n-Extendability of Line Graphs, Power Graphs, and Total Graphs

D. A. Holton

Department of Mathematics and Statistics University of Otago P.O. Box 56 Dunedin, New Zealand e-mail dholton@math.otago.ac.nz

Dingjun Lou Department of Computer Science Zhongshan University Guangzhou 510275, People's Republic of China

K. L. McAvaney School of Computing and Mathematics Deakin University Geelong Victoria 3217, Australia e-mail kevin@deakin.edu.au

Abstract

A graph G that has a perfect matching is n-extendable if every matching of size n lies in a perfect matching of G. We show that when the connectivity of a line graph, power graph, or total graph is sufficiently large then it is n-extendable. Specifically: if G has even size and is (2n + 1)edge-connected or (n + 2)-connected, then its line graph is n-extendable; if G has even order and is (n + 1)-connected, then G^2 is n-extendable; if G has even order and is connected, then G^{2n+1} is n-extendable; if the total graph T(G) has even order and is (2n + 1)-connected, then T(G) is n-extendable.

1 Introduction and terminology

All graphs considered in this paper are finite, undirected, connected and simple.

Australasian Journal of Combinatorics 11(1995), pp.215-222

The vertex set and edge set of a graph G are denoted by V(G) and E(G) respectivly. The cardinalities of V(G) and E(G) are called respectively the order and size of G. The line graph L(G) of a graph G is the graph whose vertex set is E(G) and in which two vertices are joined if and only if they are adjacent edges in G. The *iterated* line graph $L^{m}(G)$ is defined recursively by $L^{1}(G) = L(G)$ and $L^{m}(G) = L(L^{m-1}(G))$ for m > 1. A power graph G^k (the kth power of a graph G) is the graph whose vertices are those of G and in which two distinct vertices are joined whenever the distance between them in G is at most k. The vertices and edges of a graph are called elements. Two elements of a graph are neighbours if they are either incident or adjacent. The total graph T(G) has vertex set $V(G) \cup E(G)$ and two vertices of T(G)are adjacent whenever they are neighbours in G. The iterated total graph $T^m(G)$ is defined recursively by $T^{1}(G) = T(G)$ and $T^{m}(G) = T(T^{m-1}(G))$ for m > 1. The subdivision graph S(G) of a graph G is the graph obtained by replacing all edges of G with paths of length two. The inserted vertices are called the *subdivision* vertices of S(G). We use P_{n+1} to denote a path of length n. The number of components of G of odd order is denoted by o(G). A matching of G is a set edges no two of which are adjacent. The matching is *perfect* if it contains all the vertices of G. For the terminology and notation not defined in this paper, the reader is referred to [3].

We will need the following well known condition for the existence of a perfect matching.

Tutte's Theorem ([10]) A graph G has a perfect matching if and only if for every subset S of vertices, $|S| \ge o(G - S)$.

Let n and 2m be positive integers with $n \le m-1$ and let G be a graph with 2m vertices having a perfect matching (of size m). The graph G is said to be *n*-extendable if every matching of size n in G lies in a perfect matching.

The *n*-extendability of symmetric graphs was studied in [1], [7], and [8]. In this paper we investigate the *n*-extendability of some locally dense graphs, namely, line graphs, power graphs and total graphs. The following lemma is useful.

Lemma 1 ([4]) (1) If a line graph is connected and has even order, then it has a perfect matching. (2) If G is a connected graph of even order, then G^2 has a perfect matching. (3) If a total graph is connected and has even order, then it has a perfect matching.

We show that when the connectivity of line graphs, power graphs and total graphs is sufficiently large, then they are n-extendable.

2 Line graphs

In this section, a necessary and sufficient condition for a line graph to be *n*-extendable is given. The next two lemmas follow immediately from the definition of a line graph.

Lemma 2 If $D \subseteq E(G)$ then L(G - D) = L(G) - D.

Lemma 3 If $D \subseteq E(G)$ then the number of non-trivial components of G-D equals the number of components of L(G) - D.

