E(D)$ and $(v, u) \in E(D)$. For any $x \in V(G)$ we have

$$egin{array}{rcl} d(x,G) &\geq& 3(n-1)/2-(n-1)\ &=& (n-1)/2, \end{array}$$

and so $\delta(G) \ge (n-1)/2$. Thus G is traceable [2, p.135]. We may therefore choose two traceable induced subgraphs G_1 and G_2 such that $|V(G_1)| = n_1$ and $|V(G_2)| = n_2$ and $|E(G_1)| + |E(G_2)|$ is as large as possible subject to these conditions. Let P_1 and P_2 be Hamiltonian paths of G_1 and G_2 respectively. Let $V(P_1) = \{x_1, x_2, \dots, x_{n_1}\}$, where x_i is adjacent in P_1 to x_{i-1} for each i > 1. Similarly let $V(P_2) = \{y_1, y_2, \dots, y_{n_2}\}$, where y_j is adjacent in P_2 to y_{j-1} for each j > 1.

Case I: Suppose that neither G_1 nor G_2 is Hamiltonian or isomorphic to K_2 . Thus $d(x_1, G_1) + d(x_{n_1}, G_1) < n_1$ by Lemma 2, and so we may assume without loss of generality that $d(x_1, G_1) \leq (n_1 - 1)/2$. As this number must be an integer, we conclude that

$$d(x_1, G_1) \le (n_1 - 2 + \epsilon_{n_1})/2.$$
(1)

Similarly we may assume that

$$d(y_1, G_2) \le (n_2 - 2 + \epsilon_{n_2})/2.$$
 (2)

Because $\delta(G) \geq \lceil (n-1)/2 \rceil = (n-\epsilon_n)/2$, it follows that

$$d(x_1, G_2) \geq (n_1 + n_2 - \epsilon_n)/2 - (n_1 - 2 + \epsilon_{n_1})/2 = (n_2 + 2 - \epsilon_n - \epsilon_{n_1})/2 \geq (n_2 + \epsilon_{n_2})/2$$
(3)

since $\epsilon_n + \epsilon_{n_1} + \epsilon_{n_2} \leq 2$. (Note that n is even if both n_1 and n_2 are odd.) Similarly

$$d(y_1, G_1) \ge (n_1 + \epsilon_{n_1})/2.$$
 (4)

Let $L_1 = G_1 - x_1 + y_1$ and $L_2 = G_2 - y_1 + x_1$.

Subcase A: Suppose L_1 and L_2 are both traceable. By Lemma 3, together with (1) - (4) we have

$$(n_1 - 2 + \epsilon_{n_1})/2 + (n_2 - 2 + \epsilon_{n_2})/2 \ge (n_2 + \epsilon_{n_2})/2 + (n_1 + \epsilon_{n_1})/2 - 2\epsilon(x_1y_1),$$

from which we infer that equality must hold in (1) - (4). In particular

$$(n_1+\epsilon_{n_1})/2=(n_1+2-\epsilon_n-\epsilon_{n_2})/2,$$

and so $\epsilon_n + \epsilon_{n_1} + \epsilon_{n_2} = 2$. We deduce that

$$egin{array}{rcl} d_G(x_1) &=& (n_1-2+\epsilon_{n_1})/2+(n_2+\epsilon_{n_2})/2 \ &=& (n-2+\epsilon_{n_1}+\epsilon_{n_2})/2 \ &=& (n-\epsilon_n)/2. \end{array}$$

As $d_D(x_1) \ge \lceil (3n-3)/2 \rceil = (3n-2-\epsilon_n)/2$, it follows that $d_D(x_1) - d_G(x_1) \ge (3n-2-\epsilon_n)/2 - (n-\epsilon_n)/2 = n-1$. Hence x_1 is adjacent in D to every other vertex. A similar statement holds for y_1 . A directed cycle in D with vertex set $V(G_1)$ may

therefore be constructed by adjoining to P_1 an edge joining x_1 to x_{n_1} . Similarly D has a directed cycle with vertex set $V(G_2)$, as required.

