Lambda-fold cube decompositions

Peter Adams, Darryn E. Bryant^{*} Centre for Combinatorics Department of Mathematics The University of Queensland Queensland 4072 Australia

Saad I. El-Zanati[†] Department of Mathematics Illinois State University Normal, Illinois 61761 U.S.A.

ABSTRACT: Necessary and sufficient conditions on n and λ are given for the existence an edge-disjoint decomposition of λK_n into copies of the graph of a 3-dimensional cube. Also, necessary and sufficient conditions on m, n and λ are given for similar decompositions of $\lambda K_{m,n}$.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set $\{G_1, G_2, \ldots, G_t\}$ of edgedisjoint subgraphs of H, each of which is isomorphic to G, such that the edge sets of the G_i 's partition the edge set of H.

Necessary and sufficient conditions for a G-decomposition of H have been established for various G and H. The most common problem considered is: given a graph G, for which n does there exist a G-decomposition of K_n , the complete graph of order n. Other common choices for H include the lambda-fold complete graph λK_n , and (when G is bipartite) the λ -fold complete bipartite graph $\lambda K_{m,n}$. G-decompositions of the above graphs have been considered for many different graphs G. In this paper, we consider G-decompositions when G is the graph of the 3-dimensional cube. Throughout this paper we shall we shall use C to denote this graph (see Figure 1).

^{*}Research supported by Australian Research Council grant A49130102

[†]Research supported by Illinois State University Research Office

Figure 1: The graph C of the 3-dimensional cube

In 1979, Kotzig [5] found a C-decomposition of K_{16} , and posed the problem of finding necessary and sufficient conditions on n for the existence of a C-decomposition of K_n . In 1981 [6], he proved that if there exists C-decomposition of K_n then n is necessarily equivalent to 1 or 16 modulo 24 and he also proved sufficiency for the case $n \equiv 1 \pmod{24}$. The problem of showing that there exists a C-decomposition of K_n when $n \equiv 16 \pmod{24}$ was again mentioned in 1985 by Harary and Robinson [4] and was recently solved (in 1994) [2]. Necessary and sufficient conditions on n and m for the existence of a C-decomposition of $K_{m,n}$ were also given in [2].

In this paper, we give necessary and sufficient conditions (on λ and n) for the existence of a *C*-decomposition of λK_n and (on λ , n and m) for the existence of a *C*-decomposition of $\lambda K_{n,m}$. Necessary and sufficient conditions for a *G*-decomposition of λK_n have already been given for the graphs of two other regular solids. A *G*-decomposition of λK_n where *G* is the graph of the tetrahedron (that is, K_4) is a $(v, 4, \lambda)$ BIBD with v = n. Necessary and sufficient conditions for the existence of $(v, 4, \lambda)$ BIBD's are well known; see [3]. The problem of finding *G*-decompositions of λK_n where *G* is the graph of the octahedron (equivalent to a Pasch configuration) was recently solved by Adams et al [1].

2 3-Cube Decompositions of $\lambda K_{m,n}$

In this section, we consider C-decompositions of the λ -fold complete bipartite graph $\lambda K_{m,n}$ (where we assume $m \leq n$). We note that the case $\lambda = 1$ was done in [2]. Since C is a 3-regular bipartite graph with 12 edges and 4 vertices in each subset of the bipartition, the necessary conditions for the existence of such decompositions include:

(2.1) $3 \mid \lambda m \text{ and } 3 \mid \lambda n;$

- (2.2) $12 \mid \lambda mn;$
- $(2.3) \qquad 4 \le m \le n.$

We shall show that the above necessary conditions (2.1)-(2.3) are sufficient. We shall make frequent use of the following two simple lemmas.

Lemma 2.1 If there are G-decompositions of K_{m,n_1} and K_{m,n_2} then there is a G-decomposition of $K_{am,b_1n_1+b_2n_2}$ for any non-negative integers a, b_1 , and b_2 .

Proof. First decompose $K_{am,b_1n_1+b_2n_2}$ into ab_1 copies of K_{m,n_1} and ab_2 copies of K_{m,n_2} . Then decompose each of these into copies of G.

Lemma 2.2 Let H be a graph and suppose there is a G-decomposition of $\lambda_1 H$ and $\lambda_2 H$ ($\lambda_1, \lambda_2 \geq 1$). Then there is a G-decomposition of $(a\lambda_1 + b\lambda_2)H$ for any non-negative integers a and b.

