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Abstract 

A two-valued function f defined on the vertices of a graph G (V, E), 
I : V -+ {-I, I}, is a signed dominating function if the sum of its function 
values over any closed neighborhood is at least one. That is, for every v E 
V, f(N[v]) 2: 1, where N(v] consists of v and every vertex adjacent to v. The 

of a signed dominating function is ICV) = L f( v), over all vertices 
v E V. The signed domination number of graph G, denoted /s(G), equals 
the minimum weight of a signed dominating function of G. The upper signed 
domination number of a graph G, denoted r.(G), equals the maximum weight 
of a minimal signed dominating function of G. In this paper we present a variety 
of algorithmic results on the complexity of signed and upper signed domination 
in graphs. 
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1 Introduction 

In this paper we shall use the terminology of [3]. Specifically, if T a rooted tree 
with root r and v is a vertex of T, then the level number of v, which we denote by 
l( v), is the length of the unique r-v path in T. If a vertex v of T adjacent to u and 
1 (u) > I ( v ), then u is called a child of v, and v is the parent of u. A vertex w a 
descendant of v (and v is an ancestor of w) if the level numbers of the vertices on the 
v-w path are monotonically increasing. We will refer to an end-vertex of T as a leaJ. 

Let G (V, E) be a graph and let v be a vertex in V. The closed neighborhood 
N[v] of v is defined as the set of vertices within distance 1 from v, i.e., the set of 
vertices {u I d(u,v) ~ I}. The open neighborhood N(v) of v is N[v] - {v}. For a set 
S of vertices, we define the open neighborhood N(S) = UN( v) over all v in Sand 
the closed neighborhood N[S] = N(S) US. A set S of vertices is a dominating set 
if N[S] = V. The domination number of a G, denoted is the minimum 
cardinality of a dominating set in G. Similarly, the upper domination number r(G) 
is the maximum cardinality of a minimal dominating set in G. 

Let 9 . V -+ {O, I} be a function which assigns to each vertex of a an 
element of the set {O, I}. To simplify notation we will write g(S) for 2:g(v) over all 
v in the set S of and we define the weight of 9 to be g(V). We 9 a 
dominating function if for every v E V, g(N[v]) 2:: 1. The domination number and 
upper domination number of a graph G can be defined as 1'( G) = min { I 
a dominating function on and { g(V) I g is a minimal UVJ'UHHhU1Hr-, 

function on G}. 

A signed dominating function has been defined similarly in [6]. A function 9 : V -+ 

{ -1, I} is a signed dominating function if g( N[ v]) 2:: 1 for every v E V. A signed 
dominating function is minimal if and only if for every vertex v E V with g( v) = 1, 
there exists a vertex u E N[v] with g(N[u]) E {I, 2}. The signed domination number 
for a graph Gis I's( G) min {g(V) I 9 is dominating function on and the 
upper signed domination number for a graph G rs( G) = max {g(V) I 9 is a minimal 
signed dominating function on G}. In [6] various properties of the signed domination 
number are presented. 

There is a variety of possible applications for this variation of domination. By 
assigning the values -lor + 1 to the vertices of a graph we can model such things as 
networks of positive and negative electrical charges, networks of positive and negative 
spins of electrons, and networks of people or organizations in which global decisions 
must be made (e.g. yes-no, agree-disagree, like-dislike, etc.). In such a context, for 
example, the signed domination number represents the minimum number of people 
whose positive votes can assure that all local groups of voters (represented by closed 
neighorhoods) have more positive than negative voters, even though the entire net-
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work may have far more people who vote than positive. Hence this variation 
of domination studies situations in which, of the presence of negative vertices, 
the closed neighorhoods of all vertices are required to maintain a positive sum. 

In this paper we present variety of algorithmic results. We show that the decision 
problem corresponding to the problem of computing 19 is NP-complete, even when 
restricted to bipartite graphs or chordal graphs. For a fixed k, we show that the prob
lem of determining if a graph has a signed dominating function of weight at most k 
can also be NP-complete. We then show that the decision problem corresponding 
to the problem of computing r 9 is NP-complete, even when restricted to bipartite 

A linear time algorithm for finding a minimum dominating function 
m an tree is presented. 

2 Complexity for Signed Domination 

The following decision problem for the domination number of a graph is known to be 
NP-complete, even when restricted to graphs Dewdney or chordal 
graphs (see Booth [1] and Booth and Johnson [2]). 

