Vertex Disjoint Cycles in a Directed Graph

C.H.C. Little and H. Wang
Department of Mathematics, Massey University
Palmerston North, NEW ZEALAND

Abstract

Let D be a directed graph of order $n \geq 4$ and minimum degree at least $(3 n-3) / 2$. Let $n=n_{1}+n_{2}$ where $n_{1} \geq 2$ and $n_{2} \geq 2$. Then D contains two vertex-disjoint directed cycles of lengths n_{1} and n_{2} respectively. The result is sharp if $n \geq 6$: we give counter-examples if the condition on the minimum degree is relaxed.

1 Introduction

We discuss only finite simple graphs and strict digraphs and use standard terminology and notation from [3] except as indicated.

In 1963, Corradi and Hajnal [4] investigated the maximum number of vertexdisjoint cycles in a graph. They proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k vertex-disjoint cycles. In particular, when the order of G is exactly $3 k$, then G contains k vertex-disjoint triangles. In 1984 El-Zahar [5] proved that if G is a graph of order $n=n_{1}+n_{2}$ with $n_{i} \geq 3, i=1,2$ and minimum degree at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$, then G contains two vertex-disjoint cycles of lengths n_{1}, n_{2}, respectively. In 1991, Amar and Raspaud [1] investigated vertexdisjoint dicycles in a strongly connected digraph of order n with $(n-1)(n-2)+3$ arcs. In this paper, we discuss two vertex-disjoint dicycles in a digraph, proving the following result and showing that it is sharp for all $n \geq 6$.

THEOREM Let D be a digraph of order $n \geq 4$ such that the minimum degree of D is at least $(3 n-3) / 2$. Then D contains two vertex-disjoint dicycles of lengths n_{1} and n_{2}, respectively, for any integer partition $n=n_{1}+n_{2}$ with $n_{1} \geq 2$ and $n_{2} \geq 2$.

To prove our result, we recall some terminology and notation. Let G be a graph and D a digraph. We use $V(G)$ and $E(G)$ to denote the vertex set and the edge set respectively, of G. We use $V(D)$ and $E(D)$ to denote the vertex set and arc set respectively, of D. A similar notation is used for the vertex sets and edge sets or arc sets of paths and cycles. The degree $d_{G}(x)$ or $d_{D}(x)$ of a vertex x in G or D respectively is the number of edges or arcs incident on it. We use $\delta(G)$ and $\delta(D)$ for the minimum degree of a vertex in G or D respectively.

For a vertex $u \in V(G)$ and a subgraph H of G, we define $d_{G}(u, H)$ or $d(u, H)$ to be the number of vertices of H that are adjacent to u in G. For a vertex $x \in V(D)$ and a subdigraph F of D we define $d_{D}(x, F)$ similarly. If F_{1} and F_{2} are vertex-disjoint subdigraphs of D, then $e_{D}\left(F_{1}, F_{2}\right)$ denotes the number of arcs of D joining a vertex of $V\left(F_{1}\right)$ to a vertex of $V\left(F_{2}\right)$. For a subset U of $V(G), G[U]$ is the subgraph of G induced by U. Similarly, $D[X]$ is the subdigraph of D induced by X for any subset X of $V(D)$. A graph or digraph is said to be traceable if it contains a Hamiltonian path or a Hamiltonian dipath, respectively.

For any integer n we define ϵ_{n} to be 0 or 1 according to whether n is even or odd. If x and y are vertices of G, we define $\varepsilon(x y)$ to be 1 if x and y are adjacent, and 0 otherwise.

2 Proof of the Theorem

We begin with some elementary lemmas.
LEMMA 1 Let P be a path in a graph G. Let $z \in V(G)-V(P)$. If $d(z, P) \geq$ $\frac{1}{2}|V(P)|$, then $G[V(P) \cup\{z\}]$ is traceable.

Proof: The lemma is immediate, since z must be adjacent to consecutive vertices of P or to an end vertex of P.

LEMMA 2 Let x and y be the ends of a path P of positive length in a graph G. If $d(x, P)+d(y, P) \geq|V(P)|$, then $G[V(P)]$ is Hamiltonian or isomorphic to K_{2}.

