Lambda-fold cube decompositions

Peter Adams, Darryn E. Bryant*
Centre for Combinatorics
Department of Mathematics
The University of Queensland
Queensland 4072
Australia

Saad I. El-Zanatit
Department of Mathematics
Illinois State University
Normal, Illinois 61761 U.S.A.

ABSTRACT: Necessary and sufficient conditions on n and A are given
for the existence an edge-disjoint decomposition of MK, into copies of the
graph of a 3-dimensional cube. Also, necessary and sufficient conditions
on m,n and A are given for similar decompositions of A\Km p.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set {G1,G3,..., Gy} of edge-
disjoint subgraphs of H, each of which is isomorphic to G, such that the edge sets of
the G;’s partition the edge set of H.

Necessary and sufficient conditions for a G-decomposition of H have been estab-
lished for various G and H. The most common problem considered is: given a graph
@, for which n does there exist a G-decomposition of Ky, the complete graph of order
n. Other common choices for H include the lambda-fold complete graph AK,, and
(when G is bipartite) the A-fold complete bipartite graph AKmn. G-decompositions
of the above graphs have been considered for many different graphs G. In this pa-
per, we consider G-decompositions when G is the graph of the 3-dimensional cube.
Throughout this paper we shall we shall use C to denote this graph (see Figure 1).
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Figure 1: The graph C of the 3-dimensional cube

In 1979, Kotzig [5] found a C-decomposition of K16, and posed the problem of
finding necessary and sufficient conditions on n for the existence of a C-decomposition
of K. In 1981 [6], he proved that if there exists C-decomposition of K, then n is
necessarily equivalent to 1 or 16 modulo 24 and he also proved sufficiency for the case
n =1 (mod 24). The problem of showing that there exists a C-decomposition of K,
when n = 16 (mod 24) was again mentioned in 1985 by Harary and Robinson [4] and
was recently solved (in 1994) [2]. Necessary and sufficient conditions on n and m for
the existence of a C-decomposition of Km » were also given in [2].

In this paper, we give necessary and sufficient conditions (on X and n) for the
existence of a C-decomposition of MK, and (on A,n and m) for the existence of a C-
decomposition of AKp m. Necessary and sufficient conditions for a G-decomposition
of MK, have already been given for the graphs of two other regular solids. A G-
decomposition of AK, where G is the graph of the tetrahedron (that is, Ki)is a
(v,4,)) BIBD with v = n. Necessary and sufficient conditions for the existence of
(v,4,)) BIBD’s are well known; see [3]. The problem of finding G-decompositions of
MK, where G is the graph of the octahedron (equivalent to a Pasch configuration)
was recently solved by Adams et al [1].

2 3-Cube Decompositions of AK,, ,

In this section, we consider C-decompositions of the A—fold complete bipartite graph
AKmn (where we assume m < n). We note that the case A = 1 was done in [2].
Since C is a 3—regular bipartite graph with 12 edges and 4 vertices in each subset
of the bipartition, the necessary conditions for the existence of such decompositions
include:

(2.1) 3| Amand3|An;

(2.2) 12| Amn;

(23) 4<m<n

We shall show that the above necessary conditions (2.1)-(2.3) are sufficient. We
shall make frequent use of the following two simple lemmas.

Lemma 2.1 If there are G-decompositions of Kmpn, and Kmn, then there 1is a G-
decomposition of Kam b, ny+byng fOT any non-negative integers a, by, and ba.

Proof. First decompose Kgm b, n,+bsn, into aby copies of Kmn, and aby copies of
K, Then decompose each of these into copies of G. a
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Lemma 2.2 Let H be a graph and suppose there is a G-decomposition of My H and
AoH (1,2 > 1). Then there is a G-decomposition of (ady + bA2)H for any non-
negative integers o and b.

Proof. First decompose (aX; + bA2)H into a copies of A\ H and b copies of Ao H .
Then decompose each of these into copies of G. 0

To establish the sufficiency of conditions (2.1)-(2.3), we shall use lemmas 2.1 and
2.2, and present all of the necessary decompositions of AKyy ».

Theorem 2.3 For m < n, a C-decomposition of AKmn exists if and only if dm =
M =0 (mod 3), Amn =0 (mod 4) and m > 4.

Proof. The necessary conditions are obtained from (2.1)-(2.3). The proof of suffi-
ciency consists of six cases that depend on the value of the greatest common divisor
of 12 and A.