Problem: DOMINATION (DM) 
INSTANCE: A graph G (V, E) and a 
QUESTION: Is I(G) ::; k? 

integer k ~ IVI. 

We will demonstrate a polynomial time reduction of this problem to our signed 
domination problem. 

Problem: SIGNED DOMINATION (SD) 
INSTANCE: A graph H = (V, E) and a positive integer j ~ IVI. 
QUESTION: Is Is(H) ::; j? 

Theorem 1 Problem S D is NP-complete) even when restricted to bipartite or chordal 
graphs. 

Proof. It is obvious that S D is a member of N P since we can, in polynomial time, 
guess at a function f : V { -1, 1} and verify that f has weight at most j and is a 
signed dominating function. 

We next show how a polynomial time algorithm for S D could be used to solve D M 
in polynomial time. Given a graph G = (V, and a positive integer k construct the 
graph H by adding to each vertex v of G a set of degG ( v) + 1 paths of length two. 
Let m = lEI and n = IVI. We have IV(H)\ = n + 2 I:VEV(G) (degG(v) + 1) = 3n + 4m 
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and IE(H)I m + 2 LVEv(a)(dega(v) + 1) = 2n + 5m, and H can be constructed in 
polynomial time. Note that if G is a bipartite or chordal then so too is H. 

Clearly, for any signed dominating function 9 of a if an end-vertex 
and w is its neighbor (so N F ( v) = {w}), then g( v) g( w) L In particular, for any 
signed function 9 of H, if g( v) = then v E V( G) ~ V(H). Further, 
we note that if 9 : V(H) {-I, 1}, v E V( G) and g( w) -1 for every w E Na[v], 
then, because INa[v]1 INH(v) - Na[v] I = dega(v) + 1, we would have g(NH[v]) ::::; O. 
That if g. V(H) ~ {-I,l} is a signed function for then g(v) = 
for v V(H) V(G), and {v E V(G) g(v) = 1} set for G. It follows 
that if we let j IV(H) 2(n k) = 4m + n k if and only if 
IS (II) j. The the of Theorem 1. 0 

Problem DM is for fixed k. To see (V, be a graph with 
IVI p. If k p, then V is a dominating set of G of at most k. On the 
other hand)if k p, then consider all the r-subsets of where r 1, ... ,k. There 
are (~of these subsets, which is bounded above by the pr. It 
takes a polynomial amount of time to verify that or is not a dominating set. 
These remarks show that it takes a polynomial amount of time to whether G 
has a set of at most k when k fixed. Hence for fixed k, 
problem DM P. 

In now show that for fixed k, the SD can be NP-complete. 
To see this, we will demonstrate polynomial time reduction of the domination 
nr"nOPTTl to the following zero domination ~H~"J~'_~U. 

Problem: ZERO SIGNED DOMINATION (ZSD) 
INSTANCE: A graph G = (V, 

Does G have a dominating function of at most 07 

Theorem 2 Problem Z S D is NP-complete) even when restricted to bipartite or 
chordal graphs. 

Proof. It is obvious that ZSD is a member of N P since we can, in polynomial time, 
guess at a function f : V(G) ~ {-I, I} and verify that f has at most 0 and 
is a signed dominating function. 

We next show how a polynomial time algorithm for ZSD could be used to solve SD 
in polynomial time. Let L be the graph of Figure 1. Then Lhasa signed dominating 
function of weight -1 as illustrated. In fact, Is(L) = -1. Note that L is chordal. 

Given a graph H = (V, E) and a positive integer j, let G H U U{=lLi, where 
Li ~ L for iI, ... ,j. It is clear that G can be constructed in polynomial time. 
Note that if H is chordal, then so too is G. 
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-1 -1 

-1 1 -1 

Figure 1: The graph L. 

We now show that ,s(H) :; j if and only if IS( G) O. Suppose first that ,s(H) :; j 
and that f is a signed dominating function of H of weight 's(H). Let fi be any signed 
dominating function of weight -1 for Li for i 1, ... ,j. Define 9 V(G) -+ {-I, I} 
by g(x) fi(X) if x E V(Li ), (i 1,.. j), while g(x) = f(x) for x V(H). Then 
9 is a signed dominating function of G of weight Is(1I) + j ( -1) j - j = 0, whence 
IS( G) :; O. Conversely, suppose that 1$( G) :; 0 and that 9 is a signed dominating 
function of weight IS(G). Let f be the restriction of 9 on V(H) and let fi be the 
restrictionofgon V(L j ) for i = 1, . ,j. Then /s (H)+j(-l) Is(H)+:Lt=lIS(Li):; 
f(V(H)) + fi(V(Lj)) = g(V(G)) 0, that ,s(H) J. 