Proof: See [6].
LEMMA 3 Let G_{1}, G_{2} be vertex-disjoint traceable induced subgraphs of a graph G, where $\left|G_{1}\right|=n_{1}$ and $\left|G_{2}\right|=n_{2}$, and suppose that $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|$ is as large as possible subject to those conditions. Let x and y be vertices of G_{1} and G_{2} respectively. Let $H_{1}=G_{1}-x+y$ and $H_{2}=G_{2}-y+x$. If H_{1} and H_{2} are also traceable, then

$$
d\left(x, G_{1}\right)+d\left(y, G_{2}\right) \geq d\left(x, G_{2}\right)+d\left(y, G_{1}\right)-2 \epsilon(x y)
$$

Proof: By hypothesis,

$$
\begin{aligned}
& \left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \geq\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right| \\
= & \left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-d\left(x, G_{1}\right)-d\left(y, G_{2}\right)+d\left(x, G_{2}\right)+d\left(y, G_{1}\right)-2 \epsilon(x y)
\end{aligned}
$$

and the result follows.
Proof of the theorem: Let G be an undirected simple graph with $V(G)=V(D)$, where two distinct vertices u and v are adjacent if and only if $(u, v) \in E(D)$ and $(v, u) \in E(D)$. For any $x \in V(G)$ we have

$$
\begin{aligned}
d(x, G) & \geq 3(n-1) / 2-(n-1) \\
& =(n-1) / 2
\end{aligned}
$$

and so $\delta(G) \geq(n-1) / 2$. Thus G is traceable [2, p.135]. We may therefore choose two traceable induced subgraphs G_{1} and G_{2} such that $\left|V\left(G_{1}\right)\right|=n_{1}$ and $\left|V\left(G_{2}\right)\right|=n_{2}$ and $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|$ is as large as possible subject to these conditions. Let P_{1} and P_{2} be Hamiltonian paths of G_{1} and G_{2} respectively. Let $V\left(P_{1}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n_{1}}\right\}$, where x_{i} is adjacent in P_{1} to x_{i-1} for each $i>1$. Similarly let $V\left(P_{2}\right)=\left\{y_{1}, y_{2}, \cdots, y_{n_{2}}\right\}$, where y_{j} is adjacent in P_{2} to y_{j-1} for each $j>1$.

Case I: Suppose that neither G_{1} nor G_{2} is Hamiltonian or isomorphic to K_{2}. Thus $d\left(x_{1}, G_{1}\right)+d\left(x_{n_{1}}, G_{1}\right)<n_{1}$ by Lemma 2, and so we may assume without loss of generality that $d\left(x_{1}, G_{1}\right) \leq\left(n_{1}-1\right) / 2$. As this number must be an integer, we conclude that

$$
\begin{equation*}
d\left(x_{1}, G_{1}\right) \leq\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2 . \tag{1}
\end{equation*}
$$

Similarly we may assume that

$$
\begin{equation*}
d\left(y_{1}, G_{2}\right) \leq\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2 \tag{2}
\end{equation*}
$$

Because $\delta(G) \geq\lceil(n-1) / 2\rceil=\left(n-\epsilon_{n}\right) / 2$, it follows that

$$
\begin{align*}
d\left(x_{1}, G_{2}\right) & \geq\left(n_{1}+n_{2}-\epsilon_{n}\right) / 2-\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2 \\
& =\left(n_{2}+2-\epsilon_{n}-\epsilon_{n_{1}}\right) / 2 \\
& \geq\left(n_{2}+\epsilon_{n_{2}}\right) / 2 \tag{3}
\end{align*}
$$

since $\epsilon_{n}+\epsilon_{n_{1}}+\epsilon_{n_{2}} \leq 2$. (Note that n is even if both n_{1} and n_{2} are odd.) Similarly

$$
\begin{equation*}
d\left(y_{1}, G_{1}\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2 . \tag{4}
\end{equation*}
$$

Let $L_{1}=G_{1}-x_{1}+y_{1}$ and $L_{2}=G_{2}-y_{1}+x_{1}$.
Subcase A: Suppose L_{1} and L_{2} are both traceable. By Lemma 3, together with (1) - (4) we have

$$
\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2+\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2 \geq\left(n_{2}+\epsilon_{n_{2}}\right) / 2+\left(n_{1}+\epsilon_{n_{1}}\right) / 2-2 \epsilon\left(x_{1} y_{1}\right),
$$

from which we infer that equality must hold in (1) - (4). In particular

$$
\left(n_{1}+\epsilon_{n_{1}}\right) / 2=\left(n_{1}+2-\epsilon_{n}-\epsilon_{n_{2}}\right) / 2
$$

and so $\epsilon_{n}+\epsilon_{n_{1}}+\epsilon_{n_{2}}=2$. We deduce that

$$
\begin{aligned}
d_{G}\left(x_{1}\right) & =\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2+\left(n_{2}+\epsilon_{n_{2}}\right) / 2 \\
& =\left(n-2+\epsilon_{n_{1}}+\epsilon_{n_{2}}\right) / 2 \\
& =\left(n-\epsilon_{n}\right) / 2 .
\end{aligned}
$$