Theorem 4 Let G be a graph of even size. Then L(G) is n-extendable if and only if, for any collection Q_1, Q_2, \ldots, Q_n of edge-disjoint P_3 's in $G, G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ does not have a component of odd size.

Proof. Suppose L(G) is *n*-extendable. Any edge disjoint P_3 's Q_1, Q_2, \ldots, Q_n of G correspond to n independent edges $e_i = u_i v_i$ of L(G) $(i = 1, 2, \ldots, n)$. So $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ has a perfect matching and therefore does not have any odd components. But each component of $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ is the line graph of some component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$. Hence no component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$.

For the converse, let edges $e_i = u_i v_i$ (i = 1, 2, ..., n) form a matching of L(G). These edges correspond to n edge disjoint P_3 's $Q_1, Q_2, ..., Q_n$ of G. By Lemma 1, the line graph of each component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ has a perfect matching. Thus $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ has a perfect matching and L(G) is n-extendable. \Box

Corollary 5 If a graph G has even size and is (2n + 1)-edge-connected, then L(G) is n-extendable.

Proof. Let Q_1, Q_2, \ldots, Q_n be *n* edge-disjoint P_3 's of *G*. Since *G* is (2n + 1)-edgeconnected, $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ is connected and therefore has no component with an odd number of edges. The result now follows from Theorem 4.

The connectivity in Corollary 5 is the least possible. Let F and H be two disjoint graphs both isomorphic to K_{2n+3} if K_{2n+3} has odd size or to K_{2n+3} with one edge deleted if K_{2n+3} has even size. Join F and H by $n P_3$'s such that the middle vertices of the P_3 's are n different vertices of F and the end vertices of the $n P_3$'s are 2ndifferent vertices of H. The resulting graph is 2n-edge-connected, but deleting the edges of the $n P_3$'s gives a component of odd size. By Theorem 4, its line graph is not *n*-extendable.

We have another version of Corollary 5.

Corollary 6 If L(G) has even order and is (2n + 1)-connected, then L(G) is n-extendable.

Corollary 7 If a graph G has even size and is (n + 2)-connected, then L(G) is *n*-extendable.

Proof. Suppose that L(G) is not *n*-extendable. By Theorem 4 there are *n* edge disjoint P_3 's Q_1, Q_2, \ldots, Q_n of *G* such that $G' = G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ has a component of odd size and is therefore disconnected. Let w_j be the middle vertex of Q_j for $1 \leq j \leq n$. Let $W = \{w_1, \ldots, w_n\}$. Note that the w_i 's are not necessarily distinct. Let v_1, \ldots, v_m be the distinct vertices of *W*. Suppose each v_i is repeated l_i

times in W. G is (n+2)-connected, so G-W is connected. Also, since G' has at least two components of odd size, there is a component C of odd size that contains vertices only from W. Without loss of generality, let $V(C) = \{v_1, \ldots, v_r\}$. Note that $r \ge 2$ since C has odd size. Assume that l_1 is the least of the l_i 's for $1 \le i \le r$ and that $v_1 = w_1 = \cdots = w_{l_1}$. The end vertices of $Q_1, Q_2, \ldots, Q_{l_1}$ and the vertices v_2, \ldots, v_m form a cut set of order $2l_1 + (r-1) + (m-r) \le 2l_1 + (1+l_3 + \cdots + l_r) + (l_{r+1} + \cdots + l_m) \le$ $1 + l_1 + l_2 + \cdots + l_m = n + 1$, contradicting the fact that G is (n + 2)-connected. \Box

The connectivity in Corollary 7 is also the least possible. Let F be K_n where n = 4i + 2 for some *i*. Let H be K_{2n} with one edge deleted. Both F and H have an odd number of edges. Join F to H with $n P_3$'s such that the middle vertices of the $n P_3$'s are the *n* different vertices of F and the end vertices of the $n P_3$'s are the 2*n* different vertices of H. The resulting graph is (n + 1)-connected but deleting the edges of the $n P_3$'s gives a component of odd size. By Theorem 4, its line graph is not n-extendable.