Let F be the graph of 2. Then F has a signed dominating function of 
weight -1 as illustrated. In fact, 's(F) -1. Note that F is bipartite. Given a 
graph H = (V, E) and a positive j, let G = H U ut1Fi1 where Fi ~ F for 
i = 1, ... ,j. It is clear that G can be constructed in polynomial time. Note that if 
H is bipartite, then so too is G. now in the preceeding paragraph, we 
may show that ,s(H) :::; j if and only if IS(G) O. This completes the proof of the 
theorem. 0 

-1 

-1------~~----~F---------1 

Figure 2: The graph F. 
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Next we consider the following decision problem corresponding to the problem 
of computing rll(G). If a graph G is bipartite or chordal, then it is known that 
f3( G) = r( G), where f3( G) is the maximum cardinality of an independent set of 
G [4] and [9]). Since the maximum independent set problem can be solved in 
polynomial time for these two families of so too can the problem. of finding 
r( G) for G either bipartite or chordal. We show that the decision problem 

Problem: UPPER SIGNED DOMINATION (USD) 
INSTANCE: A graph G (V, E) and a positive integer k IV/. 
QUESTION: Is there minimal dominating function of weight at least k 
for G? 

is NP-complete, even when restricted to or chordal by describing a 
polynomial transformation from the following known NP-complete decision problem 
[7]: 

Problem: ONE-IN-THREE 3SAT (Oneln3SAT) 
INSTANCE: A set U of variables, and a collection C of clauses over U such that 
each clause e E C has lei 3 and no clause contains a variable. 
QUESTION: Is there a truth for U such that each clause in C has 
exactly one true literal? 

Theorem 3 Problem USD even when restricted to bipartite graphs. 

Proof. It is obvious that USD is a member of N P since we can, in polynomial time, 
guess at a function f : V ~ {-I, I} and verify that f has weight at least k and is a 
minimal signed dominating function. To show that USD is an NP-complete problem 
when restricted to bipartite graphs, we will establish a polynomial transformation 
from the NP-complete problem Oneln3SAT. Let I be an instance of Oneln3SAT 
consisting of the (finite) set C = {Cl, ... , cm } of three Ii teral clauses in the n variables 
Ul, U2, .•. , Un. We transform I to the instance (G I , k) of USD in which k 3n + 4m 
and G I is the bipartite graph constructed as follows. 

Let H be the path u, VI, V2, V3, V4 and let HI, H 2 , . .. , Hn be n disjoint copies of H. 
Corresponding to each variable Ui we associate the graph Hi. Let Ui, Vi,}' Vi,2, Vi,3, Vi,4 

be the names of the vertices of Hi that are named u, Vb V2, V3 and V4, respectively, in 
H. Corresponding to each 3-element clause Cj we associate a path Fj on four vertices 
with one end-vertex labeled Cj. The construction of our instance of USD is completed 
by joining the vertex Cj to the three special vertices that name the three literals in 
clause Cj. Let Gr denote the resulting bipartite graph. 
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It is easy to see that the construction can be accomplished in polynomial time. All 
that remains to be shown is that I has a one-in-three satisfying truth assignment if 
and only if fs(G1 ) 2:: k, where k 3n + 4m. 

First suppose that I has a one-in-three satisfying truth assignment. We construct 
a minimal signed dominating function f of GI of weight k, which will show that 
f s( G r) 2:: k. For each i = 1,2,. ., n, do the following. If Ui T, then let f( Ui) = 
f( Vi,2) = f( Vi,3) J( Vi,4) 1 and let f( Vi,t) -1. On the other hand, if Ui F, 
then let f(Ui) -1 and let f(Vi,I) = f(Vi,Z) J(Vi,3) = f(Vi,4) 1. For each 
j = 1,2, ... ,m, let f(v) = 1 for each vertex v of Fj • In each case f(N[vj,l]) 1 
and J(N[Vi,4]) 2. Since I has a one-in-three satisfying truth assigment, it follows 
that J(N[cj]) 1 for all j 1,2, ... , m. Hence, for every vertex v of Gr with 
f( v) 1, there exists a vertex U E N[v] with f(N[u]) E {1,2}. Since J has weight 
k and J(N[v]) 2:: 1 for all v E V(GI), the function J is a minimal signed domination 
function of weight k, implying that f:,( G r) 2:: k. 