As $d_{D}\left(x_{1}\right) \geq\lceil(3 n-3) / 2\rceil=\left(3 n-2-\epsilon_{n}\right) / 2$, it follows that $d_{D}\left(x_{1}\right)-d_{G}\left(x_{1}\right) \geq$ $\left(3 n-2-\epsilon_{n}\right) / 2-\left(n-\epsilon_{n}\right) / 2=n-1$. Hence x_{1} is adjacent in D to every other vertex. A similar statement holds for y_{1}. A directed cycle in D with vertex set $V\left(G_{1}\right)$ may
inereiore be constructed by adjoining to P_{1} an edge joining x_{1} to $x_{n_{1}}$. Similarly D has a directed cycle with vertex set $V\left(G_{2}\right)$, as required.

Subcase \mathbf{B} : We may now suppose without loss of generality that L_{2} is not traceable. Therefore x_{1} cannot be adjacent to consecutive vertices or the end vertices of $P_{2}-y_{1}$, and so $d\left(x_{1}, G_{2}\right) \leq\left(n_{2}-\epsilon_{n_{2}}\right) / 2$. But $d\left(x_{1}, G_{2}\right) \geq\left(n_{2}+\epsilon_{n_{2}}\right) / 2$ from (3). We conclude that $\epsilon_{n_{2}}=0$, so that n_{2} is even. Moreover $d\left(x_{1}, G_{2}\right)=n_{2} / 2$, and from (1) and the inequality $\delta(G) \geq\left(n-\epsilon_{n}\right) / 2$ it follows that n and n_{1} are odd and $d\left(x_{1}, G_{1}\right)=$ $\left(n_{1}-1\right) / 2$. Thus $d_{G}\left(x_{1}\right)=(n-1) / 2$, and we find once again that x_{1} is adjacent in D to every other vertex. In particular, x_{1} is adjacent in D to $x_{n_{1}}$. If y_{1} were adjacent in D to $y_{n_{2}}$, then we would be done, and so we suppose that such is not the case.

Since L_{2} is not traceable, x_{1} is not adjacent to $y_{n_{2}}$. But $d\left(x_{1}, G_{2}\right)=n_{2} / 2$ and x_{1} is not adjacent to consecutive vertices of P_{2}. Therefore x_{1} must be adjacent to $y_{2 i+1}$ for each $i \geq 0$. It follows that $y_{n_{2}}$ is not adjacent to $y_{2 i}$ for any $i \geq 1$, for otherwise $\left(P_{2}-\left\{y_{1} y_{2}, y_{2 i} y_{2 i+1}\right\}\right) \cup\left\{x_{1} y_{2 i+1}, y_{n_{2}} y_{2 i}\right\}$ would be a Hamiltonian path in L_{2}. Since $y_{n_{2}}$ is also not adjacent to y_{1}, we infer that $d\left(y_{n_{2}}, G_{2}\right) \leq n_{2}-n_{2} / 2-1=$ $\left(n_{2}-2\right) / 2$. In other words, (2) holds with y_{1} replaced by $y_{n_{2}}$. We may therefore repeat the argument, with the roles of y_{1} and $y_{n_{2}}$ interchanged, in order to obtain the contradiction that x_{1} is adjacent to $y_{n_{2}}$.

Case II: We may now assume without loss of generality that G_{1} is Hamiltonian or isomorphic to K_{2}. We may also assume that $\delta\left(G_{1}\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2$, for if $d\left(x, G_{1}\right) \leq$ $\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2$ for some $x \in V\left(G_{1}\right)$ then the argument of the previous case applies, since x is an end of a Hamiltonian path of G_{1}.

The theorem clearly holds if $D\left[V\left(G_{2}\right)\right]$ is Hamiltonian. We therefore suppose it is not. As in the previous case we may assume that (2) holds. Hence (4) holds as before.