We turn now to the iterated line graph $L^m(G)$.

Lemma 8 ([5]) (1) If G is k-connected, then L(G) is k-connected. (2) If G is k-edge-connected, then L(G) is (2k-2)-edge-connected.

Corollary 9 If G is (n + 2)-connected and $L^m(G)$ has even order, then $L^m(G)$ is n-extendable.

Proof. This follows from Corollary 7 and Lemma 8(1). \Box

If we relax the connectivity of G, then $L^{m}(G)$ is still n-extendable for sufficiently large m.

Corollary 10 Let k, m, n be positive integers and $2^m \ge (4n-2)/k$. If G is (k+2)-edge-connected and $L^m(G)$ has even order then $L^m(G)$ is n-extendable.

Proof. From Lemma 8(2), $L^{m-1}(G)$ is $(2^{m-1}k+2)$ -edge-connected. The result now follows from Corollary 5. \Box

Corollary 11 Let k, m, n be positive integers and $2^m \ge (4n-2)/k$. If G is (k+2)connected and $L^m(G)$ has even order then $L^m(G)$ is n-extendable.

Proof. This follows from Corollary 10 since G is at least (k + 2)-edge-connected.

3 Power graphs

In this section, we prove that when the connectivity of a graph G is sufficiently large, G^2 is n-extendable. We also show that for any connected graph G, G^r is n-extendable for sufficiently large r.

Lemma 12 Let G be a k-connected graph. Then G^m is km-connected if km is less than the order of G.

Proof. Suppose S is a cutset of G^m and S contains less than km vertices. Let u and v be vertices separated in G^m by S. Since G is k-connected, there are at least k internal vertex disjoint paths in G from u to v. They must all contain a vertex from S. There are fewer than m vertices from S in one of these paths. By choosing a different u and v if necessary, we can assume that all internal vertices of this path lie in S. Thus, in G^m , u and v are adjacent; a contradiction. \Box

The following result shows that if the connectivity of a graph G is large, the square of G is n-extendable.

Theorem 13 If G is k-connected with even order and k > n, then G^r is n-extendable for $r \ge 2$.

Proof. Suppose G^r is not *n*-extendable. There are *n* independent edges $e_i = u_i v_i$ (i = 1, 2, ..., n) which do not lie in any perfect matching of G^r . Let $H = G^r - \{u_1, v_1, ..., u_n, v_n\}$. By Lemma 12, *H* is connected. By Tutte's Theorem, there is a cutset *S* of *H* such that o(H - S) > |S|. By parity, o(H - S) = |S| + 2m for some positive integer *m*. Let $S' = S \cup \{u_1, v_1, ..., u_n, v_n\}$. Then |S'| = |S| + 2n and $o(G^r - S') = o(H - S) = |S| + 2m$.

As G is k-connected, each component of $G^r - S'$ is adjacent in G to at least k vertices of S'. Suppose no two odd components of $G^r - S'$ in G have a common neighbour in S'. Then there are at least (|S| + 2m)k vertices in S'. But S' has only |S| + 2n < (|S| + 2m)k vertices. So at least two odd components C_1 and C_2 have in G a common neighbour v in S'. Then there is vertex u in C_1 and a vertex w in C_2 such that u and w are both adjacent to v. In G^r , u and w are adjacent. So u and w are in the same component of $G^r - S'$, contradicting the fact that C_1 and C_2 are different components of $G^r - S'$. \Box

The connectivity bound is sharp. Let $F = K_{n+1}$ if n is even or K_{n+2} if n is odd. Let H be isomorphic to F. Let $e_i = u_i v_i$ (i = 1, 2, ..., n) be n independent edges which are vertex disjoint from F and H. Join each u_i to every vertex of F and join each v_i to every vertex of H. The resulting graph G is n-connected. But $G^2 - \{u_1, v_1, \ldots, u_n, v_n\}$ has an odd component and therefore no perfect matching. Thus G^2 is not n-extendable.

If we relax the connectivity of G, then its power graph G^r is still *n*-extendable for sufficiently large r.