Proof. First decompose $(a\lambda_1 + b\lambda_2)H$ into a copies of λ_1H and b copies of λ_2H . Then decompose each of these into copies of G.

To establish the sufficiency of conditions (2.1)-(2.3), we shall use lemmas 2.1 and 2.2, and present all of the necessary decompositions of $\lambda K_{m,n}$.

Theorem 2.3 For $m \leq n$, a C-decomposition of $\lambda K_{m,n}$ exists if and only if $\lambda m \equiv \lambda n \equiv 0 \pmod{3}$, $\lambda mn \equiv 0 \pmod{4}$ and $m \geq 4$.

Proof. The necessary conditions are obtained from (2.1)-(2.3). The proof of sufficiency consists of six cases that depend on the value of the greatest common divisor of 12 and λ .

Case 1: $gcd\{12, \lambda\} = 1$.

In this case, the necessary conditions reduce to:

 $3 \mid m \text{ and } 3 \mid n;$

 $4 \mid mn;$

 $4 \leq m \leq n$.

Under these conditions, either

 $m \equiv n \equiv 0 \pmod{6}$ or

 $m \equiv 0 \pmod{12}$ and $n \equiv 3 \pmod{6}$ (or vice versa).

In either case, $\lambda K_{m,n}$ can be decomposed into into a collection of graphs each of which is isomorphic to either $K_{6,6}$ or $K_{9,12}$. Thus it suffices to find *C*-decompositions of $K_{6,6}$ and of $K_{9,12}$. These decompositions exist; see [2].

Case 2: $gcd\{12, \lambda\} = 2$.

In this case, the necessary conditions (2.1)-(2.3) reduce to:

 $3 \mid m \text{ and } 3 \mid n;$

 $2 \mid mn;$

 $4 \leq m \leq n$.

Under these conditions, either

 $m \equiv n \equiv 0 \pmod{6}$ or

 $m \equiv 0 \pmod{6}$ and $n \equiv 3 \pmod{6}$ (or vice versa).

In either case, $\lambda K_{m,n}$ can be decomposed into a collection of graphs each of which is isomorphic to either $2K_{6,6}$ or $2K_{6,9}$. A *C*-decomposition of $2K_{6,9}$ is given in the appendix.

Case 3: $gcd\{12, \lambda\} = 3$.

In this case, conditions (2.1)-(2.3) reduce to:

 $4 \mid mn;$

 $4 \leq m \leq n$.

The needed new decompositions needed in this case are C-decompositions of $3K_{4,4}$, $3K_{4,5}$, $3K_{4,6}$, and $3K_{4,7}$. These are given in the appendix.

Case 4: $gcd\{12, \lambda\} = 4$. In this case, conditions (2.1)-(2.3) reduce to: $3 \mid m \text{ and } 3 \mid n;$ $4 \leq m \leq n$. Here the only new case is a C-decomposition of $4K_{9,9}$, which is given in the appendix.

Case 5: $gcd\{12, \lambda\} = 6$. In this case, conditions (2.1)-(2.3) reduce to:

 $2 \mid mn;$

4 < m < n.

Here the only previously uncovered small cases are C-decompositions of $6K_{5,6}$ and $6K_{6,7}$. These are given in the appendix.

Case 6: $gcd\{12, \lambda\} = 12$.

In this case, conditions (2.1)-(2.3) reduce to:

 $4 \leq m \leq n$.

The uncovered small cases are 3-cube decompositions of $12K_{5,5}$, $12K_{5,7}$ and $12K_{7,7}$. These too are given in the appendix.

3 3-Cube Decompositions of λK_n

Lemma 3.1 If there is a C-decomposition of λK_{x+1} then there is a C-decomposition of $\lambda K_{x,24}$.

Proof. By Theorem 2.3, we need only show that the necessary conditions (2.1)-(2.3) are satisfied. Since there is a *C*-decomposition of λK_{x+1} , $x \equiv 0 \pmod{3}$ and hence (noting that x > 4) the necessary conditions are satisfied.

Lemma 3.2 Let $k \ge 0$ and n = 24k + x + 1, where $8 \le x + 1 < 32$. Then if there is a C-decomposition of λK_{x+1} there is a C-decomposition of λK_n .