Case 1: gcd{12,A} = 1.
In this case, the necessary conditions reduce to:

3|mand3|n;

4 | mn;

4<m<mn.
Under these conditions, either

m=n =0 (mod 6) or

m = 0 (mod 12) and n = 3 (mod 6) (or vice versa).
In either case, AKpm n can be decomposed into into a collection of graphs each of
which is isomorphic to either Kg 6 or Kg,12. Thus it suffices to find C-decompositions
of Kg,6 and of Kg13. These decompositions exist; see [2].

Case 2: gcd{12,A} = 2.
In this case, the necessary conditions (2.1)-(2.3) reduce to:

3|mand3|n;

2 | mn;

4<m<n.
Under these conditions, either

m =mn =0 (mod 6) or

m = 0 (mod 6) and n = 3 (mod 6) (or vice versa).
In either case, AKm » can be decomposed into a collection of graphs each of which
is isomorphic to either 2Kg g or 2Kgg. A C-decomposition of 2Kg g is given in the
appendix.

Case 3: gcd{12,2} = 3.
In this case, conditions (2.1)-(2.3) reduce to:
4 | mn;
4 <m<n.
The needed new decompositions needed in this case are C-decompositions of 3Ky 4,
3K45,3K4, and 3Ky 7. These are given in the appendix.
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Case 4: gcd{12,2} = 4.
In this case, conditions (2.1)-(2.3) reduce to:
3|m and 3 | n;
4<m<n.
Here the only new case is a C-decomposition of 4Ky 9, which is given in the appendix.

Case 5: gcd{12, A} = 6.
In this case, conditions (2.1)-(2.3) reduce to:
2 | mn;
4 <m<n.
Here the only previously uncovered small cases are C-decompositions of 6K5¢ and
6K 7. These are given in the appendix.

Case 6: ged{12,2} = 12.
In this case, conditions (2.1)-(2.3) reduce to:

4 <m<n.
The uncovered small cases are 3—cube decompositions of 12Kj 5, 12K5 7 and 12K7 7.
These too are given in the appendix. 0

3 3-Cube Decompositions of \K,

Lemma 3.1 If there is a C-decomposition of AKzy1 then there is a C-decomposition
of AKyz 2.

Proof. By Theorem 2.3, we need only show that the necessary conditions (2.1)-(2.3)
are satisfied. Since there is a C-decomposition of AKz41, # = 0 (mod 3) and hence
(noting that = > 4) the necessary conditions are satisfied. O

Lemma 3.2 Let k > 0 andn = 24k + z + 1, where 8 <z + 1 < 32. Then if there is
a C-decomposition of AK ;1 there is o C-decomposition of MK, .

Proof. First we note that for all A, there are C-decompositions of AKay 94 and AKos
(using Lemma 3.1 and the C-decompositions of K424 and Kgs given in [2]). Also,
by Lemma 3.1, there is a C-decomposition of AKXy 24.

Now, let V(AKy) = WUV U...UWU{cc} where Vg = {01,03,...,0,} and for
1=1,2,...,k, V; = {i1,42,...,404}. Fori=0,1,...,k, let G; be the A-fold complete
graph with vertex set V; U {co} and for each 7,j with 0 <4 < j < k, let G;; be the
A-fold complete bipartite graph with vertex set V; UV; (and the obvious bipartition).
Then, AK,, is the edge disjoint union

MK = (Uoci<kGi) U(Vo<icj<kGij)-

Clearly:

(1) Go = AKzy1;

(2) fori=1,2,...,k G; = AKss;
(3) forj=1,2,...,k Go; = AK; 2;
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(4) forall4,jsatisfying 1 <1< j <k, Gij = AKag 4.
Hence the union of the C-decompositions of each of these subgraphs (the G;’s and
the G ;’s) is a C-decomposition of AK,. O

Theorem 3.3 There is a C-decomposition of AKy if and only ifn > 8,3 | A(n — 1)
and 24 | dn(n —1).

Proof. The necessary conditions are established by noting that since C has degree
3, 3 must divide the degree of AK, (that is, 3 | A(n — 1)) and that since C has 12
edges, 12 must divide the number of edges in AK, (that is, 12 | )\3(’12:12)

For sufficiency, as before, the proof consists of 6 cases that depend on the value of

ged(12,X).

