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Abstract 

This paper is concerned with the partition of edges of the complete graph 
Kn and the complete multipartite graph K-m, ... ,-m into subgraphs isomor­
phic to cycles. We show that Kn and K-m, ... ,m can be decomposed into 
certain families of cycles by defining a special decomposition which we 
call a root path decomposition. 

1 Introduction 

Let G be a graph (G may have multiple edges and loops). Let Pn and Cn be a path 
and a cycle with n edges respectively and let Kn be the complete graph on n vertices. 

Two graphs G and H are said to be isomorphic (written G ~ H) if there are 
bijections e : V(G) ---+ V(H) and <P : E(G) ---+ E(H) such that e E E(G) joins 
vertices u,v E V(G) if and only if edge <P(e) E E(H) joins vertices 8(u),8(v) E 
V(H). 

Let H be a family of graphs consisting of mi graphs Hi for i = 1, ... , t. By an H 
l 

decomposition of a graph G we mean the partition of the edges of G into E mi edge­
i=l 

disjoint subgraphs such that mi of them are isomorphic to Hi for each i = 1, ... , l. 
We write (HIG) or (mIHl, ... ,mIHlIG) if an H decomposition of G exists. 

In the case when H consist of copies of just one graph H we write (HIG) if 
(mHIG) for some m, and talk of an H decomposition. 

B. Alspach [1] posed the following conjecture: If n is odd and the integers 
al, ... ,an satisfy al +a2+' . . +am = n(n2-1) (if n is even and al +a2+ ... +am = n(n2-2)), 

3 S ai S n, does (Call"" CamlKn) ((Cap"', Ca>nIKn - F), where Kn F is the 
complete graph from which a I-factor has been removed) where Cai is a cycle of 
length ai? 
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For an excellent and recent survey on the uniform cycle decomposition, that is, 
Alspach's conjecture when all the cycles have the same length (i.e. ai = k for all i), 
see [6] which also contains open problems, 

In section 2, we prove that Alspach's conjecture is true for some families of integers 
ai, in particular the following cases: 

[I] (Cn-I, Cn- 2 , On-3, ... j C41 0 31 C3IKn) where n is odd, 
[II] (nOn, nOn+lIK2n+l) where n 
[III] (2C2n- 2, 2C2n- 4 , ... , 2C6 , 3C4 1K2n - F) where n is even. 
In order to do this we first prove that related graph K~ can be decomposed 

into certain set of paths. A similar method has been used before by R. Haggkvist [4] 
in the case when n is even and each of the paths is required to be a Hamilton path; 
also a similar method is used by B. Alspach and R. Haggkvist [2]. 

In section 3, we consider the decomposition of Km, ... ,m into cycles. Partial results 
are available on this problem, for example, it is known that (OuIKr,s) iff T == S == 0 
(mod 2), T, s 2: t and rs == 0 (mod 2t); see [8] for a proof. We shall prove that Km, ... ,m 
can be decomposed into certain families of cycles by using the same technique as used 
by D.G. Hoffman, C.C. Lindner and C.A. in [5]. In particular we shall prove 
that: 

( a) t(t-I)C t(t-I)C IK ) h d t dd d 2 5,···, 2 2m-1 m, ".,m wereman area an 
"---v---" 

t 

t,m 2: 3. 

2 Cycle decomposition of Kn 

We say that Kn is path decomposed into , ... , Pir if {Pi1 , Pi2 , ... , PirIKn}. We 
say that Kn is root path decomposed if the of Kn may be partitioned into paths 
Pil , Pi2 , ..• 1 Pir where each Pij ,1 j::; 1 starts at a different vertex; clearly a 
necessary condition is that I ::; n; we say that Kn has n - l free vertices and we say 
that the root path decomposition is complete if 1 = n, that is Kn has no free vertices. 

Lemma 2.1 Km has a complete Toot path decomposition into paths: 

(a) Pal' Pbi , Pa2 , Pb2 , . , . 1 Pan 1 Pbn for any non-negative integers ai, bi such that 
ai + bi = m I, i = 1,2,,, .. ,n and m = 2n, 

(b) PI, P2, . .. , P2n- 2 with m = 2n - 1 and 
(c) m copies of Pl~J with m odd. 

