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Abstract. A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume 
s consists of two disjoint collections Tl and each containing ordered 
k-tuples of distinct elements of a v-set called blocks, such that the 
number of blocks containing any t-tuple of V is the same in Tl as in 
T2 . Our study shows that the volume of a (v, k, t)DT is at least 2Lt/ 2J 

and that directed trades with minimum volume and minimum foundation 
exist. Also it is shown that for each s 2:: 2, there exists a (v, k, 2)DT and 
a (v, k,3)DT each of volume s, with one exception, that is, no (v,4, 3)DT 
of volume three exists. 

1 Introduction 

Let 0 < t :::; k :::; v and ,\ > 0 be integers, and V be a set of v elements. In this 
note by an n-tuple of V, we mean an ordered n-subset of V. Each k-tuple of distinct 
elements of V is called a block. A t-( v, k, ,\) directed design (or a simply t-( v, k, '\)D D) 
is a pair (V, B), where V is a v-set, and B is a collection of blocks, such that each 
t-tuple of V appears in precisely ,\ blocks. Note that a t-tuple is said to appear in a 
k-tuple if its components are contained in that block as a set, and they appear in the 
same order. For example the 4-tuple abed contains the ordered pairs ab, ac, ad, be, bd 
and cd. 

Definition. A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists 
of two disjoint collections Tl and T2 , each of s blocks, such that the number of blocks 
containing any t-tuple of V is the same in Tl as in T2• When s = 0, the directed 
trade is said to be void. 

Example 1. Some directed trades: 

a (7,4, 2)DT of volume 5: Tl T2 
1367 1357 

1457 1467 
2357 2367 
2647 2457 
3467 3647 
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a (4,3, 2)DT of volume 2: 

a (4,4, 3)DT of volume 2: Tl 
1234 
2143 2134 

Note that the definition of (v, k, t) directed trades allows repeated blocks in Tl 
or in T2 . It is an easy exercise to prove that a (v, k, t) directed trade is also a (v J k, t') 
directed trade, for all tf with 0 < tf < t. 

Clearly, when a t-(v, k, oX) directed design D contains the collection of blocks 
of T2 in a (v, k, t) directed trade, then by substituting the blocks of Tl for the blocks 
of T2 in the design, the resulting design is still a t-(v, k, oX) directed design. Thus 
by applying a proper directed trade to a given directed design, we may obtain a 
new directed design. This method is called the method of trade off. Therefore, it is 
important to understand the structure of directed trades, and conditions for their 
existence and nonexistence . 

Directed designs were introduced in 1973 by Hung and Mendelsohn [4] and there 
are a few papers which deal with the existence of directed designs; for example, [1] 
and [7] and the references therein. 

Trades have been used in the discussion oft-(v, k, oX) designs. Graver and Jurkat 
[2] called them null designs. There has been extensive research on (v, k, t) trades. 
For a survey on this, see Hedayat [3]. Papers by Hwang [5] and Mahmoodian and 
Soltankhah [6] deal with the existence and nonexistence of (v, k, t) trades. 

In this paper we investigate the necessary and sufficient conditions for the 
existence of (v, k, t) directed trades. We have the following results: (for the definitions 
see Section 2) 

(i) the minimum foundation size and minimum volume of a non-void (v, k, t)DT 
are k and 2 Lt/2J respectively; 

(ii) (v, k, t)DTs with both the minimum foundation size k, and the minimum volume 
2Lt/2J exist; 

(iii) for each s 2: 2, there exist at least a (v,k,2)DT and a (v,k,3)DT each of 
volume s, with one exception, that is, no (v, 4, 3)DT of volume three exists. 

2 Definitions and preliminary results 

Unless stated otherwise, all the directed trades in this paper are non-void. 
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(i) A (v, k, t)DT of volume s will be represented by 

/J 

T Tl - Tz 2..:::Bli - BZi, 
i=l 

where Bli's and Bz/s are the blocks contained in Tl and Tz, respectively. 

