# On complementary path decompositions of the complete multigraph 

B. Du<br>Department of Mathematics<br>Suzhou University<br>Suzhou 215006, People's Republic of China


#### Abstract

We give a complete solution to the existence problem for complementary $P_{3}$-decompositions of the complete multigraph, where $P_{3}$ denotes the path of length 3.


A complementary decomposition $2 \lambda K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ is an edge decomposition of the complete multigraph $\lambda K_{v}$ into $P_{3}$ 's with the property that upon taking the complement of each path one obtains a second decomposition of $\lambda K_{3}$ into $P_{3}{ }^{\prime}$ s (where the complement of the path $a b c d$ is the path $b d a c$ ). The following result was proven by Granville, Moisiadis and Rees in [1] (and, with a few small exceptions, also follows from the techniques in [3]):

Theorem 1. There exists a complementary decomposition $2 K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ if and only if $v \equiv 1(\bmod 3)$.

In this paper, we give a complete solution to the existence problem for complementary $P_{3}$-decompositions of the complete multigraph $2 \lambda K_{v}$. Note that if $D$ is such a decomposition then the set $\{(a, b, c, d): a b c d \in D\}$ is an edge decomposition of $2 \lambda K_{v}$ into $K_{4}$ 's, that is, a ( $v, 4,2 \lambda$ )-BIBD. The following result was proven by Hanani in [2]:
Lemma 2. If there exists a complementary decomposition $2 \lambda K_{v} \rightarrow\left(P_{3}, P_{3}\right)$, then

$$
\lambda(v-1) \equiv 0 \quad(\bmod 3)
$$

and

$$
\lambda v(v-1) \equiv 0 \quad(\bmod 6) .
$$

As a consequence of the remarks above and the results in Hanani [2], we need consider only the case $\lambda=3$.

It is easy to see that the existence of a $(v, 4, \lambda)$-BIBD implies the existence of a $2 \lambda K_{v} \rightarrow\left(P_{3}, P_{3}\right)$. From [2] we then have
Lemma 3. There exists a complementary decomposition $6 K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ if $v \equiv 0,1(\bmod 4)$.

For our proof, we also need the following initial block constructions.
Lemma 4. There exists a complementary decomposition $6 K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ if $v \equiv 0,2(\bmod 6)$.

Proof. In $\mathbb{Z}_{v-1} \cup\{\infty\}$, the required initial blocks are

$$
\begin{aligned}
& (\infty, 0,1,2) \\
& (0,1, \infty, 3) \\
& (0, k, 2 k, 3 k), \quad 2 \leq k \leq \frac{1}{2}(v-2)
\end{aligned}
$$

Lemma 5. There exists a complementary decomposition $6 K_{q} \rightarrow\left(P_{3}, P_{3}\right)$ if $q \equiv 3$ $(\bmod 4)$ is a prime power.
Proof. Let $d=\frac{1}{2}(q-1)$, and let $x$ be a generator of $G F(q)$; then the required initial blocks are

$$
\left(x^{i}, x^{i+1}, x^{i+d}, x^{i+d+1}\right), \quad 0 \leq i \leq d-1
$$

Lemma 6. There exists a complementary decomposition $6 K_{15} \rightarrow\left(P_{3}, P_{3}\right)$.
Proof. In $\mathbb{Z}_{15}$, the required initial blocks are

$$
\begin{aligned}
& (0,1,5,10) \\
& (0,5,10,3) \\
& (0,12,14,8) \\
& (0,2,3,11), \text { two times, } \\
& (0,12,8,14), \text { two times. }
\end{aligned}
$$

Theorem 7. For every integer $v \geq 4$, there exists a complmentary decomposition $6 K_{v} \rightarrow\left(P_{3}, P_{3}\right)$.
Proof. By Hanani [2], it suffices to show that there exists a complementary decomposition for all $v \in\{4,5, \cdots, 12,14,15,18,19,23,27\}$. If $v \equiv 1(\bmod 3)$, then Theorem 1 gives the result; if $v \equiv 0,1(\bmod 4)$, then Lemma 3 gives the result; if $v \equiv 0,2(\bmod 6)$, then Lemma 4 gives the result; if $v \equiv 3(\bmod 4)$ is a prime power, then Lemma 5 gives the result; for the remaining case $v=15$, Lemma 6 gives the result. The proof is now complete.

Theorem 8. There exists a complementary decomposition $2 \lambda K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ if and only if

$$
\lambda(v-1) \equiv 0 \quad(\bmod 3)
$$

and

$$
\lambda v(v-1) \equiv 0 \quad(\bmod 6)
$$

Proof. That these conditions are necessary follows from Lemma 2. We need consider only values of $\lambda$ which are factors of 3 , because if $\lambda_{1} \mid \lambda_{2}$ then the existence
of a $2 \lambda_{1} K_{v} \rightarrow\left(P_{3}, P_{3}\right)$ implies the existence of a $2 \lambda_{2} K_{v} \rightarrow\left(P_{3}, P_{3}\right)$. Thus we have the following cases:

$$
\begin{array}{ll}
\lambda=1 & v \equiv 1(\bmod 3) \\
\lambda=3 & \text { all } v \geq 4
\end{array}
$$

In Theorems 1 and 7 we have established the existence of the required designs.

## References

[1] A. Granville, A. Moisiadis and R. Rees, On complementary decompositions of the complete graph, Graphs and Combinatorics 5(1989) 57-61.
[2] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11(1975) 255-369.
[3] R. Rees and C.A. Rodger, Subdesigns in complementary path decompositions and incomplete two-fold designs with block size four, Ars Combinatoria 35(1993), 117-122.