Proof: (a) Take the well known Walecki construction for Hamilton paths. Specif­
ically, with V(Kn) = {0,1, ... ,2n-l}, define P;n-l (n+l,n,n+2,n-l,n+3,n-
2,,, .. ,2,0,1) + i (where (aI, a2, ... , am) + i (al + i, a2 + i, ... , a-m + i), reducing 
sums modulo 2n) for i = 1,2, ... , n. 

Hence, since P;n-l begins on vertex n+i and ends on vertex i, then (Pai 1 Pbi I P;n-l ) 
for each i 1, ... , n where Pai and Pbi start at the beginning and at the end of P;n-l 
respecti vely. 
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(b) Remove vertex n from each for i 1, . 1 n and form paths Pi for 
t = , 2n - 2 as follows: 

- {n} starting at vertex 0, 

Pi"n-l {n} starting at vertex and 

(P2(t-l)1 P2(n-i)-1)IP;n-l - in}) for i ·2,.,. ,n - 1 where 
start at the beginning and at the end of respectively. 

(c) Clearly true since all paths are (see [7]). 

and 

o 

We are now able to prove our first theorem about the cycle decomposition of 
complete graphs. The following proof follows closely the ideas introduced in [4]. 

Theorem 2.2 Let Pi1 )"" form a root path decomposition of then 
(02al+2,02idll' .) 0 211 + 2 , 02tl+1, IK2n+1 ) where t n l. 

Proof: Label the vertices of K 2n+1 with {X} U {Ylli 1, ... , nand j 1,2}; 
consider a root path decomposition Pill . ,Pil of the complete graph Kn (with set of 
vertices V(Kn) {Yi, ... 1 Yn}) where each path (Yku " ,Yk.;.+J corresponds 

J 

in K 2n+1 to the graph PI
j 

shown in figure 1. 

Fig.1 

We say that the pair of edges {Yk, Y~+1} and {y~, Yk+1} is a cross pair and the 
pair of edges {yl, Yk+1} and {y~, Y~+l} is a straight pair. 

We decompose each Pl. into cycles 02i'+2 and 02i,'+1 as follows: cycle 02i '+2 is .] J , 

formed by the edges {X, yt}, {X, } followed by all the crossed pair edges in PI
j 

up to yL and yt ending up with the edges {yt 1 yt+J and {yt, yt+J. Similarly, 
, J 3'] , 

cycle 02ij+1 is formed by the edge {yt, y~J, followed by all the straight pair edges 
in PI. up to yL and yt ending up with the edges {yt, y~i.+J and {yt yL+J· 

J J j J, J J 

Finally, for each of the free vertices Yi of Kn form a triangle with the edges 
{X, y;}, {X, y7} and {y;,yf} , 1 ::; i ::; n. Since each Pi.j starts at different vertex in 
Kn then we have a partition of edges of K 2n+1' 0 

We can also prove a similar result for K 2n - F using the same method but this 
time just asking for the existence of a path decomposition. 

Let P~ be the graph consisting of two paths Pc = {Xl, ... , xn} and Py = 
{Yll' .. 1 Yn} where the vertices (Xi) Yi+x) and (Yi, Xi+1) for i 1, ... n - 1 are joined 
by an edge. 
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Lemma 2.3 (R. Hiiggkvist can be decomposed into cycles l' ., 202Qk 

where qi are any positive wtegers such that ql + q2 +. . + qk = n with qi 2:: 2. 0 

decomposition of 
rf'.7}Tf'..8f'.11.t the following 

then 

2C2q;. , 
J 

• 1 202q ff1. where qij are any vu.~~i't~·,~'Uf::: ?'Tl.1:Pfl,P'Y'C: such that 
<j + + ., . + qi; = i j 

fOT all 1 l m and 1 

Proof: Analogous to theorem 2.2 using lemma 2.3. 0 
Note that the special case of theorem which each of the paths Pij is Hamil-

tonian has been proved the same method when n 2p + I, pEN in [4J and 
when n 2p, pEN in Also note that the construction used in the proof of 
theorem is similar to that used in the of lemma 2.3. 