Define $H_{1}=G_{1}+y_{1}$ and $H_{2}=G_{2}-y_{1}$. There are two subcases.
Subcase A: Suppose there is no vertex $u \in V\left(H_{1}\right)$ such that $D\left[V\left(H_{2}\right) \cup\{u\}\right]$ is Hamiltonian. Then no vertex of H_{1} is adjacent in G to both y_{2} and $y_{n_{2}}$.

Subcase A (1): Suppose $D\left[V\left(H_{2}\right)\right]$ is Hamiltonian. Let $V\left(H_{2}\right)=\left\{v_{1}, v_{2}, \cdots\right.$, $\left.v_{n_{2}-1}\right\}$ where $\left(v_{i-1}, v_{i}\right) \in E(D)$ for each $i>1$ and $\left(v_{n_{2}-1}, v_{1}\right) \in E(D)$. For any $u \in V\left(H_{1}\right)$ let I_{u} be the set of all i such that $\left(v_{i}, u\right) \in E(D)$, and let J_{u} be the set of all j such that $\left(u, v_{j+1}\right) \in E(D)$, where $v_{n_{2}}=v_{1}$. Then $I_{u} \cap J_{u}=\phi$ since $D\left[V\left(H_{2}\right) \cup\{u\}\right]$ is not Hamiltonian. Therefore $d_{D}\left(u, H_{2}\right)=\left|I_{u}\right|+\left|J_{u}\right|=\left|I_{u} \cup J_{u}\right| \leq n_{2}-1$, and so

$$
e_{D}\left(H_{1}, H_{2}\right) \leq\left(n_{1}+1\right)\left(n_{2}-1\right)
$$

For each $u \in V\left(H_{1}\right)$ it follows that

$$
d_{D}\left(u, H_{1}\right) \geq\left(3 n-2-\epsilon_{n}\right) / 2-n_{2}+1
$$

Hence

$$
2 n_{1} \geq n_{1}+\left(n_{1}+n_{2}-\epsilon_{n}\right) / 2
$$

so that

$$
\begin{equation*}
n_{1} \geq n_{2}-\epsilon_{n} \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left(n_{1}+1\right)\left(n_{2}-1\right) & \geq e_{D}\left(H_{1}, H_{2}\right) \\
& =\sum_{v \in V\left(H_{2}\right)} d_{D}(v)-2\left|E\left(H_{2}\right)\right| \\
& \geq\left(3 n-2-\epsilon_{n}\right)\left(n_{2}-1\right) / 2-2\left(n_{2}-1\right)\left(n_{2}-2\right)
\end{aligned}
$$

and so

$$
n_{1}+1 \geq\left(3 n-2-\epsilon_{n}\right) / 2-2\left(n_{2}-2\right)
$$

Therefore

$$
2 n_{1}+2 \geq 3 n_{1}+3 n_{2}-2-\epsilon_{n}-4 n_{2}+8
$$

so that

$$
\begin{aligned}
n_{2} & \geq n_{1}-\epsilon_{n}+4 \\
& \geq n_{2}-2 \epsilon_{n}+4
\end{aligned}
$$

from (5). We now have a contradiction.
Subcase \mathbf{A} (2): Thus $D\left[V\left(H_{2}\right)\right]$ is not Hamiltonian. Consequently $d_{G}\left(y_{2}, H_{2}\right)$ $+d_{G}\left(y_{n_{2}}, H_{2}\right) \leq n_{2}-2$ by Lemma 2. Therefore

$$
\begin{aligned}
d_{G}\left(y_{2}\right)+d_{G}\left(y_{n_{2}}\right) & \leq n_{1}+1+n_{2}-2 \\
& =n-1
\end{aligned}
$$

since no vertex of H_{1} is adjacent to both y_{2} and $y_{n_{2}}$. But

$$
\begin{aligned}
d_{G}\left(y_{2}\right)+d_{G}\left(y_{n_{2}}\right) & \geq 2\left(n-\epsilon_{n}\right) / 2 \\
& =n-\epsilon_{n}
\end{aligned}
$$

Thus $\epsilon_{n}=1$ and equality must hold above. Hence $d_{G}\left(y_{2}\right)=d_{G}\left(y_{n_{2}}\right)=(n-1) / 2$. It follows that

$$
\begin{aligned}
d_{D}\left(y_{2}\right)-d_{G}\left(y_{2}\right) & \geq(3 n-3) / 2-(n-1) / 2 \\
& =n-1
\end{aligned}
$$

so that y_{2} is adjacent in D to every other vertex. Thus y_{2} is adjacent to $y_{n_{2}}$, and we have the contradiction that $D\left[V\left(H_{2}\right)\right]$ is Hamiltonian.

