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Abstract 

A graph G that has a perfect matching is n-extendable if every match
ing of size n lies in a perfect matching of G. We show that when the con
nectivity of a line graph, power graph, or total graph is sufficiently large 
then it is n-extendable. Specifically: if G has even size and is (2n + 1)
edge-connected or (n + 2)-connected, then its line graph is n-extendable; 
if G has even order and is (n + 1 )-connected, then G2 is n-extendable; 
if G has even order and is connected, then G2n+1 is n-extendable; if the 
total graph T( G) has even order and is (2n + 1 )-connected, then T( G) is 
n-extendable. 

1 Introduction and terminology 

All graphs considered in this paper are finite, undirected, connected and simple. 

Australasian Journal of Combinatorics ll( 1995), pp. 215-222 



The vertex set and edge set of a graph G are denoted by V( G) and E( G) respec
tivly. The cardinalities of V( G) and E( G) are called respectively the order and size 
of G. The line graph L( G) of a graph G is the graph whose vertex set E( G) and in 
which two vertices are joined if and only if they are adjacent edges in G. The iterated 
line graph Lm(G) is defined recursively by Ll(G) = L(G) and LTn(G) L(Lffi-l(G)) 
for m 1. A power graph Gk (the kth power of a graph G) is the graph whose 
vertices are those of G and in which two distinct vertices are joined whenever the 
distance between them in G is at most k. The vertices and edges of a graph are called 
elements. Two elements of a graph are neighbours if they are either incident or ad
jacent. The total graph T( G) has vertex set V( G) U E( G) and two vertices of T( G) 
are adjacent whenever they are neighbours in G. The iterated total graph Tffi( G) is 
defined recursively by Tl(G) T(G) and Tffi(G) = T(Tm-l(G)) for m > 1. The 
subdivision graph S( G) of a graph G is the graph obtained by replacing all edges of 
G with paths of length two. The inserted vertices are called the subdivision vertices 
of S( G). We use Pn+1 to denote a path of length n. The number of components of 
G of odd order is denoted by o( G). A matching of G is a set edges no two of which 
are adjacent. The matching is perfect if it contains all the vertices of G. For the 
terminology and notation not defined in this paper, the reader is referred to [3]. 

We will need the following well known condition for the existence of a perfect 
matching. 

Tutte's Theorem ([10]) A graph G has a perfect matching if and only if for every 
subsetS of vertices, lSI o(G-S). 

Let n and 2m be positive integers with n m - 1 and let G be a graph with 2m 
vertices having a perfect matching (of size m). The graph G is said to be n-extendable 
if every matching of size n in G lies in a perfect matching. 

The n-extendability of symmetric graphs was studied in [1], [7], and [8]. In this 
paper we investigate the n-extendability of some locally dense graphs, namely, line 
graphs, power graphs and total graphs. The following lemma is useful. 

Lemma 1 ([4]) (1) If a line graph is connected and has even order, then it has a 
perfect matching. (2) If G is a connected graph of even order, then G2 has a perfect 
matching. (3) If a total graph is connected and has even order, then it has a perfect 
matching. 

We show that when the connectivity of line graphs, power graphs and total graphs 
is sufficiently large, then they are n-extendable. 

2 Line graphs 

In this section, a necessary and sufficient condition for a line graph to be n-extendable 
is given. The next two lemmas follow immediately from the definition of a line graph. 

Lemma 2 If D ~ E(G) then L(G D) = L(G) - D. 
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Lemma 3 If D ~ E( G) then the number of non-trivial components of G D equals 
the number of components of L( G) - D. 

Theorem 4 Let G be a graph of even size. Then L( G) is n-extendable if and only i" for any collection Q1, Q2) ... , Qn of edge-disjoint P3 in G, G - E( Ql) - E( Q2) 
... - E( Qn) does not have a component of odd size. 

Proof. Suppose L( G) is n-extendable. Any edge disjoint P3 's Ql, Q2, .. , Qn of 
G correspond to n independent edges ei = UiVi of L(G) (i = 1,2,. ,n). So 
L( G) {Ul, VlJ .. , Un, vn} has a perfect matching and therefore does not have any 
odd components. But each component of L( G) - {UI' VI, ... , Un, vn} is the line graph 
of some component of G E( Ql) E( Q2) - ... - E( Qn). Hence no component of 
G - E(Ql) E(Q2) - ... - E(Qn) has an odd number of edges. 