Proof. First we note that for all λ , there are *C*-decompositions of $\lambda K_{24,24}$ and λK_{25} (using Lemma 3.1 and the *C*-decompositions of $K_{24,24}$ and K_{25} given in [2]). Also, by Lemma 3.1, there is a *C*-decomposition of $\lambda K_{x,24}$.

Now, let $V(\lambda K_n) = V_0 \cup V_1 \cup \ldots \cup V_k \cup \{\infty\}$ where $V_0 = \{0_1, 0_2, \ldots, 0_x\}$ and for $i = 1, 2, \ldots, k, V_i = \{i_1, i_2, \ldots, i_{24}\}$. For $i = 0, 1, \ldots, k$, let G_i be the λ -fold complete graph with vertex set $V_i \cup \{\infty\}$ and for each i, j with $0 \le i < j \le k$, let $G_{i,j}$ be the λ -fold complete bipartite graph with vertex set $V_i \cup V_j$ (and the obvious bipartition). Then, λK_n is the edge disjoint union

$$\lambda K_n = (\bigcup_{0 \le i \le k} G_i) \bigcup (\bigcup_{0 \le i < j \le k} G_{i,j}).$$

Clearly:

(1) $G_0 \cong \lambda K_{x+1};$ (2) for $i = 1, 2, ..., k, G_i \cong \lambda K_{25};$ (3) for $j = 1, 2, ..., k, G_{0,j} \cong \lambda K_{x,24};$ (4) for all i, j satisfying $1 \le i < j \le k, G_{i,j} \cong \lambda K_{24,24}$.

Hence the union of the C-decompositions of each of these subgraphs (the G_i 's and the $G_{i,j}$'s) is a C-decomposition of λK_n .

Theorem 3.3 There is a C-decomposition of λK_n if and only if $n \ge 8$, $3 \mid \lambda(n-1)$ and $24 \mid \lambda n(n-1)$.

Proof. The necessary conditions are established by noting that since C has degree 3, 3 must divide the degree of λK_n (that is, $3 \mid \lambda(n-1)$) and that since C has 12 edges, 12 must divide the number of edges in λK_n (that is, $12 \mid \lambda \frac{n(n-1)}{2}$).

For sufficiency, as before, the proof consists of 6 cases that depend on the value of $gcd(12,\lambda)$.

Case 1: $gcd{12, \lambda} = 1$.

In this case, the necessary conditions are $n \equiv 1, 16 \pmod{24}$. Hence by Lemma 3.2 we only need a C-decomposition of K_{16} , which is given in [2].

Case 2: $gcd\{12, \lambda\} = 2$.

In this case, the necessary conditions are $n \equiv 1, 4, 13, 16 \pmod{24}$, $n \neq 4$. Hence by Lemma 3.1 and Lemma 3.2, the only new C-decompositions needed are of $2K_{28}$ and $2K_{13}$, both of which are given in the appendix.

Case 3: $gcd\{12, \lambda\} = 3$.

In this case, the necessary conditions are $n \equiv 0, 1, 8, 9, 16, 17 \pmod{24}$. Hence by Lemma 3.1 and Lemma 3.2, the only new *C*-decompositions needed are of $3K_{24}, 3K_8$, $3K_9$ and $3K_{17}$, all of which are given in the appendix.

Case 4: $gcd{12, \lambda} = 4$.

In this case, the necessary conditions are $n \equiv 1, 4, 7, 10, 13, 16, 19, 22 \pmod{24}$, $n \neq 4, 7$. Hence by Lemma 3.1 and Lemma 3.2, the only new *C*-decompositions needed are of $4K_{31}, 4K_{10}, 4K_{19}$ and $4K_{22}$, all of which are given in the appendix.

Case 5: $gcd\{12, \lambda\} = 6$.

In this case, the necessary conditions are $n \equiv 0, 1, 4, 5, 8, 9, 12, 13, 16, 17$, 20, 21 (mod 24), $n \neq 4, 5$. Hence by Lemma 3.1 and Lemma 3.2, the only new *C*-decompositions needed are of $6K_{29}, 6K_{12}, 6K_{20}$ and $6K_{21}$, all of which are given in the appendix.

Case 6: $gcd\{12, \lambda\} = 12$.