Case 1: gcd{12,A} = 1.
In this case, the necessary conditions are n = 1,16 (mod 24). Hence by Lemma 3.2
we only need a C-decomposition of Kig, which is given in [2].

Case 2: gcd{12,\} = 2.

In this case, the necessary conditions are n = 1,4, 13,16 (mod 24), n # 4. Hence by
Lemma 3.1 and Lemma 3.2, the only new C-decompositions needed are of 2K33 and
2K13, both of which are given in the appendix.

Case 3: gcd{12,A} = 3.

In this case, the necessary conditions are n = 0,1,8,9,16,17 (mod 24). Hence by
Lemma 3.1 and Lemma 3.2, the only new C-decompositions needed are of 3K24,3K3s,
3Ky and 3Ki7, all of which are given in the appendix.

Case 4: gcd{12,)\} =4.

In this case, the necessary conditions are n = 1,4,7,10,13, 16,19, 22 (mod 24), n #
4,7. Hence by Lemma 3.1 and Lemma 3.2, the only new C-decompositions needed
are of 4K31,4K10,4K19 and 4K, all of which are given in the appendix.

Case 5: gcd{12,A} = 6.

In this case, the necessary conditions are n =0, 1,4,5,8,9,12,13,16,17,

20,21 (mod 24), n # 4,5. Hence by Lemma 3.1 and Lemma 3.2, the only new C-
decompositions needed are of 6K29,6K12,6K20 and 6K21, all of which are given in
the appendix. '

Case 6: gcd{12,A} = 12.

In this case, the only necessary condition is that n # 2,3,4, 5,6, 7. Hence by Lemma
3.1 and Lemma 3.2, the only new C-decompositions needed are of 12K, 12 K27, 12 K30,
12K11,12K14,12K15,12K1g and 12Ks3, all of which are given in the appendix. [
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4 Conclusions

In this section we summarise (in tabular form) the results of this paper, see Theorems
2.3 and 3.3.

l X (mod 12) H admissible m,n (4 <m < n) ]
1,5,7,11 || m,n =0 (mod 3), mn = 0 (mod 4)
2, 10 m,n =0 (mod 3), mn = 0 (mod 2)
3,9 mn = 0 (mod 4)
4,8 m,n = 0 (mod 3)
6 mn = 0 (mod 2)
12 any m,n

Table 1: Necessary and sufficient conditions for the existence of a C-decomposition
of AKm n

! A (mod 12) H admissible n > 8 ]

1,5,7,11 | n=1,16 (mod 24)
2,10 n = 1,4 (mod 12)
3,9 n=0,1 (mod 8)
4, 8 n =1 (mod 3)
6 n=0,1 (mod 4)
12 alln

Table 2: Necessary and sufficient conditions for the existence of a C-decomposition
of A\K,

References

[1] P. Adams, E. J. Billington and C.A. Rodger, Pasch decompositions of lambda-
fold triple systems, J. Combin. Math. Combin. Comput. 15 (1994), 53-63.

[2] D.E. Bryant, S. El-Zanati and R. Gardner, Decompositions of Kmn and K,
into cubes, Australas. J. Combin. 9 (1994), 284-290.

[3] H. Hanani, Balanced incomplete block designs and related designs, Discrete
Math. 11 (1975), 255-369.

202



[4] F.Harary and R. W. Robinson, Isomorphic factorizations X: Unsolved problems,
J. Graph Theory 9 (1985), 67-86.

[5] A. Kotzig, Selected open problems in graph theory, Graph Theory and Related
Topics, Academic Press New York (1979), 258-267.

[6] A.Kotzig, Decompositions of complete graphs into isomorphic cubes, J. Combin.
Theory Ser B 31 (1981), 292-296.

5 Appendix

Within this appendix, each cube decomposition of a graph G is given as (V, C'), where
V is the vertex set of G, and C is the collection of cubes. The graph of the cube with
vertex set {a,b,c,d, e, f,g, h} and edge set {ab, bc, cd, da, ef, fg, gh, he,ae, bf, cg, dh}
is denoted by the 8-tuple (a,b,¢,d, e, f,g,h).

The vertex set of AKpm n is (Zm x {0})U(Zn x {1}) (with the obvious bipartition)
and the ordered pair (z,y) of this vertex set is represented by x,.