For the converse, let edges ei = UiVi (i = 1,2,. ., n) form a matching of L( G). 
These edges correspond to n edge disjoint P3 's Qll Q2, ... 1 Qn of G. By Lemma 
1, the line graph of each component of G - E(Ql) - E(Q2) - ... E(Qn) has a 
perfect matching. Thus L( G) - {Ul, VI, •.. , Un, vn} has a perfect matching and L( G) 
is n-extendable. 0 

Corollary 5 If a graph G has even size and is (2n + 1 )-edge-connected, then L( G) 
is n-extendable. 

Proof. Let Qll Q2,'" I Qn be n edge-disjoint P3 's of G. Since G is (2n + l)-edge
connected, G - E( Ql) - E( Q2) - ... - E( Qn) is connected and therefore has no 
component with an odd number of edges. The result now follows from Theorem 4. 
o 

The connectivity in Corollary 5 is the least possible. Let F and H be two disjoint 
graphs both isomorphic to K 2n+3 if K 2n+3 has odd size or to K 2n+3 with one edge 
deleted if K 2n+3 has even size. Join F and H by n P3 's such that the middle vertices 
of the P/s are n different vertices of F and the end vertices of the n P3'S are 2n 
different vertices of H. The resulting graph is 2n-edge-connected, but deleting the 
edges of the n P3 's gives a component of odd size. By Theorem 4, its line graph is 
not n-extendable. 

We have another version of Corollary 5. 

Corollary 6 If L( G) has even order and is (2n + 1 )-connected, then L( G) ~s n
extendable. 

Corollary 7 If a graph G has even s~ze and is (n + 2)-connected, then L( G) 2S 

n-extendable. 

Proof. Suppose that L( G) is not n-extendable. By Theorem 4 there are n edge 
disjoint P3 's Ql, Q2, ... , Qn of G such that G' = G-E(Qt)-E(Q2)-" ·-E(Qn) has 
a component of odd size and is therefore disconnected. Let Wj be the middle vertex 
of Qj for 1 ~ j ~ n. Let W = {WI," .,wn }. Note that the wi's are not necessarily 
distinct. Let VI, ... ,Vm be the distinct vertices of W. Suppose each Vi is repeated li 
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times in W. Gis (n+ 2)-connected, so G - W is connected. Also, since Gt has at least 
two components of odd size, there is a component C of odd size that contains vertices 
only from W. Without loss of generality, let V(C) {v!, .. ,vr }. Note that r 2 
since C has odd size. Assume that h is the least of the l/s for 1 ::; i r and that 
VI WI = . . . Wl1 • The end vertices of Ql, Q2, . .. ,Qh and the vertices V2,. ,Vm 

form a cut set of order 211 +(r-l)+(m-r) 211 +(1+h+" ·+lr)+(lT+l +. ·+lm)::; 
1 + h h + ... + 1m n + 1, contradicting the fact that G is (n + 2)-connected. 0 

The connectivity in Corollary 7 is also the least possible. Let F be Kn where 
n 4'1, + 2 for some i. Let H be K2n with one edge deleted. Both F and H have 
an odd number of edges. Join F to H with n such that the middle vertices of 
the n P3'S are the n different vertices of F and the end vertices of the n P3 's are the 
2n different vertices of H. The resulting graph is (n + I)-connected but deleting the 
edges of the n P3'S gives a component of odd size. By Theorem 4, its line graph is 
not n-extendable. 

We turn now to th~ iterated line graph Lm( G). 

Lemma 8 ([5]) (1) If G is k-connected, then L( G) is k-connected. 
k-edge-connected, then L( G) is (2k - 2)-edge-connected. 

If G 2S 

Corollary 9 If G is (n + 2)-connected and Lm( G) has even order, then Lm( G) 2S 

n-extendable. 

Proof. This follows from Corollary 7 and Lemma 8( 1 ). 0 

If we relax the connectivity of G, then Lm( G) is still n-extendable for sufficiently 
large m. 

Corollary 10 Let k, m, n be positive integers and 2m ~ (4n - 2)/ k. If G is (k + 2)
edge-connected and Lm( G) has even order then Lm( G) is n-extendable. 

Proof. From Lemma 8(2), Lm-l(G) is (2m - 1 k + 2)-edge-connected. The result 
now follows from Corollary 5. 0 

Corollary 11 Let k, m, n be positive integers and 2m ~ (4n - 2)/ k. If G is (k + 2)
connected and Lm( G) has even order then Lm( G) is n-extendable. 