In this case, the only necessary condition is that $n \neq 2, 3, 4, 5, 6, 7$. Hence by Lemma 3.1 and Lemma 3.2, the only new C-decompositions needed are of $12K_{26}, 12K_{27}, 12K_{30}, 12K_{11}, 12K_{14}, 12K_{15}, 12K_{18}$ and $12K_{23}$, all of which are given in the appendix. \Box

4 Conclusions

In this section we summarise (in tabular form) the results of this paper, see Theorems 2.3 and 3.3.

$\lambda \pmod{12}$	$\text{admissible } m,n \ (4 \leq m \leq n)$	
1, 5, 7, 11	$m,n\equiv 0 \pmod{3},mn\equiv 0 \pmod{4}$	
2, 10	$m,n\equiv 0 \pmod{3},mn\equiv 0 \pmod{2}$	
3, 9	$mn\equiv 0 \;(\mathrm{mod}\; 4)$	
4, 8	$m,n\equiv 0 \;(\mathrm{mod}\;3)$	
6	$mn\equiv 0 \pmod{2}$	
12	any m, n	

Table 1: Necessary and sufficient conditions for the existence of a C-decomposition of $\lambda K_{m,n}$

$\lambda \pmod{12}$	admissible $n \geq 8$	
1, 5, 7, 11	$n \equiv 1, 16 \pmod{24}$	
2, 10	$n\equiv 1,4 \pmod{12}$	
3, 9	$n \equiv 0,1 \pmod{8}$	
4, 8	$n\equiv 1 \pmod{3}$	
6	$n\equiv 0,1 \pmod{4}$	
12	all n	

Table 2: Necessary and sufficient conditions for the existence of a C-decomposition of λK_n

References

- P. Adams, E. J. Billington and C.A. Rodger, Pasch decompositions of lambdafold triple systems, J. Combin. Math. Combin. Comput. 15 (1994), 53-63.
- [2] D.E. Bryant, S. El-Zanati and R. Gardner, Decompositions of K_{m,n} and K_n into cubes, Australas. J. Combin. 9 (1994), 284-290.
- [3] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.

- [4] F. Harary and R. W. Robinson, Isomorphic factorizations X: Unsolved problems, J. Graph Theory 9 (1985), 67-86.
- [5] A. Kotzig, Selected open problems in graph theory, Graph Theory and Related Topics, Academic Press New York (1979), 258-267.
- [6] A. Kotzig, Decompositions of complete graphs into isomorphic cubes, J. Combin. Theory Ser B 31 (1981), 292-296.

5 Appendix

Within this appendix, each cube decomposition of a graph G is given as (V, C), where V is the vertex set of G, and C is the collection of cubes. The graph of the cube with vertex set $\{a, b, c, d, e, f, g, h\}$ and edge set $\{ab, bc, cd, da, ef, fg, gh, he, ae, bf, cg, dh\}$ is denoted by the 8-tuple (a, b, c, d, e, f, g, h).

The vertex set of $\lambda K_{m,n}$ is $(\mathbb{Z}_m \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$ (with the obvious bipartition) and the ordered pair (x, y) of this vertex set is represented by x_y .

 $\left| \right\rangle = 2$

$$\begin{array}{l} \hline X = 2 \\ \hline 2K_{6,9} \end{array} \qquad V = \{i_1 \mid 0 \leq i \leq 5\} \cup \{i_2 \mid 0 \leq i \leq 8\} \quad C \text{ as follows, uncycled:} \\ (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), \quad (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), \\ (0_1, 3_2, 4_1, 4_2, 5_2, 5_1, 0_2, 3_1), \quad (0_1, 3_2, 4_1, 4_2, 5_2, 5_1, 0_2, 3_1), \\ (0_1, 6_2, 1_1, 7_2, 8_2, 2_1, 4_2, 5_1), \quad (0_1, 6_2, 1_1, 8_2, 7_2, 2_1, 5_2, 4_1), \\ (1_1, 2_2, 4_1, 5_2, 4_2, 5_1, 1_2, 2_1), \quad (1_1, 2_2, 4_1, 7_2, 8_2, 5_1, 6_2, 3_1), \\ (2_1, 1_2, 4_1, 8_2, 7_2, 5_1, 6_2, 3_1). \end{array}$$

2 K_{13} $V = Z_{13}$. C as follows, cycled modulo 13: (0, 1, 2, 4, 3, 8, 6, 9).

2 K_{37} $V = Z_{37}$. C as follows, cycled modulo 37: (0,1,2,4,3,5,8,13), (0,5,11,18,7,15,2,26), (0,11,23,12,14,28,7,29).