Theorem 14 If G is k-connected with even order and $1 \le k \le n$, then G^r is n-extendable for $r \ge 2(n-k)+3$.

Proof. Proceed as in the first paragraph of the proof for Theorem 13. Let C_1, C_2, \dots, C_t be the components of $G^r - S'$. Let N_i be the set of vertices of S' that are adjacent in G to vertices of C_i . Since G is k-connected, each N_i contains at least k vertices. Also, the N_i are pairwise disjoint otherwise one of the components C_i contains a vertex u that is distance two from a vertex v in some other component C_j but then u and v would be in the same component of G^r . Since G is connected, there is a path P in G from a vertex w_i in N_i to a vertex w_i in N_j $(j \neq i)$. By

assuming P has the minimum length among all such paths, P is contained in S' and the internal vertices of P have no vertex in N_l for $1 \leq l \leq t$. Since |S'| = |S| + 2n and $t \geq |S| + 2m$, the order of P is at most $|S| + 2n - k(|S| + 2m) + 2 \leq |S| + 2n - k(|S| + 2) + 2 = 2(n - k) - |S|(k - 1) + 2 \leq 2(n - k) + 2$. There is a vertex z_i in C_i and a vertex z_j in C_j adjacent to w_i and w_j respectively. Then $z_i P z_j$ is a path of length at most 2(n - k) + 3. So z_i and z_j are adjacent in G^r , contradicting the fact that C_i and C_j are different components of $G^r - S'$. \Box

The bound on r in Theorem 14 is the least possible. Let $G = u_0 u_1 \ldots u_{2n} u_{2n+1}$ be a path. Let $e_i = u_{2i-1}u_{2i}$ $(i = 1, 2, \ldots n)$. Since $G^{2n} - \{u_1, u_2, \ldots u_{2n}\}$ has an odd component $(u_0 \text{ or } u_{2n+1})$ it does not have a perfect matching. We can replace u_0 or u_{2n+1} by odd components, and the resulting graph will still be a counterexample.

4 Total graphs

In this section we show that when the connectivity of a total graph T(G) is sufficiently large, then T(G) is *n*-extendable. We quote three useful lemmas.

Lemma 15 ([2]) For any graph G, $T(G) = (S(G))^2$.

Lemma 16 Let G be a connected graph and let w be a vertex in a cutset R of T(G). (1) If w is a subdivision vertex of S(G), then w is adjacent to at most two components of T(G) - R. (2) If R contains no subdivision vertices of S(G), then w is adjacent to exactly one component of T(G) - R.

Proof. This follows immediately from Lemma 15. \Box

Theorem 17 If T(G) is (2n + 1)-connected and has even order, then T(G) is n-extendable.

Proof. Suppose T(G) is not *n*-extendable. There are *n* independent edges $e_i = u_i v_i$ (i = 1, 2, ..., n) which do not lie in a perfect matching of T(G). Let $T' = T(G) - \{u_1, v_1, \ldots, u_n, v_n\}$. By Tutte's Theorem, there is a subset S' of vertices of T' such that o(T' - S') > |S'|. By parity, o(T' - S') = |S'| + 2m for some positive integer *m*. Let $S = S' \cup \{u_1, v_1, \ldots, u_n, v_n\}$. Then o(T(G) - S) = o(T' - S') = |S'| + 2m = |S| - 2n + 2m. Let C_1, C_2, \ldots denote the odd components of T(G) - S.

We now reduce S while keeping the relation $o(T(G)-S) = |S|-2n+2m \ (m \ge 1)$. Let w be a vertex in S and replace S with $S'' = S \setminus \{w\}$.

If w is not adjacent to any odd component, then o(T(G) - S'') = o(T(G) - S) + 1 = |S''| - 2n + 2(m + 1).

Suppose every vertex of S is adjacent to an odd component. If w is a subdivision vertex of S(G), then, by Lemma 16, w is adjacent to at most two odd components. If w is adjacent to two odd components C_i and C_j , then the subgraph of T(G) - S'' induced by $C_i \cup \{w\} \cup C_j$ is an odd component and o(T(G) - S'') = |S''| - 2n + 2m. If w is adjacent to only one odd component C_i , then again o(T(G) - S'') = |S''| - 2n + 2m.