Proof. This follows from Corollary 10 since G is at least (k + 2)-edge-connected. 
o 

3 Power graphs 

In this section, we prove that when the connectivity of a graph G is sufficiently large, 
G2 is n-extendable. We also show that for any connected graph G, GT is n-extendable 
for sufficiently large r. 

Lemma 12 Let G be a k-connected graph. Then Gm is km-connected if km is less 
than the order of G. 

218 



Proof. Suppose S is a cutset of em and S contains less than km vertices. Let U 

and v be vertices separated in em by S. Since e is k-connected, there are at least 
k internal vertex disjoint paths in e from U to v. They must all contain a vertex 
from S. There are fewer than m vertices from S in one of these paths. By choosing 
a different U and v if necessary, we can assume that all internal vertices of this path 
lie in S. Thus, in Gm, U and v are adjacent; a contradiction. 0 

The following result shows that if the connectivity of a graph G is large, the 
square of G is n-extendable. 

Theorem 13 If G is k-connected with even order and k > n, then Gr is n-extendable 
for r ~ 2. 

Proof. Suppose Gr is not n-extendable. There are n independent edges ei UiVi 

(i 1,2, ... , n) which do not lie in any perfect matching of Gr. Let H = GT 
{UI, vI, .. ,Un, vn }. By Lemma 12, H is connected. By Tutte's Theorem, there is 
a cutset S of H such that o(H - S) lSI. By parity, o(H - S) lSI + 2m for 
some positive integer m. Let S' = S u {Ul, Vl, .. , Un, vn }. Then IS'I lSI + 2n and 
o(er S') o(H - S) lSI + 2m. 

As G is k-connected, each component of or - S' is adjacent in G to at least k 
vertices of S'. Suppose no two odd components of Gr Sf in G have a common 
neighbour in S'. Then there are at least (lSI + 2m)k vertices in S', But S' has only 
lSI + 2n < (lSI + 2m)k vertices. So at least two odd components C1 and G2 have in 
a a common neighbour v in S'. Then there is vertex U in C1 and vertex w 
such that U and ware both adjacent to v. In Gr, U and ware adjacent. So u and 
ware in the same component of Gr - Sf 1 contradicting the fact that C1 and G2 are 
different components of Gr Sf. 0 

The connectivity bound is sharp. Let F = Kn+1 if n is even or Kn+2 if n is 
odd. Let H be isomorphic to F. Let ei UiVi (i = 1,2, ... n) be n independent 
edges which are vertex disjoint from F and H. Join each Ui to every vertex of F 
and join each Vi to every vertex of H. The resulting graph G is n-connected. But 
G2 

{ U1, V1, ... , Un, vn } has an odd component and therefore no perfect matching. 
Thus G2 is not n-extendable. 

If we relax the connectivity of G, then its power graph aT is still n-extendable 
for sufficiently large r. 

Theorem 14 If G is k-connected with even order and 1 < k ::; n, then Gr 'IS n
extendable for r ~ 2( n - k) + 3. 

Proof. Proceed as in the first paragraph of the proof for Theorem 13. Let 
G1 ) G2 ,' • " Ct be the components of Gr - S'. Let Ni be the set of vertices of S' that 
are adjacent in G to vertices of Gi . Since G is k-connected, each N. contains at least 
k vertices. Also, the Ni are pairwise disjoint otherwise one of the components Gi 

contains a vertex U that is distance two from a vertex v in some other component 
Cj but then U and v would be in the same component of or. Since G is connected, 
there is a path P in G from a vertex Wi in Ni to a vertex Wj in Nj (j =I- i). By 
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assuming P has the minimum length among all such paths, P is contained in S' 
and the internal vertices of P have no vertex in Nl for 1 :::; l t. Since IS'I 
lSI + 2n and t ~ lSI + the order of P is at most lSI + 2n - k( + 2m) 2 
ISI+2n k(ISI+2)+2 2(n-k)-ISI(k 1)+2 2(n-k)+2. There is a vertex 
Z,: in Oi and a vertex Zj in Gj adjacent to Wi and Wj Then ZiPZj is a 
path of length at most 2( n k) + 3. So Zi and Zj are adjacent in GT 1 contradicting 
the fact that Gi and OJ are different components of GT S'. 0 

The bound on r in Theorem 14 is the least possible. Let G = UOUI· . UZn UZn +1 

be a path. Let ei = UZi-l U2i (i = 1,2, n). Since GZn {Ul' U2, . U2n} has an odd 
component (uo or U2n+1) it does not have a perfect matching. We can replace Uo or 
U2n+1 by odd components, and the resulting graph will still be a counterexample. 