A=2
V={ia]0<i<5}U{iz|0<i<8} C as follows, uncycled:

(01,09, 11,12,22,21,32,31), (01,09,11,12,22,21,32,31),
(01)32741)42152751a02)31)y (01;32;41742:52:51102)31)7
(017 627 11) 72;82721:42)51)7 (017627 117825 725 2]:52141):
(11) 22:41y52742)51) 12) 1)’ (11:223413 72’827 51362;31))
(21,12, 41,82, 73,51, 62,31).

2K13 V = Z13. C as follows, cycled modulo 13:
(0,1,2,4,3,8,6,9).

2Kog V={;]0<i<6; j=1,2,3,4}. C as follows, cycled modulo (7, —):

(01, 11,214,414, 31,09, 12,42), (01,21,02, 13,29, 42,41,03),
(01,32,51,03,42,12,13,23), (01,03,11,23,13, 21, 63,02),
(01,43,09,04,14,12,13,42), (01,04,11,24,34, 1,44, 51),
(013 24>02)44) 54) 03; 237 13)) (OZa 337 037 14: 54) 637 04723):
(02, 14,13, 54, 64,44, 34, 04).

V = Z37. C as follows, cycled modulo 37:
(0,1,2,4,3,5,8,13), (0,5,11,18,7,15,2,26), (0,11,23,12,14,28,7,29).
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3K4s

3

3Ky

A=3
V=4{1]0<i<3}U{i2]0<:<3} C as follows, uncycled:

(OlaOZz 11) 12:22721:32:31); (01;027 11; 12>32>31>22y21);
(01,02,21,22,32,31,12,11), (01,12,21,32,22,31,02,11).

V={1]0<i<3}U{in|0<i<4} C as follows, uncycled:

(0130271].; 12)22721y32)31)) (01;02) 11)12; 32)31)42721)7
(01,02,21,25,42,31,12,11), (01,12,21,42,32,31,22,11),
(01,29,11,32,42,31,02,21). :

V=4{110<i:<3}U{ia|0<i<5} C as follows, uncycled:

(01,09,11, 13,29, 21,32,31), (01,09,11,15,32,31,22,21),
(01,02,21,22,42,31,52,11), (01,12,21,32,52,31,42,11),
(01,22, 11,42,52,31,02,21), (01,32, 11,52,42,31,12,21).

V={i|0<i<3}U{ia]|0<i<6} C asfollows, uncycled:

(01,02,31,13,62,11,29,21), (01,09,31,1s,52,21,32,11),
(01,092,251, 29,62,11,19,31), (O1,12,21, 32,52, 11,42,31),
(01,29,31,42,32,11,02,21), (01,22,21,52,42,11,62,31),
(01,32,31,62,42,11,53,21).

V = Zg. C as follows, uncycled:

(0,1,2,3,4,5,6,7), (
(0,2,4,6,5,7,1,3), (
(0,4,1,5,7,3,6,2)

?

0,
0

’ 1M

V = Zg. C as follows, cycled modulo 9:

(0,1,2,3,5,8,4,7).
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V = Zi7. C as follows, cycled modulo 1T:

(0,1,2,3,4,6,8,10), (0,3,6,10,8,15,11,2).

V = Zoz U{oo}. C as follows, cycled modulo 23:

(0,1,2,3,4,6,8,10), (0,3,6,10,4,9,1,17), (0,8,18,9,11,22,7,00).

V = Z3; U{oo}. C as follows, cycled modulo 31:

(0,1,2,3,4,6,8,10), (0,3,6,10,4,9,1,17), (0,7,16,8,9,18,1,19),
(0,10,23,11,12,24,7, 00).

V = Z33. C as follows, cycled modulo 33:

(0,1,2,3,4,6,8,10), (0,3,6,10,4,9,1,17), (0,7,16,8,9,18,1,19),
(0,10,23,11,12,24,6,25).
V = Z41. C as follows, cycled modulo 41:

(0,1,2,3,4,6,8,10), (0,3,6,10,4,9,1,17), (0,7,15,23,9,18,1,32),
(0,10,22,11,12,24,1,25), (0,13,30,15,16,32,11,37).

A=4

4Kgg V={1]0<:<8U{ia]|0<:< 8} C as follows, cycled modulo

(01,02,11,12,22,21,32,31), (01,12,21,32,22,41,62,81),
(01732:61752742:71,22;81)-

V={i|0<i<4 j=1,2}. C asfollows, cycled modulo (5, —):

(01, 11, 217 31741302: 12,22), (01> 21:4711 02,31 732> 12122);
(01,02,21,22,32, 12,42, 11)-
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V = Zy9. C as follows, cycled modulo 19:

(0,1,2,3,4,5,7,9), (0,2,4,7,3,6,10,15), (0,5,13,6,8,14,4,15).