If S does not contain any subdivision vertex of S(G), then, by Lemma 16, w is adjacent to exactly one odd component and again o(T(G) - S'') = |S''| - 2n + 2m.

Repeat the process above until |S| = 2n. Then $o(T(G) - S) = |S| - 2n + 2m = 2m \ge 2$. Thus S is a cutset of T(G) of order 2n, a contradiction. \Box

If we relax the connectivity of G then its iterated total graph $T^{r}(G)$ is still nextendable for sufficiently large r.

Lemma 18 ([6, 9]) If G is k-connected, then T(G) is 2k-connected.

Corollary 19 Let G be k-connected and $2^r > 2n/k$. The iterated total graph $T^r(G)$ is n-extendable if it has even order.

Proof. This follows immediately from Lemma 18 and Theorem 17. □

Note that if G is k-connected, then T(G) may be exactly 2k-connected. Let w be a vertex of degree k. Then w has 2k neighbours in T(G) which form a cutset. On the other hand the connectivity of T(G) may be considerably higher than 2k. For example, let G be the graph formed by identifying a vertex from K_{4p} with a vertex of K_{4p+1} . Then G is 1-connected but T(G) has even order and is (8p-2)-connected. Thus Theorem 17 is more powerful than Corollary 19.

The connectivity in Theorem 17 and inequality in Theorem 18 are sharp. Let G be a k-connected k-regular graph. Suppose $2^r k = 2n$. Since $T^i(G)$ is $2^i k$ -regular, $T^i(G)$ is exactly $2^i k$ -connected by Lemma 18. By Lemma 15 $T^r(G) = (S(T^{r-1}(G)))^2$. Let w be a vertex in $T^{r-1}(G)$, let w_i $(i = 1, 2, ..., 2^{r-1}k)$ be the vertices of $T^{r-1}(G)$ adjacent to w and let u_i be the subdivision vertex on ww_i in $S(T^{r-1}(G))$ $(i = 1, 2, ..., 2^{r-1}k)$. Then the $u_i w_i$ are $2^{r-1}k = n$ independent edges of $T^r(G)$. But $T^r(G) - \{u_i, w_i | i = 1, 2, ..., 2^{r-1}k\}$ does not have a perfect matching as w is an isolated vertex. So $T^r(G)$ is not n-extendable.

Acknowledgement The authors wish to thank the referee for several improvements to this paper.

References

- R. E. L. Aldred, D. A. Holton, and Dingjun Lou, n-extendability of symmetric graphs, J. Graph Theory 17 (1993) 253-261.
- [2] M. Behzad, A criterion for the planarity of a total graph, Proc. Cambridge Philos. Soc., 63 (1967) 679-681.
- [3] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, Macmillan Press, London, 1976.
- [4] G. Chartrand, A. D. Polimeni, and M. J. Stewart, The existence of a 1-factor in line graphs, square, and total graphs, *Indag. Math.*, 35 (1973) 228-232.
- [5] G. Chartrand and M. J. Stewart, The connectivity of line graphs, Math. Ann., 182 (1969) 170-174.

- [6] T. Hamada, T. Nonaka, and I. Yoshimura, On the connectivity of total graphs, Math. Ann. 196 (1972) 30-38.
- [7] D. A. Holton and Dingjun Lou, Matching extensions of strongly regular graphs, Australasian J. Combinatorics 6 (1992) 187-208.
- [8] Dingjun Lou and Qingwei Zhu, The 2-extendability of strongly regular graphs, Discrete Maths, to appear.
- [9] J. M. S. Simões-Pereira, Connectivity, line-connectivity, and J-connection of the total graph, Math. Ann., 196 (1972) 48-57.
- [10] W. T. Tutte, The factorisations of linear graphs, J. London Math. Soc., 22 (1947) 107-111.

(Received 17/10/94; revised 25/1/95)