$$\lambda = 3$$

$$\begin{aligned} |X| = 0 \\ \hline X = 0 \\ \hline X = 0 \\ \hline X = \{i_1 \mid 0 \le i \le 3\} \cup \{i_2 \mid 0 \le i \le 3\} \quad C \text{ as follows, uncycled:} \\ (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), (0_1, 0_2, 1_1, 1_2, 3_2, 3_1, 2_2, 2_1), \\ (0_1, 0_2, 1_2, 2_2, 3_2, 3_1, 1_2, 1_1), (0_1, 1_2, 1_3, 2, 2_2, 3_1, 0_2, 1_1). \\ \hline X = \{i_1 \mid 0 \le i \le 3\} \cup \{i_2 \mid 0 \le i \le 4\} \quad C \text{ as follows, uncycled:} \\ (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), (0_1, 0_2, 1_1, 1_2, 3_2, 3_1, 4_2, 2_1), \\ (0_1, 0_2, 1_1, 3_2, 4_2, 3_1, 1_2, 1_1), (0_1, 1_2, 2_1, 4_2, 3_2, 3_1, 2_2, 1_1), \\ (0_1, 2_2, 1_1, 3_2, 4_2, 3_1, 0_2, 2_1). \\ \hline X = \{i_1 \mid 0 \le i \le 3\} \cup \{i_2 \mid 0 \le i \le 5\} \quad C \text{ as follows, uncycled:} \\ (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), (0_1, 0_2, 1_1, 1_2, 3_2, 3_1, 2_2, 2_1), \\ (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), (0_1, 1_2, 2_1, 3_2, 5_2, 3_1, 4_2, 1_1), \\ (0_1, 2_2, 1_1, 4_2, 5_2, 3_1, 0_2, 2_1), (0_1, 3_2, 1_1, 5_2, 4_2, 3_1, 1_2, 2_1). \\ \hline X = \{i_1 \mid 0 \le i \le 3\} \cup \{i_2 \mid 0 \le i \le 6\} \quad C \text{ as follows, uncycled:} \\ (0_1, 0_2, 3_1, 1_2, 6_2, 1_1, 2_2, 2_1), (0_1, 0_2, 3_1, 1_2, 5_2, 2_1, 3_2, 1_1), \\ (0_1, 0_2, 3_1, 2_2, 6_2, 1_1, 2_2, 2_1), (0_1, 0_2, 3_1, 1_2, 5_2, 2_1, 3_2, 1_1), \\ (0_1, 2_2, 3_1, 4_2, 3_2, 1_1, 0_2, 2_1), (0_1, 2_2, 2_1, 5_2, 4_2, 1_1, 6_2, 3_1), \\ (0_1, 3_2, 3_1, 6_2, 4_2, 1_1, 5_2, 2_1). \\ \hline X = Z_8. \quad C \text{ as follows, uncycled:} \\ (0, 1, 2, 3, 4, 5, 6, 7), (0, 1, 2, 3, 4, 5, 6, 7), (0, 1, 2, 3, 5, 5, 4, 7, 6), \\ (0, 2, 4, 6, 5, 7, 1, 3), (0, 2, 4, 6, 7, 5, 3, 1), (0, 2, 4, 6, 7, 5, 3, 1), \\ (0, 4, 1, 5, 7, 3, 6, 2). \\ \hline X = Z_9. \quad C \text{ as follows, cycled modulo 9:} \\ (0, 1, 2, 3, 5, 8, 4, 7). \\ \hline$$

 $3K_{17}$ $V = Z_{17}$. C as follows, cycled modulo 17:

(0, 1, 2, 3, 4, 6, 8, 10), (0, 3, 6, 10, 8, 15, 11, 2).