Conversely, assume that fs(G I ) k. Let 9 be a minimal signed dominating func
tion of weight at least k. Note that at least one vertex of Hi, i = 1, ... ,n must 
be assigned a -1 under g, since otherwise g(N[w]) rt {1,2} for all w E N[Vi,Z]' con
tradicting the minimality of g. Hence g(V(Hi)) :::; 3 for all i = 1,2, ... , n. Since 
g(V(Fj )) :::; 4 for all j 1,2, .. , m, we have that g(V(GI )) 3n + 4m with equality 
if and only if g(V(Hi)) 3 for all i and g(V(Fj )) = 4 for all j. Equality holds, since 
we have assumed that g(V(Gr )) 2:: k. Let j E {1,2, ... m}. The two central vertices 
of Fj each have closed neighborhood sum 3 under g. The minimality of 9 implies 
that there exists a vertex in the closed neighborhood of the vertex adjacent to Cj in 
Fj with closed neighborhood sum 1 or 2 under g. It follows that g(N[cj]) = 1 or 2. 
This implies that the sum of the function values under 9 of the three special vertices 
that name the three literals in clause Cj, and that are joined to the vertex Cj, is either 
equal to -lor O. The first possibility implies that exactly two of these three special 
vertices joined to Cj are assigned the value -1 under 9 and one is assigned the value 
1 under g, while the second possibility cannot occur. We now obtain a truth &"sign
ment t : {Ul' Uz, ... ,un} --+- {T, F} as follows. We merely set t( Ui) = T if g( Ui) = 1 
and t(Ui) = F if g(Ui) = -1. By our construction of the graph GI, it follows that 
each clause Cj of I contains exactly one variable Ui with g( Ui) = 1. Hence I has a 
one-in-three satisfying truth assignment. Therefore, I has a one-in-three satisfying 
truth assignment if and only if rs(GI ) 2:: k, completing the proof. 0 

3 A Linear Algorithm for Trees 

Next we present a linear algorithm for finding minimum signed dominating function 
in a nontrivial tree T. The algorithm roots the tree T and associates various variables 
with the vertices of T as it proceeds. For any vertex v, the variable MinSum denotes 
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the miminum possible sum of values that may be to v and its children. So 
MinSurn 1 or 2 for the root v, depending on whether v has even or odd degree, 
respectively; otherwise, MinSum = 0 or 1, on whether v has even or odd 
degree, The variable C hildSum denotes the sum of the values assigned 
to the children of v, while the variable Sum( v) denotes the sum of the values as~nglled 
to v and the children of v. 

Algorithm SD. Given a nontrivial tree T on n vertices) root the tree T and relabel 
the vertices ofT from 1 to n so that label( w) label(y) if the level of vertex w is less 
than the level of vertex y. Note the root of T will be labeled n. 

for i := 1 to n do 
begin 

end; 

1. deg i f- of the vertex in T; 

2. if i = n 
then if deg i is odd 

then MinSum f- 2 
else M inSum f- 1; 

3. if i < n 
then if degi is odd 

then MinSum f- 1 
NIinSum f- 0; 

4. if vertex a leaf and i < n 
then C hildSum f- 0 
else C hildSum f- sum of the values of the children of 

vertex i; 

5. if C hildSum < NIinSum 
then begin 

5.1. while ChildSum < MinSurn - 1 do 

end 

increase the value of the children 
of vertex i; 

5.2. f(i) f- 1; 

6. else if vertex i has a child w with Sum( w) = 0 or 1 
6.1. then f(i) f- 1 
6.2. else f(i) f- -1; 

7. Sum( i) f- C hildSum + f( i); 
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We now verify the validity of Algorithm SD. 

Theorem 4 Algorithm S D produces a minimum signed dominating function in a 
nontrivial tree. 

Proof. Let T (V, E) be a nontrivial tree of order n, and let f be the function 
produced by Algorithm SD. Then f . V ---+ {-I, I}. For convenience, the variables 
ChildSum and MinSum, which were used by Algorithm SD when it considered the 
vertex v, will be denoted by ChildSum(v) and MinSum(v), respectively. 