Subcase B: Suppose there exists $u \in V\left(H_{1}\right)$ such that $D\left[V\left(H_{2}\right) \cup\{u\}\right]$ is Hamiltonian. Note that $u \neq y_{1}$ since $D\left[V\left(G_{2}\right)\right]$ is not Hamiltonian. Let $L=H_{1}-u$. We may therefore assume that L is not Hamiltonian or isomorphic to K_{2}, for otherwise we are done.

Since $\delta\left(G_{1}\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2$ we have $d\left(x, G_{1}\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2$ for each $x \in V\left(H_{1}\right)-$ $\left\{y_{1}\right\}$. We suppose first that equality holds for some such $x \neq u$. In this case we shall show that x is adjacent to y_{1}. Observe first that

$$
\begin{aligned}
d\left(x, G_{2}\right) & \geq\left(n-\epsilon_{n}\right) / 2-\left(n_{1}+\epsilon_{n_{1}}\right) / 2 \\
& =\left(n_{2}-\epsilon_{n}-\epsilon_{n_{1}}\right) / 2 .
\end{aligned}
$$

Suppose x is not adjacent to y_{1}. Since G_{1} is Hamiltonian or isomorphic to K_{2}, x is an end of a Hamiltonian path P in G_{1}, and $d\left(y_{1}, G_{1}-x\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2>\left(n_{1}-1\right) / 2$ by (4). Therefore $H_{1}-x$ is traceable by Lemma 1.

Subcase B (1): Suppose $H_{2}+x$ is also traceable. Then by Lemma 3, (2) and (4) we find that

$$
\left(n_{1}+\epsilon_{n_{1}}\right) / 2+\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2 \geq\left(n_{2}-\epsilon_{n}-\epsilon_{n_{1}}\right) / 2+\left(n_{1}+\epsilon_{n_{1}}\right) / 2 .
$$

In fact, equality must hold since $\epsilon_{n}+\epsilon_{n_{1}}+\epsilon_{n_{2}} \leq 2$. Therefore $d\left(y_{1}, G_{1}\right)=\left(n_{1}+\epsilon_{n_{1}}\right) / 2$, and $d\left(y_{1}, G_{2}\right)=\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2$. Thus

$$
\begin{aligned}
d\left(y_{1}, G\right) & =\left(n_{1}+\epsilon_{n_{1}}\right) / 2+\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2 \\
& =\left(n-2+\epsilon_{n_{1}}+\epsilon_{n_{2}}\right) / 2,
\end{aligned}
$$

so that

$$
\begin{aligned}
d_{D}\left(y_{1}\right)-d_{G}\left(y_{1}\right) & \geq\left(3 n-2-\epsilon_{n}\right) / 2-\left(n-2+\epsilon_{n_{1}}+\epsilon_{n_{2}}\right) / 2 \\
& =\left(2 n-\epsilon_{n}-\epsilon_{n_{1}}-\epsilon_{n_{2}}\right) / 2 \\
& \geq n-1 .
\end{aligned}
$$

Again equality must hold. Moreover y_{1} must be adjacent in D to every other vertex. In particular, y_{1} is adjacent to $y_{n_{2}}$, in contradiction to the fact that $D\left[V\left(G_{2}\right)\right]$ is not Hamiltonian.