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 3K_{24} & V = Z_{23} \cup \{\infty\}. & C \text{ as follows, cycled modulo 23:} \\ (0,1,2,3,4,6,8,10), & (0,3,6,10,4,9,1,17), & (0,8,18,9,11,22,7,\infty). \end{array}$$

 $3K_{32} \qquad V = Z_{31} \cup \{\infty\}. \quad C \text{ as follows, cycled modulo } 31:$

(0, 1, 2, 3, 4, 6, 8, 10), (0, 3, 6, 10, 4, 9, 1, 17), (0, 7, 16, 8, 9, 18, 1, 19), $(0, 10, 23, 11, 12, 24, 7, \infty).$

 $3K_{33}$ $V = Z_{33}$. C as follows, cycled modulo 33:

(0, 1, 2, 3, 4, 6, 8, 10), (0, 3, 6, 10, 4, 9, 1, 17), (0, 7, 16, 8, 9, 18, 1, 19),(0, 10, 23, 11, 12, 24, 6, 25).

$$3K_{41}$$
 $V = Z_{41}$. C as follows, cycled modulo 41:

(0, 1, 2, 3, 4, 6, 8, 10), (0, 3, 6, 10, 4, 9, 1, 17), (0, 7, 15, 23, 9, 18, 1, 32),(0, 10, 22, 11, 12, 24, 1, 25), (0, 13, 30, 15, 16, 32, 11, 37).

$$\lambda = 4$$

 $\begin{array}{ll} \hline 4K_{9,9} \\ \hline (8,-): & V = \{i_1 \mid 0 \leq i \leq 8\} \cup \{i_2 \mid 0 \leq i \leq 8\} \quad C \text{ as follows, cycled modulo} \\ & (0_1,0_2,1_1,1_2,2_2,2_1,3_2,3_1), \quad (0_1,1_2,2_1,3_2,2_2,4_1,6_2,8_1), \\ & (0_1,3_2,6_1,5_2,4_2,7_1,2_2,8_1). \end{array} \\ \hline \hline \\ \hline \hline 4K_{10} & V = \{i_j \mid 0 \leq i \leq 4; \ j = 1,2\}. \quad C \text{ as follows, cycled modulo } (5,-): \\ & (0_1,1_1,2_1,3_1,4_1,0_2,1_2,2_2), \quad (0_1,2_1,4_1,0_2,3_1,3_2,1_2,2_2), \\ & (0_1,0_2,2_1,2_2,3_2,1_2,4_2,1_1). \end{array}$

 $4K_{19}$

 $V = Z_{19}$. C as follows, cycled modulo 19:

(0, 1, 2, 3, 4, 5, 7, 9), (0, 2, 4, 7, 3, 6, 10, 15), (0, 5, 13, 6, 8, 14, 4, 15).

$$\begin{array}{ll} 4K_{22} \end{array} \qquad V = \{i_j \mid 0 \leq i \leq 10; \ j = 1,2\}. \quad C \text{ as follows, cycled modulo } (11,-): \\ (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 7_1, 9_1), \quad (0_1, 2_1, 4_1, 7_1, 3_1, 6_1, 0_2, 1_2), \\ (0_1, 5_1, 0_2, 1_2, 2_2, 3_2, 1_1, 4_2), \quad (0_1, 0_2, 1_1, 1_2, 2_2, 2_1, 3_2, 3_1), \\ (0_1, 1_2, 2_1, 5_2, 3_2, 6_1, 9_2, 0_2), \quad (0_1, 4_2, 8_1, 5_2, 6_2, 2_2, 1_2, 10_2), \\ (0_1, 4_2, 1_2, 8_2, 6_2, 9_2, 5_1, 2_2). \end{array}$$

4K₃₁ $V = Z_{31}$. C as follows, cycled modulo 31:

(0, 1, 2, 3, 4, 5, 7, 9), (0, 2, 4, 7, 3, 6, 10, 15), (0, 5, 11, 17, 7, 14, 1, 24),(0, 8, 17, 9, 10, 19, 1, 20), (0, 10, 22, 11, 12, 25, 9, 26).

$$\lambda = 6$$

$6K_{5,6}$

 $V = \{i_1 \mid 0 \leq i \leq 4\} \cup \{i_2 \mid 0 \leq i \leq 5\}$ C as follows, uncycled:

 $6K_{6,7}$

 $(0_1, 0_2, 1_1, 1_2, 2_2, 4_1, 5_2, 2_1),$ $(0_1, 3_2, 1_1, 4_2, 5_2, 3_1, 2_2, 5_1),$ $(0_1, 3_2, 1_1, 0_2, 6_2, 2_1, 1_2, 3_1),$ $(0_1, 4_2, 2_1, 5_2, 6_2, 4_1, 0_2, 5_1),$ $(1_1, 2_2, 0_1, 0_2, 1_2, 2_1, 3_2, 3_1),$ $(1_1, 2_2, 3_1, 4_2, 6_2, 4_1, 3_2, 5_1),$ $(1_1, 4_2, 0_1, 5_2, 6_2, 2_1, 2_2, 3_1),$ $(1_1, 3_2, 4_1, 5_2, 6_2, 5_1, 0_2, 2_1),$ $(1_1, 5_2, 0_1, 3_2, 6_2, 4_1, 1_2, 5_1),$ $(1_1, 4_2, 0_1, 0_2, 1_2, 3_1, 2_2, 4_1),$ $(2_1, 2_2, 4_1, 6_2, 5_2, 5_1, 4_2, 3_1),$ $(2_1, 0_2, 3_1, 3_2, 1_2, 5_1, 5_2, 4_1),$ $(2_1, 2_2, 0_1, 3_2, 4_2, 1_1, 0_2, 3_1),$ $(2_1, 4_2, 0_1, 5_2, 6_2, 4_1, 1_2, 5_1),$ $(3_1, 1_2, 1_1, 5_2, 2_2, 5_1, 3_2, 4_1),$ $(3_1, 1_2, 0_1, 6_2, 0_2, 2_1, 2_2, 5_1),$ $(3_1, 2_2, 1_1, 6_2, 4_2, 5_1, 1_2, 0_1),$ $(3_1, 3_2, 0_1, 6_2, 5_2, 4_1, 1_2, 2_1),$ $(4_1, 0_2, 0_1, 6_2, 4_2, 5_1, 5_2, 1_1),$ $(4_1, 0_2, 1_1, 2_2, 4_2, 2_1, 3_2, 5_1),$ $(4_1, 3_2, 2_1, 4_2, 1_2, 5_1, 0_2, 3_1)$

$$6K_{12} V = Z_{11} \cup \{\infty\}. C ext{ as follows, cycled modulo 11:}$$

 $(0, 1, 2, 3, 4, 5, 6, 7), (0, 2, 4, 6, 3, 5, 1, \infty), (0, 2, 7, 5, 3, 8, 1, \infty).$

 $6K_{20} \qquad V = Z_{19} \cup \{\infty\}. \quad C \text{ as follows, cycled modulo 19:}$

 $6K_{21}$ $V = Z_{21}$. C as follows, cycled modulo 21:

(0, 1, 2, 3, 4, 5, 6, 7), (0, 2, 4, 6, 3, 5, 1, 8), (0, 2, 5, 9, 6, 11, 16, 1),(0, 5, 11, 6, 7, 13, 1, 14), (0, 7, 16, 8, 10, 17, 5, 19).

 $6K_{29}$ $V = Z_{29}$. C as follows, cycled modulo 29:

$$\lambda = 12$$

 K_{14} $V = Z_{13} \cup \{\infty\}$. C as follows, cycled modulo 13:

12
$$K_{15}$$
 $V = Z_{15}$. C as follows, cycled modulo 15:

 K_{18} $V = Z_{17} \cup \{\infty\}$. C as follows, cycled modulo 17:

 K_{23} $V = Z_{23}$. C as follows, cycled modulo 23:

 K_{26} $V = Z_{25} \cup \{\infty\}$. C as follows, cycled modulo 25:

 K_{27} $V = Z_{27}$. C as follows, cycled modulo 27:

 K_{30} $V = Z_{29} \cup \{\infty\}$. C as follows, cycled modulo 29:

(0, 1, 2, 3, 4, 5, 6, 7),	(0, 1, 2, 3, 4, 5, 6, 7),	(0, 2, 4, 6, 3, 5, 1, 8),
(0, 2, 4, 6, 3, 5, 1, 8),	(0, 2, 4, 7, 3, 8, 12, 16),	(0, 5, 10, 15, 6, 11, 1, 20),
(0, 5, 10, 15, 6, 11, 1, 21),	(0, 6, 12, 18, 7, 13, 3, 25),	(0, 7, 14, 21, 8, 16, 6, 28),
(0, 8, 17, 9, 10, 18, 1, 19),	(0, 8, 17, 9, 10, 18, 1, 20),	$(0, 8, 22, 11, 12, 23, 5, \infty),$
$(0, 11, 23, 12, 13, 24, 6, \infty),$	$(0, 12, 25, 13, 14, 26, 9, \infty),$	$(0, 12, 26, 13, 14, 27, 11, \infty)$

(Received 25/8/94)