Subcase B: We may now suppose without loss of generality that L_2 is not traceable. Therefore x_1 cannot be adjacent to consecutive vertices or the end vertices of $P_2 - y_1$, and so $d(x_1, G_2) \leq (n_2 - \epsilon_{n_2})/2$. But $d(x_1, G_2) \geq (n_2 + \epsilon_{n_2})/2$ from (3). We conclude that $\epsilon_{n_2} = 0$, so that n_2 is even. Moreover $d(x_1, G_2) = n_2/2$, and from (1) and the inequality $\delta(G) \geq (n - \epsilon_n)/2$ it follows that n and n_1 are odd and $d(x_1, G_1) = (n_1 - 1)/2$. Thus $d_G(x_1) = (n - 1)/2$, and we find once again that x_1 is adjacent in Dto every other vertex. In particular, x_1 is adjacent in D to x_{n_1} . If y_1 were adjacent in D to y_{n_2} , then we would be done, and so we suppose that such is not the case.

Since L_2 is not traceable, x_1 is not adjacent to y_{n_2} . But $d(x_1, G_2) = n_2/2$ and x_1 is not adjacent to consecutive vertices of P_2 . Therefore x_1 must be adjacent to y_{2i+1} for each $i \ge 0$. It follows that y_{n_2} is not adjacent to y_{2i} for any $i \ge 1$, for otherwise $(P_2 - \{y_1y_2, y_{2i}y_{2i+1}\}) \cup \{x_1y_{2i+1}, y_{n_2}y_{2i}\}$ would be a Hamiltonian path in L_2 . Since y_{n_2} is also not adjacent to y_1 , we infer that $d(y_{n_2}, G_2) \le n_2 - n_2/2 - 1 = (n_2 - 2)/2$. In other words, (2) holds with y_1 replaced by y_{n_2} . We may therefore repeat the argument, with the rôles of y_1 and y_{n_2} interchanged, in order to obtain the contradiction that x_1 is adjacent to y_{n_2} .

Case II: We may now assume without loss of generality that G_1 is Hamiltonian or isomorphic to K_2 . We may also assume that $\delta(G_1) \ge (n_1 + \epsilon_{n_1})/2$, for if $d(x, G_1) \le (n_1 - 2 + \epsilon_{n_1})/2$ for some $x \in V(G_1)$ then the argument of the previous case applies, since x is an end of a Hamiltonian path of G_1 .

The theorem clearly holds if $D[V(G_2)]$ is Hamiltonian. We therefore suppose it is not. As in the previous case we may assume that (2) holds. Hence (4) holds as before.

Define $H_1 = G_1 + y_1$ and $H_2 = G_2 - y_1$. There are two subcases.

Subcase A: Suppose there is no vertex $u \in V(H_1)$ such that $D[V(H_2) \cup \{u\}]$ is Hamiltonian. Then no vertex of H_1 is adjacent in G to both y_2 and y_{n_2} .

Subcase A (1): Suppose $D[V(H_2)]$ is Hamiltonian. Let $V(H_2) = \{v_1, v_2, \cdots, v_{n_2-1}\}$ where $(v_{i-1}, v_i) \in E(D)$ for each i > 1 and $(v_{n_2-1}, v_1) \in E(D)$. For any $u \in V(H_1)$ let I_u be the set of all i such that $(v_i, u) \in E(D)$, and let J_u be the set of all j such that $(u, v_{j+1}) \in E(D)$, where $v_{n_2} = v_1$. Then $I_u \cap J_u = \phi$ since $D[V(H_2) \cup \{u\}]$ is not Hamiltonian. Therefore $d_D(u, H_2) = |I_u| + |J_u| = |I_u \cup J_u| \le n_2 - 1$, and so

$$e_D(H_1, H_2) \le (n_1 + 1)(n_2 - 1).$$

For each $u \in V(H_1)$ it follows that

$$d_D(u, H_1) \ge (3n - 2 - \epsilon_n)/2 - n_2 + 1.$$

Hence

$$2n_1 \ge n_1 + (n_1 + n_2 - \epsilon_n)/2,$$

so that

 $n_1 \geq n_2 - \epsilon_n$.

On the other hand,

$$egin{array}{rll} (n_1+1)(n_2-1)&\geq&e_D(H_1,H_2)\ &=&\sum_{v\in V(H_2)}d_D(v)-2|E(H_2)|\ &\geq&(3n-2-\epsilon_n)(n_2-1)/2-2(n_2-1)(n_2-2), \end{array}$$

and so

$$n_1 + 1 \ge (3n - 2 - \epsilon_n)/2 - 2(n_2 - 2)$$

Therefore

$$2n_1+2 \geq 3n_1+3n_2-2-\epsilon_n-4n_2+8,$$

so that

$$egin{array}{rcl} n_2 &\geq& n_1-\epsilon_n+4 \ &\geq& n_2-2\epsilon_n+4 \end{array}$$

from (5). We now have a contradiction.