Subcase B (2): Suppose $H_{2}+x$ is not traceable. Then x cannot be adjacent to consecutive vertices of P_{2}, or to y_{2} or $y_{n_{2}}$. Therefore $d\left(x, H_{2}\right)<\left(n_{2}-1\right) / 2$. But $d\left(x, G_{2}\right) \geq\left(n_{2}-\epsilon_{n}-\epsilon_{n_{1}}\right) / 2 \geq\left(n_{2}-2\right) / 2$ and x is not adjacent to y_{1}. We are forced to the conclusion that $d\left(x, G_{2}\right)=\left(n_{2}-2\right) / 2$, so that n_{2} is even. Moreover x is adjacent to $y_{2 i+1}$ for each positive integer $i<n_{2} / 2$. If $y_{n_{2}}$ is adjacent to $y_{2 i}$ for some such i, then $\left(P_{2}-\left\{y_{1} y_{2}, y_{2 i} y_{2 i+1}\right\}\right) \cup\left\{x y_{2 i+1}, y_{n_{2}} y_{2 i}\right\}$ is a Hamiltonian path in $H_{2}+x$, contrary to hypothesis. Furthermore $y_{n_{2}}$ is not adjacent to y_{1}, and so $d\left(y_{n_{2}}, G_{2}\right) \leq\left(n_{2}-2\right) / 2=\left(n_{2}-2+\epsilon_{n_{2}}\right) / 2$. Note that $G_{2}-y_{n_{2}}+x$ is traceable since x is adjacent to $y_{n_{2}-1}$. The argument of subcase $\mathrm{B}(1)$ then applies with y_{1} and $y_{n_{2}}$ interchanged, yielding a contradiction.

We conclude that each $x \in V(L)-\left\{y_{1}\right\}$ satisfying $d\left(x, G_{1}\right)=\left(n_{1}+\epsilon_{n_{1}}\right) / 2$ must be adjacent to y_{1}. For any $x \in V(L)-\left\{y_{1}\right\}$ it therefore follows that $d\left(x, H_{1}\right) \geq$ $\left(n_{1}+\epsilon_{n_{1}}\right) / 2+1$, and so $d(x, L) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2$. But $\delta(L)<n_{1} / 2$ since L is not Hamiltonian or isomorphic to K_{2}. Hence $d\left(y_{1}, L\right) \leq\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2$. On the other
hand, since $d\left(y_{1}, H_{1}\right) \geq\left(n_{1}+\epsilon_{n_{1}}\right) / 2$ we deduce that $d\left(y_{1}, L\right) \geq\left(n_{1}-2+\epsilon_{n_{1}}\right) / 2$. Therefore equality holds, and so $d\left(y_{1}, G_{1}\right)=\left(n_{1}+\epsilon_{n_{1}}\right) / 2$. From (2) it follows that

$$
\begin{aligned}
d\left(y_{1}, G\right) & \leq\left(n-2+\epsilon_{n_{1}}+\epsilon_{n_{2}}\right) / 2 \\
& \leq\left(n-\epsilon_{n}\right) / 2,
\end{aligned}
$$

so that $d_{D}\left(y_{1}\right)-d_{G}\left(y_{1}\right) \geq n-1$. Thus y_{1} is adjacent to $y_{n_{2}}$ in D, and again we have the contradiction that $D\left[V\left(G_{2}\right)\right]$ is Hamiltonian.

To show that the condition in the theorem is sharp for each $n \geq 6$, we construct the following digraph D_{n} of order n. For any positive integer k, define K_{k}^{*} to be the complete digraph of order k, i.e., K_{k}^{*} contains both (u, v) and (v, u) for any two distinct vertices u and v of K_{k}^{*}. The digraph D_{n} consists of two vertex-disjoint complete subdigraphs D^{\prime} and $D^{\prime \prime}$ of order $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$, respectively, and all the $\operatorname{arcs}(u, v)$ with $u \in V\left(D^{\prime}\right)$ and $v \in V\left(D^{\prime \prime}\right)$. When n is odd, $\delta(D)=(3 n-5) / 2$. When n is even, $\delta(D)=(3 n-4) / 2$. Let $n=n_{1}+n_{2}$ be any integer partition such that $n_{1} \geq 2, n_{2} \geq 2$ and $\left\{n_{1}, n_{2}\right\} \neq\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$. Then it is easy to see that D_{n} does not contain two vertex-disjoint dicycles of lengths n_{1} and n_{2} respectively. It is our belief that if D is strongly connected, then the condition can be improved. Note that the theorem does not hold if $n_{1}=1$ or $n_{2}=1$, even if loops are permitted. In this case K_{2}^{*} gives a counterexample.

References

[1] D. Amar and A. Raspaud, Covering the vertices of a digraph by cycles of prescribed length, Discrete Mathematics 87 (1991), 111-118.
[2] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston, 1971.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
[4] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-424.
[5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
[7] H. Wang, Partition of a bipartite graph into cycles, Discrete Math., 117 (1993), 287-291.