(ii) In a (v, k, t)DT, both collections of blocks must cover the same set of 

elements. This set of elements is called the foundation of the directed trade. The 

foundation of a directed trade T will be denoted by found(T). Thus by definition 

\found(T)\ v. 

(iii) (v,k,t) trades and (v,k,t) directed trades may be obtained from each 

other. By arranging the elements of each block of a given (v k, t) trade of volume 

in, say, increasing (or decreasing) order, we obtain a (v, k, t)DT of volume s. 

Also, if we consider the blocks of a given (v, k, t)DT of volume s to be unordered, we 

obtain a (v, k, t) trade of volume s', where 0 :S S' :S s (it should be noted that the 

foundation size may also decrease). If we consider the directed trades of example 1 to 

be unordered, we obtain a (7,4,2) trade of volume 4 and two void trades respectively. 

This leads us to the following definition. 

Definition. A directed trade is called strictly directed if when we consider its blocks 

without order then we obtain a void trade. 

By definition, each strictly directed trade T has a structure such as the following: 

/J 

Bi 2..::: BilXi, 
i=l 

where each ai is a permutation on the elements of Bil for i 1,.. ,s. 

Hwang [5] showed that, when v < k + t + 1, there is no non-void (v, k, t) trade, while 

in the case of v ~ k + t + 1, the volume of a (v, k, t) trade is at least 2t. It follows 

from this result that each (v, k, t)DT with Ifound(T)I < k + t + 1 or volume s < 2t 

must be a strictly directed trade. The second and the third cases of example 1 are 

strictly directed trades. 

(iv) Let D be a collection of blocks and Xl'" Xi be an i-tuple of V, 0 < i < k. 

We define rD(Xl"'X,) to be the number of blocks in D which contain Xl'" Xi. To avoid 

messy notation, we shall use r X1 ... X, for rD(Xl ... Xi)' 

(v) Let T = Tl - T2 and T* = Tt - T; be two (v, k, t)DTs. Then it can be 

easily seen that T+T* = TITt-T2T; and T\T* = TIT;-T2Tt are also (v, k, t)DTs, 

where for two collections A and B, AB denotes the union of A and B. 

(vi) Let T be a (v, k, t)DT of volume s and the set of elements {Xl, .•. , Xc} be 

disjoint from found(T). Then by adding the "tail" Xl'" Xc to the end of each block 

of T, we obtain a (v, k + c, t)DT of volume s. Conversely, let T be a (v, k, t)DT of 

volume s, and suppose that XlJ ••. , Xc E found(T) with r Xi = s for 1 :S i :S c. Then 

by omitting these elements from all the blocks of T, we obtain a (v,k - c,t)DT of 

volume S', where 0 :S Sl :S S. 
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3 conditions 

First we state the following lemma. Although this lemma is 
basis for some useful results which will be derived later. 

it nrrnTlI"iPQ the 

Lemma L Let T be a (v, k, t)DT of volume s, and x found(T) such that Tx s. 
Let 

T1x = I:: Bli 
i:Bli3x 

and 

Then: 

(i) Tx - T2x is a (v, k, t I)DT of volume Tx; 

(ii) T~ T{x T~x is a (v -1, k, t I)DT of volume Tx. 

Now we can prove the following theorem. 

Theorem LIfT is a (v, k, t)DT, then: 

(i) Ifound(T)I 2:: kj 

(ii) the volume of T is at least 2lt/2j. 