Subcase A (2): Thus $D[V(H_2)]$ is not Hamiltonian. Consequently $d_G(y_2, H_2) + d_G(y_{n_2}, H_2) \le n_2 - 2$ by Lemma 2. Therefore

$$egin{array}{rcl} d_G(y_2)+d_G(y_{n_2})&\leq&n_1+1+n_2-2\ &&=&n-1, \end{array}$$

since no vertex of H_1 is adjacent to both y_2 and y_{n_2} . But

$$egin{array}{rcl} d_G(y_2)+d_G(y_{n_2})&\geq&2(n-\epsilon_n)/2\ &=&n-\epsilon_n. \end{array}$$

Thus $\epsilon_n = 1$ and equality must hold above. Hence $d_G(y_2) = d_G(y_{n_2}) = (n-1)/2$. It follows that

$$egin{array}{rcl} d_D(y_2) - d_G(y_2) & \geq & (3n-3)/2 - (n-1)/2 \ & = & n-1, \end{array}$$

so that y_2 is adjacent in D to every other vertex. Thus y_2 is adjacent to y_{n_2} , and we have the contradiction that $D[V(H_2)]$ is Hamiltonian.

Subcase B: Suppose there exists $u \in V(H_1)$ such that $D[V(H_2) \cup \{u\}]$ is Hamiltonian. Note that $u \neq y_1$ since $D[V(G_2)]$ is not Hamiltonian. Let $L = H_1 - u$. We may therefore assume that L is not Hamiltonian or isomorphic to K_2 , for otherwise we are done.

(5)

Since $\delta(G_1) \ge (n_1 + \epsilon_{n_1})/2$ we have $d(x, G_1) \ge (n_1 + \epsilon_{n_1})/2$ for each $x \in V(H_1) - \{y_1\}$. We suppose first that equality holds for some such $x \ne u$. In this case we shall show that x is adjacent to y_1 . Observe first that

$$\begin{array}{rcl} d(x,G_2) & \geq & (n-\epsilon_n)/2 - (n_1+\epsilon_{n_1})/2 \\ & = & (n_2-\epsilon_n-\epsilon_{n_1})/2. \end{array}$$

Suppose x is not adjacent to y_1 . Since G_1 is Hamiltonian or isomorphic to K_2 , x is an end of a Hamiltonian path P in G_1 , and $d(y_1, G_1 - x) \ge (n_1 + \epsilon_{n_1})/2 > (n_1 - 1)/2$ by (4). Therefore $H_1 - x$ is traceable by Lemma 1.

Subcase B (1): Suppose $H_2 + x$ is also traceable. Then by Lemma 3, (2) and (4) we find that

$$(n_1 + \epsilon_{n_1})/2 + (n_2 - 2 + \epsilon_{n_2})/2 \ge (n_2 - \epsilon_n - \epsilon_{n_1})/2 + (n_1 + \epsilon_{n_1})/2.$$

In fact, equality must hold since $\epsilon_n + \epsilon_{n_1} + \epsilon_{n_2} \leq 2$. Therefore $d(y_1, G_1) = (n_1 + \epsilon_{n_1})/2$, and $d(y_1, G_2) = (n_2 - 2 + \epsilon_{n_2})/2$. Thus

$$\begin{aligned} d(y_1,G) &= (n_1 + \epsilon_{n_1})/2 + (n_2 - 2 + \epsilon_{n_2})/2 \\ &= (n - 2 + \epsilon_{n_1} + \epsilon_{n_2})/2, \end{aligned}$$

so that

$$egin{array}{rcl} d_D(y_1) - d_G(y_1) & \geq & (3n-2-\epsilon_n)/2 - (n-2+\epsilon_{n_1}+\epsilon_{n_2})/2 \ & = & (2n-\epsilon_n-\epsilon_{n_1}-\epsilon_{n_2})/2 \ & \geq & n-1. \end{array}$$

Again equality must hold. Moreover y_1 must be adjacent in D to every other vertex. In particular, y_1 is adjacent to y_{n_2} , in contradiction to the fact that $D[V(G_2)]$ is not Hamiltonian.