Lemma 1 When Algorithm SD assigns a value to the root r' of a subtree (or tree) 
T', the following three conditions will hold: 

1. For any vertex v E T' - {r'l, f(N[v]) 2:: l. 

2. Sum(r') ~ MinSum(r'). 

3. The initial value assigned to r' is the minimum value it can receive given the 
values of its descendants under f. 

Proof. We proceed by induction on the order in which the vertices were labeled. 
The first vertex a value will be a leaf. Vacuously, the first condition holds. 
In the case of a leaf i, ChildSum(i) = 0 and MinSum(i) = 1, so that statements in 
Step 5 will be executed. The leaf i will be assigned the value 1 in Step 5.2, so that 
Sum(i) MinSum(i) = 1 and the second and third conditions hold. 

Next we assume that Algorithm SD assigns values to the first k vertices so that 
Conditions 1, 2 and 3 hold. We show that these conditions hold after the (k + 1 )st 
vertex is assigned value. 

We begin with Condition 1. Before the (k + l)st vertex is assigned a value, we 
can assume by the inductive hypothesis that all its descendants, other than its chil
dren, have closed neighborhood sums of at least one. These descendants will con
tinue to have closed neighborhood sums of at least one after the (k + 1 )st vertex 
is asssigned a value, because even if some children of the (k + 1 )st vertex are reas
signed values in Step 5.1 of the algorithm, their closed neighborhood sums will not 
decrease. Also, by the inductive hypothesis, any child w of vertex k + 1 will have 
Sum(w) MinSum(w) 2:: O. If ChildSum(k + 1) < MinSum(k + 1), then the 
(k + vertex is assigned the value 1 in Step 5.2 and f(N[w]) = Sum(w) + 1 2:: 1. 
Suppose, then, that the case of Step 6 of the algorithm holds. If Sum( w) = 0 or 1, 
then the case in Step 6.1 of the algorithm holds and the (k + l)st vertex will be 
assigned the value 1. So f(N[w]) ~ 1. If Sum(w) > 1, then f(N[w]) 2: 1, regardless 
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of what value is assigned to vertex k + 1. Thus, all descendants of the (k + 1 )st vertex 
will have closed neighborhood sums of at least one. The (k + 1 )st vertex, therefore, 
satisfy Condition 1. 

We show next that after the (k + l)st vertex is a value, Sum(k + 1) 2: 
M inSum( k + 1). This is enforced in Steps 5 and 6 of the algorithm. In Step 5, if 
Childsum(k + 1) < MinSum(k + 1), then the (k + l)st vertex is given the value 1 
and the values assigned to its children are increased as much necessary to bring 
Sum(k + 1) up to MinSum(k + 1). If ChildSum(k + 1) 2: MinSum(k + 1), then, 
since ChildSum(k + 1) and MinSum(k + 1) differ in parity, ChildSum(k + 1) 2: 
MinSum(k + 1) + 1. Hence Sum(k + 1) 2: MinSum(k + 1), of what value 
is assigned to the (k + l)st vertex. Thus the vertex r' satisfies Condition 2. 

It remains to consider Condition 3. Let v r'. Suppose the initial value assigned to 
v is 1. If v was assigned the value 1 in Step 5.2, then the values to its children 
were increased until ChildSum(v) = MinSum(v) - 1. Thus ChildSv,m(v) = -1 
or 0 if deg v is even or odd, respectively, and v is not the root of 
ChildSum(v) 0 or 1 if deg v is even or odd, respectively, and v the root of T. It 
follows that for f to be a signed dominating function of T, the value for f( v) must be 
1. Ifv was assigned the value 1 in 6.1, then v has a child w with Sum(w) 0 
or 1. Thus 1 ::; f(N[w]) Sum(w) + f(v) f(v) + 1, so f(v) 2: O. Once again, the 
value for f( v) must be 1. This completes the proof of the lemma. 0 

Since MinSum(n) 2: 1, an immediate consequence of Lemma 1 is the following: 

Corollary 1 The function f produced by Algorithm S D is a signed dominating func
tion for T. 

To show that the signed dominating function f obtained by Algorithm SD is min
imum, let 9 be any minimum signed dominating function for the rooted tree T. If 
f -I g, then we will show that 9 can be transformed into a new minimum signed 
dominating function 9' that will differ from f in fewer values than 9 did. This process 
will continue until f = g. Suppose, then, that f -I g. Let v be the lowest labeled 
vertex for which f( v) 'I g( v). Then all descendants of v are assigned the same value 
under 9 as under f. An immediate corollary of Lemma 1 now follows. 

Corollary 2 If g( v) < f( v), then the initial value assigned to the vertex v was in
creased in Step 5 of Algorithm SD. 