Proof. (i) is evident. 
(ii) Proof is by induction on t. For t=1 there is nothing to prove. For t= it can 
be easily seen that there exists no (v, k, 2)DT and (v, k, 3)DT of volume 1. Assume 
that t > 3 and the theorem holds for all values less than t. We show that it holds for 
t also. Hence we may assume the volume of a (v, k, t 1 )DT is at least 2L(t-l)/2j. Let 
T be a (v, k, t)DT. If there exists x E found(T) such that Tx s, then Lemma 1, 
Tx and T~ are (v, k, t 1 )DTs and by assumption each has volume at least , 
which in turn implies that the volume of T is at least 2Lt/2J If for each E found(T) 
rx = s, then there exist x, y E found(T) such that r xy < s. (Note that ordered 
2-tuples xy and yx cannot appear in the same block). Thus Trey (the blocks in T 
which contain the 2-tuple xy) and T~y (the blocks in T which do not contain the 
2-tuple xy) are (v, k, t - 2)DTs and by assumption each of them volume at least 
2L(t-2)/2j, which it implies that the volume of T is at least 2Lt/2J. I 

Definition. A (v, k, t)DT of foundation size k and volume 2 Lt/ 2J called a minimal 
directed trade. 

From Lemma 1 and Theorem l(ii), we obtain the following fact about minimal 
directed trades. 

Lemma 2. If T is a minimal directed trade, then for any i-tuple of V, 0 < i :S t, 

r = T = r = 2lt/2J 2Lt-l/2J. 2Lt-i/2j 0 
T"'l ... a:i T1("'1"''';) T2("'1 ... "';) , , .. , , or . 
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4 (v, k, t)DTs of minimum volume 

In this section we show that (v, k, t)DTs with volume 2lt/2J exist for all v k. First 
we state and prove two lemmas, from which we may obtain some new directed trades 
from a given directed trade. 

Lemma 3. If there exists a (v, k, t )DT, T of volume 5, then there exists a (v + 1, k + 
1, t + l)DT, T*, of volume 25. 

Proof. Let x be a new element. Then we can construct blocks of T* follows: 

1 

X 

Tl 
X 

X 

T2 : 
x 

x 

x 

Tl 

T" 2 

X 

X 

Clearly each T* constructed in this way is a (v + 1, k + 1, t + 1 )DT of volume 2$. 0 

Lemma 4. If there exists a (v, k, t )DT, T of volume 5, then there exists a (v + 2, k + 
2, t + 2)DT, T*, of volume 25. 

Proof. Let x and y be two new elements. We can construct blocks of T* as follows: 

xy 
: 

xy 
yx 
: 

yx 

T* 1 

Tl 

T2 

xy 

xy 
yx 
: 

yx 

T* 2 

T2 

Tl 

Tl 

or 

T2 

T* 1 

Clearly T* is a (v + 2, k + 2, t + 2)DT of volume 25. 0 

Theorem 2. Minimal (v, k, t) directed trades exist. 

xy xy 
: T2 : 

xy xy 
yx yx 

Tl 
yx yx 

Proof. The theorem is established by applying Lemma 3 and Lemma 4 to a 
(2,2,1 )DT of volume 1, namely Tl = 12; T2 = 21. I 

In a directed trade with minimum volume the foundation size can be greater 
than k. This is shown in the following theorem. 
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Theorem 3. The foundation sizes of a (v, k, t)DT of minimum volume are: 

(i) Ifound(T)I k, if t is odd; 

(ii) k I found(T)I 2k t, if t is even. 

Proof. Let T be a (v, k, t)DT of minimum volume. 
(i) If t is odd then by, Lemma 2, for each x E found(T), Tx 2lt/2J. Thus the 
foundation size of T must equal k. 
(ii) If t is even then by, Lemma 2, for each x E found(T), Tx 2Lt/2J or If the 
foundation size is greater than k, then there exists x E found(T) with Tx 2Lt-l/2J 
By Lemma 1, each of Tx and T~ is a (v, k, t 1 )DT of minimum volume. Thus by 
(i) of this theorem Ifound(Tx )I = Ifound(T~)1 k and each element in found(Tx ) or 
in found(T~) appears in each block of Tx or in each block of T~ respectively. Now 
there exists at least one t-tuple in Tlx , say Xl' .. Xt, which does not appear in T2x , 

for otherwise Tx will be a (v, k, t)DT of volume 2Lt-l/2J, which is impossible. Then 
Xl' .• Xt must appear in T~x' Thus Xl," ,Xt E found(Tx) and Xl," • ,Xt E found(T~). 
Therefore these elements appear in each block of T. Now let a be the number of 
elements which appear in all blocks of and b be the number of elements which 
appear in exactly 2lt-l/2J blocks of T, so a 2: t. We have that a + b Ifound(T)1 
and a.2lt / 2J + b.2lt - l / 2J = k.2lt/2J. Since t is even, it follows that 2a + b = 2k, and 
hence 2k a Ifound(T)j, which implies that Ifound(T)I 2k a S; 2k - t. I 