4 Total graphs 

In this section we show that when the connectivity of a total graph T( G) sufficiently 
large, then T( G) is n-extendable. We quote three useful lemmas. 

Lemma 15 ([2]) For any graph G, T(G) = (S(G)? 

Lemma 16 Let G be a connected graph and let W be a vertex in a cutset R ofT(G) 
(1) Ifw is a subdivision vertex of S(G)} thenw is adjacent to at most two components 
of T( G) - R. (2) If R contains no subdivision vertices of S( G), then w is adjacent 
to exactly one component of T( G) R. 

Proof. This follows immediately from Lemma 15. 0 

Theorem 17 If T( G) is (2n + 1 )-connected and has even order, then T( G) is n
extendable. 

Proof. Suppose T( G) is not n-extendable. There are n independent edges e,: 

UiVi (i = 1,2, .. n) which do not lie in a perfect matching of T( G). Let T' 
T( G) - {UI) VI, ... 1 Un, V n }. By Tutte's Theorem, there is a subset Sf of vertices of 
T' such that oCT' - S') > IS'I. By parity, oCT' - S') = IS'I + 2m for some positive 
integer m. Let S = S' U {UlJ VI, .. , un) vn }. Then o(T( G) - S) = oCT' - S') = 
IS'I + 2m = lSI 2n + 2m. Let GI , G2 , . •• denote the odd components of T( G) S. 

We now reduce S while keeping the relation o(T(G)-S) ISI-2n+2m (m ~ 1). 
Let w be a vertex in S and replace S with S" = S\ {w}. 

Ifw is not adjacent to any odd component, then o(T(G)-S") = o(T(G)-S)+l 
IS"I- 2n + 2(m + 1). 

Suppose every vertex of S is adjacent to an odd component. If w is a subdivision 
vertex of S( G), then, by Lemma 16, w is adjacent to at most two odd components. 
If w is adjacent to two odd components Gi and Gj , then the subgraph of T( G) - S" 
induced by CiU{w}UGj is an odd component and o(T(G)-S") = IS"I-2n+2m. Ifw 
is adjacent to only one odd component Gi , then again o(T(G)-S") = IS"I-2n+2m. 
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If S does not contain any subdivision vertex of S( G), then, by Lemma 16, W is 
adjacent to exactly one odd component and again o(T(G) 5") = IS"I - 2n + 2m. 

Repeat the process above until lSI 2n. Then o(T(G) - S) = lSI 2n + 2m = 
2m 2': 2. Thus S is a cutset of T( G) of order 2n, a contradiction. 0 

If we relax the connectivity of G then its iterated total graph TT( G) is still n

extendable for sufficiently large r. 

Lemma 18 ([6, 9]) If G is k-connected, then T( G) is 2k-connected. 

Corollary 19 Let G be k-connected and 2r > 2n / k. The iterated total graph Tr ( G) 
is n-extendable if it has even order. 

Proof. This follows immediately from Lemma 18 and Theorem 17. 0 

Note that if G is k-connected, then T( G) may be exactly 2k-connected. Let W 

be a vertex of degree k. Then w has 2k neighbours in T(G) which form a cutset. On 
the other hand the connectivity of T( G) may be considerably higher than 2k. For 
example, let G be the graph formed by identifying a vertex from K 4p with a vertex 
of K4p+1 ' Then Gis 1-connected but T( G) has even order and is (8p - 2)-connected. 
Thus Theorem 17 is more powerful than Corollary 19. 

The connectivity in Theorem 17 and inequality in Theorem 18 are sharp. Let G be 
a k-connected k-regular graph. Suppose 2r k = 2n. Since Ti( G) is 2i k-regular, Ti( G) 
is exactly 2i k-connected by Lemma 18. By Lemma 15 Tr(G) = (S(Tr-1(G)))2. Let w 
be a vertex in Tr-l( G), let Wi (i = 1,2, ... ,2r- 1 k) be the vertices of Tr-l( G) adjacent 
to wand let Ui be the subdivision vertex on WWi in S(Tr-1( G)) (i = 1,2, ... ,2r- 1 k). 
Then the UiWi are 2r- 1k = n independent edges of Tr(G). But Tr(G) - {ui,wili = 
1,2, ... ,2r - 1 k} does not have a perfect matching as W is an isolated vertex. So Tr( G) 
is not n-extendable. 
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