Lemma 2 If g(v) < f(v), then the function g' defined by g'(U) = f(u) if u E 
N[parent(v)] and g'(U) g(u) ifu rt. N[parent(v)] is a minimum signed dominating 
function of T that differs from f in fewer values than does g. 
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Proof, By Corollary 2, the initial value assigned to the vertex v was increased in 
Step 5.1 of Algorithm SD and this occurs when the parent of v was being assigned 
a value. Let w be the parent of v. Thus g' is defined by g'{ u) f( u) if u E N[w] 
and g'(u) = g(u) for all remaining vertices u in V. Then f(w) 1 and Sum(w) 
MinSum(w). 

If w is the root of then f(N[w]) Sum(w) MinSum(w). If deg w is 
even, then g(N[w]) is odd, so g(N[w]) 2:: 1 MinSum(w) f(N[w]). If deg w 
is odd, then g(N[w]) is even, so g(N[w]) 2 MinSum(w) f(N[w]). Hence 
f(N[w]) g(N[w)). Furthermore, all vertices in V - N[w] have the same values 
under 9 as under f. Thus g' f and f(V) g(V) g(V N[w]) + g(N[w]) 
f(V N[w]) + g(N[w]) 2 f(V N[w]) + f(N[w]) f(V). Consequently, we must 
have equality throughout. In particular, g(V) f(V); so g' f is a minimum 
dominating function of T. 

If w is not the root, then 1 f(N(wJ) Sum(w)+ f(parent(w)) = MinSum(w)+ 
f(parent(w)) 1 + f(parent(w)), so f(parent(w)) 2:: 0. Thus f(parent(w)) 1 and 
f(N[wJ) MinSum(w) + L Since all the descendants of w, other than its children, 
have the same values under 9 as under f, g'(N[u]) = f(N[u]) if u w or if u is a 
descendant of w. Furthermore, since f(w) 1 and f(parent(w)) 1, g'(N[u]) 
g(N[u]) for all vertices u different from w or a descendant of w. Thus, since f and 9 
are dominating functions on T, so too is g'. If deg w even, then g(N[w]) is 
odd, g(N[w]) 1 MinSum(w) + 1 f(N[w]). If deg w is odd, then g(N[w]) 
is g(N[wD 2:: = MinSum(w) + 1 f(N[w]). Hence f(N[w]) g(N[w)). 
Consequently, g'(V) g(V - N[wD + f(N[w]) g(V - N[w]) + g(N[w)) g(V). 

g' is a minimum signed dominating function of T that differs from f in fewer 
values than does g. 0 

It remains for us to consider the case where f(v) < g(v). Here the vertex v is not 
the root of T, for otherwise f(V) < g(V) Is(T), which is impossible. Since the 
labeling of the vertices was arbitrary at each level, if any vertex x at the same level 
as v has g(x) < f(x), we can use Lemma 2 to find a signed dominating function g' 
that agrees with f in more values than under g. So we may assume in what follows 
that every vertex x at the same level as v has f( x) :::; g( x). 

Since f( v) < g( v), it follows that f( v) = -1 and g( v) 1. By the minimality 
of g, there exists a vertex x E N[v] such that g(N[x]) E {1,2}. Let w be the 
parent of v and let u be the parent of w. If f(w) S g(w) and f(u) S g(u), then 
f(N[x]) = f(N[x] - {v}) + f( v) g(N[x] - {v}) + g( v) 2 g(N[x]) - 2 0, which 
is a contradiction. Hence f(w) > g(w) or f(u) > g(u). 

If f(w) > g(w), i.e., f(w) = 1 and g(w) = -1, define a function g' : V -+ {-I, I} by 
g'(y) =g(y)ify E V-{v,w},g'(v) = -1 andg'(w) = 1. Notethatf(v) = g'(v) =-1 
and f(w) = g'(w) = 1. The only vertices whose neighborhood sums are decremented 
under g' are the children of v. However, these closed neighborhood sums under g' are 
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at least as large as under f. Thus, since 9 are f are signed dominating functions, 
so too is g'. Furthermore, g'(V) = g(V), so that g' is a minimum signed dominating 
function which differs from f in fewer values than does g. 

Assume, therefore, that few) s g(w). It follows that feu) > g(u), feu) 1 
and g(u) -1. Define a function g' V { I} by g'(y) = g(y) if y E V-
{ v, u}, g' ( v) = -1 and g' ( u) = 1. As g' is a minimum signed dominating 
function which differs from f in fewer values than does g. This the proof 
of Theorem 3. 0 
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