5 Existence of some more (v, k, t)DTs 

We first introduce the following lemma for the general case when t 2: 1. 

Lemma 5. If T is a (v, k, t)DT of volume s, then for any X E found(T), either Tx = S 

or 2lt-I/2J S; Tx S; S - 2lt-l/2J. 

Proof. This follows from Lemma 1 and Theorem l(ii). 0 

In the case of ordinary trades, the minimum possible volume for a (v, k, t) 
trade is 2t , and there does not exist a (v, k, t) trade of volume s, when 2t + 1 S; s 
2t + 2t- 1 I, see [5] and [6]. The following theorems dealing with cases t = 2 and 
t = 3 show that no such general result holds for directed trades. 

Theorem 4. For each s 2: 2, there exist directed trades of volume s for some v in 
the following cases: 

(i) a (v,k,2)DT for each kj 

(ii) a (v, k, 3)DT for each k (k :::/= 4). 

Proof. It is sufficient to show that there exists a (v, 3, 2)DT of volume s. 
(i) If s 21, take l copies of a (v,3,2)DT of volume 2. If s 2l+ 1, take l--l copies 
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of a (v, 3, 2)DT of volume 2 and a (v, 3, 2)DT of volume 3 with a distinct foundation, 
namely 

A (4,3, 2)DT of volume 3: TI 
123 

231 312 
324 234~ 

(ii) This case may be argued similar to the case (i) by applying a (v, 5, 3)DT of 
volume 3, namely 

A (5,5, 3)DT of volume 3: 
21345 
13254 
12453 

13245 
21453. I 

Theorem 5. A (v,4,3)DT of volume s exists if and only if s 2 or s 4. 

Proof. For the existence of a (v, 4, 3)DT of each volume s (s ~ 2, s i- 3), if s = 2l, 
take l of a (v, 4, 3)DT of volume 2. If s = 2l+ 1 take l-2 copies of a (v, 4, 3)DT 
of volume 2 and a (v, 4,3)DT of volume 5 with a distinct foundation, namely 

A (4,4, 3)DT of volume 5: 

TI {1234,1432,2413,3412,3214}; T2 = {3241,3142,2134,4132,1243}. 

Now we show that there is no (v, 4, 3)DT of volume 3. Let T be a (v, 4, 3)DT of vol­
ume 3. By Lemma 5, rx = 3 for all x E found(T). Then there exist x, y E found(T) 
such that rxy < 3, and rxy = 1 or 2. Without loss of generality assume that rxy = 2. 
Then by Lemma 1, T;y( or Tyx) is a (v, 4, 1 )DT of volume 1. Also Tyx must contain all 
of the 3-tuples which contain yx. The only possibility for T 1yx is one of the 4-tuples 
yabx, abyx or yxab. If Tlyx is yabx, then T2yx must be ybax. Then yba and bax must 
appear in two disjoint blocks of TIxy and yab and abx must appear in two disjoint 
blocks of T2xy. It means that the 2-tuple ba appears twice in TI and once in T2. This 
is a contradiction. If Tlyx is abyx, then T2yx must be bayx. Thus bax must appear in 
TIxY1 and abx must appear in T2xy' Therefore the block baxy appears in TI and the 
block abxy appears in T2. But these two blocks in TI and in T2 form a (v, 4, 3)DT, 
T*, of volume 2, implying T \ T* is a (v, 4, 3)DT of volume 1, which is impossible. 
The last case may be argued similarly. I 
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