Subcase B (2): Suppose $H_2 + x$ is not traceable. Then x cannot be adjacent to consecutive vertices of P_2 , or to y_2 or y_{n_2} . Therefore $d(x, H_2) < (n_2 - 1)/2$. But $d(x, G_2) \ge (n_2 - \epsilon_n - \epsilon_{n_1})/2 \ge (n_2 - 2)/2$ and x is not adjacent to y_1 . We are forced to the conclusion that $d(x, G_2) = (n_2 - 2)/2$, so that n_2 is even. Moreover x is adjacent to y_{2i+1} for each positive integer $i < n_2/2$. If y_{n_2} is adjacent to y_{2i} for some such i, then $(P_2 - \{y_1y_2, y_{2i}y_{2i+1}\}) \cup \{xy_{2i+1}, y_{n_2}y_{2i}\}$ is a Hamiltonian path in $H_2 + x$, contrary to hypothesis. Furthermore y_{n_2} is not adjacent to y_1 , and so $d(y_{n_2}, G_2) \le (n_2 - 2)/2 = (n_2 - 2 + \epsilon_{n_2})/2$. Note that $G_2 - y_{n_2} + x$ is traceable since x is adjacent to y_{n_2-1} . The argument of subcase B(1) then applies with y_1 and y_{n_2} interchanged, yielding a contradiction.

We conclude that each $x \in V(L) - \{y_1\}$ satisfying $d(x, G_1) = (n_1 + \epsilon_{n_1})/2$ must be adjacent to y_1 . For any $x \in V(L) - \{y_1\}$ it therefore follows that $d(x, H_1) \ge (n_1 + \epsilon_{n_1})/2 + 1$, and so $d(x, L) \ge (n_1 + \epsilon_{n_1})/2$. But $\delta(L) < n_1/2$ since L is not Hamiltonian or isomorphic to K_2 . Hence $d(y_1, L) \le (n_1 - 2 + \epsilon_{n_1})/2$. On the other hand, since $d(y_1, H_1) \ge (n_1 + \epsilon_{n_1})/2$ we deduce that $d(y_1, L) \ge (n_1 - 2 + \epsilon_{n_1})/2$. Therefore equality holds, and so $d(y_1, G_1) = (n_1 + \epsilon_{n_1})/2$. From (2) it follows that

$$egin{array}{rcl} d(y_1,G) &\leq & (n-2+\epsilon_{n_1}+\epsilon_{n_2})/2 \ &\leq & (n-\epsilon_n)/2, \end{array}$$

so that $d_D(y_1) - d_G(y_1) \ge n-1$. Thus y_1 is adjacent to y_{n_2} in D, and again we have the contradiction that $D[V(G_2)]$ is Hamiltonian.

To show that the condition in the theorem is sharp for each $n \ge 6$, we construct the following digraph D_n of order n. For any positive integer k, define K_k^* to be the complete digraph of order k, i.e., K_k^* contains both (u, v) and (v, u) for any two distinct vertices u and v of K_k^* . The digraph D_n consists of two vertex-disjoint complete subdigraphs D' and D'' of order $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rceil$, respectively, and all the arcs (u, v) with $u \in V(D')$ and $v \in V(D'')$. When n is odd, $\delta(D) = (3n - 5)/2$. When n is even, $\delta(D) = (3n - 4)/2$. Let $n = n_1 + n_2$ be any integer partition such that $n_1 \ge 2$, $n_2 \ge 2$ and $\{n_1, n_2\} \neq \{\lfloor n/2 \rfloor, \lceil n/2 \rceil\}$. Then it is easy to see that D_n does not contain two vertex-disjoint dicycles of lengths n_1 and n_2 respectively. It is our belief that if D is strongly connected, then the condition can be improved. Note that the theorem does not hold if $n_1 = 1$ or $n_2 = 1$, even if loops are permitted. In this case K_2^* gives a counterexample.

References

- D. Amar and A. Raspaud, Covering the vertices of a digraph by cycles of prescribed length, Discrete Mathematics 87 (1991), 111-118.
- [2] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston, 1971.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
- [4] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-424.
- [5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
- [6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
- [7] H. Wang, Partition of a bipartite graph into cycles, Discrete Math., 117 (1993), 287-291.

(Received 8/11/94)