We now give some corollaries of these two theorems. 

Corollary 2.5 (of theorem For any n 2:: 2 we have 
(03 , 0 4 ) 0 5 ), .. , C2n1K2n+l) 

Proof: By theorem 2.2 it suffices to show that ... ,PI form a root 
path decomposition of Kn. 

[case 1] n odd. It is in lemma 
[case 2] n even. Consider lemma 

Pb1 = n - 1 ) Pa2 = 1, Pb2 n o 

Corollary 2.6 (of theorem Let n be odd then {nOn, 

Proof: It follows by theorem 2.2 since n is odd and by lemma 2.1 part (c) n 
copies of PL~j form root path decomposition of Kn. 0 

We close this section with a corollary of theorem 2.4 close related to corollary 2 
of [4]. 

Coronary 2.7 (of theorem 2.4) Let n be any integer then 
(20217.-2,20217.-4, ... ,206 ) 304 1K217. - F). 

Proof: It follows by theorem 2.4 and by lemma 2.1 parts (a) and (b). 0 

3 Cycle decomposition of Km, ... ,m 

In this section we are interested in the cycle decomposition of the complete multipar­
tite graph. The proof of the following theorem uses the same method as that used 
by Hoffman, Lindner, and Rodger in [5], (theorems 2 and 3). 

Theorem 3.1 Let Pi1 , Pi2 , •.. ,Pi.,. form a complete root path decomposition of Km 
h ( t(t-l)C t(t-l)C t(t-l)C IK ) h d dd t en 2 2i1 +1, 2 2ia+1, ... , 2 2i.,.+1 m, ... ,m were m an tare 0 

----------and t 2:: 3. 
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Proof: Let V(Km, ... ,m) {(ai,aj)1 E Zm and j E Zt}. Let {Pill" .,pi .. } 
'----v----" 

t 

be root path decomposition of (with set of vertices V(Km) {ao,. ,am-I}) 
where each path Pij (akl , ... , ak;.j+l) corresponds in .. m to the graph PIj (t) 

t 

with set of vertices {( akp an)ll = 1, ... ,ij + 1 and n = 0, .. , t 
{(akp au), (akt+ll au)} for all 0 ::; u #- v ::; t - 1 and I 1, . 

each (t) into *;1) cycles C2ij +1 as follows. For each p 
q p 1, ... , t 1, form the cycle 

I} and set of edges 
. , i j • We decompose 

0, ... , t - 2 and each 

(akll ap), (ak2' aq), (aka, ap), . .. (aki._ll ap), (ak •. 1 aq), (ak •. +1 ar ) 
3 3 J 

(aki.,ap),(aki'_llaq), ... ,(ak3,aq),(ak2 ap),(ak1 aq) ifi j + 1 is odd 
J 3 

or 

where r rep, q) corresponds to the entry apq of an idempotent symmetric latin 
square of order t (there always exists an idempotent symmetric latin square for odd 
orders, see [3]); hence, the theorem follows. 0 

Corollary 3.2 For any integers m, t both odd and m, t 2: 3 we have 
( t(t-l)C t(t-l)C t(t-1)C IK ) 2 3, 2 5, ... , 2 2m-l m, . . ,m . 

"----v-' 

Proof: It follows by theorem 3.1 and by lemma 2.1 part (b). 0 
The following corollary of theorem 3.1 may be found in [5] (theorem 3). 

Corollary 3.3 For any integers m, t both odd and m, t 2: 3 we have 

(GmIKm, ... ,m). 
"----v-' 

t 

Proof: By lemma 2.1 part (c) Km can be complete root path decomposed 
into m copies of PlTJ ' Then by theorem 3.1 (C2lTJ+1IKm, ... ,m) or equivalently 
(GmIKm, ... ,m)' 0 
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