V={]0<4<10; j=1,2}. C as follows, cycled modulo (11, ~):

(01,11,21,31,41,51,71,91), (01,21,41,71,31,61, 02, 12),
(01? 51}02)127227321 11)42)> (01)02711712)22721) 32;31))
(01, 12,21, 52,32,61,92,02), (01,42,81,52,62,22, 15, 102),
(01,42,12,83,62,92, 51, 29).

V = Z31. C as follows, cycled modulo 31:

(0,1,2,3,4,5,7,9), (0,2,4,7,3,6,10,15), (0,5,11,17,7,14,1,24),
(0,8,17,9,10,19,1,20), (0,10,22,11,12,25,9, 26). ;

A=26

V="{i1]0<i<4}U{i2]|0<3i<5} C as follows, uncycled:

(01,02,11,12,21,21,32,31), (01,02,11,12,29,21,32,41),
(01,32,31,42,52,41,12,21), (01,32,11,02,12,21,22,31),
(01) 32)31)22742741,52, 11); (11’ 12y21a42752:41702;31);
(11,12,01,02,42,21,52,31), (11,22,01,32,52,41,42,21),
(11,29,21,52,42,41,02,31), (11,29,01,52,02,31,12,41),
(117 321317 12)42341722)21)7 (21)02701:'52732;41742)31)7
(217021011327 12a41;22’ 11)) (21722731:4’2)527417 12)01)7
(31:02y11752;32>41742;01)~
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V={]0<:<5}U{ig| 0<% <6} C as follows, uncycled:

(01,02,11,12,22,41,52,21), (01,32,11,42,52, 31,22, 51),
(01,32,11,02,62,21,12,31), (01,42,21,53,62,41,02,51),
(11,22,31,42,62,41,32,51), (11,22,01,09,13, 21,32, 31),
(11,32,41,52,62,51,02,21), (11,42,01,52,62,21,23,31),
(11)421 01)02, 12)31a22:4l)1 (11752)017327627 417 12751)7
(21,02,31,32,12,51,52,41), (21,22,41,62, 52, 51,42,31),
(217 22,01732742711702731)7 (21742)01:52762, 4y, 12351);
(31; 12,13, 52:22’51a32)41)7 (317 13,04, 62,02, 21, 25, 51))
(317223 117621 42; 51: 12>01)’ (317327017627 525 41) 12)21):
(41702;01;62)42)51’521 11): (417027 11)22742$ 21732)51)7
(41,32,21,42,12,51,02,31).

V = Z11 U{ooc}. C as follows, cycled modulo 11:

(0,1,2,3,4,5,6,7), (0,2,4,6,3,5,1,00), (0,2,7,5,3,8,1,00).

V = ZigU{oo}. C as follows, cycled modulo 19:

,2,3,4,5.6,7),  (0,2,4,6,3,5,1,8), (0,2,5,9,6,15,10,1),
,11,6,7,13,1,00), (0,7,15,8,10,18,6,00).

V = Zy1. C as follows, cycled modulo 21:

(0,1,2,3,4,5,6,7),  (0,2,4,6,3,5,1,8), (0,2,5,9,6,11,16,1),
(0,5,11,6,7,13,1,14), (0,7,16,8,10,17,5,19).

V = Zy9. C as follows, cycled modulo 29:
0,1,2,3,4,5,6,7), (0,2,4,6,3,5,1,8), (0, 2,5,9,6,11,16,1),

(
(0,5,10,16,6,12,1,22),  (0,7,15,8,9,16,1,17), (0,7,18,8,10,20,3,22),
(0,10,22,11,12, 25,6, 23).
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(77 _):

) =

Va=y{|0<i<4}U{ia]0<7<4} C as follows, cycled modulo

(01;02y 11,12,22,21, 32, 31);
(01,02,11, 12, 22,21, 32, 31),
(01,12,21,32,22,31,02,11).

V={1]0<i<4}U{ia|0<i<6} C asfollows, uncycled:

(01, 02,41, 12,62, 31, 52, 11),
(01,22,41, 32, 52,21, 62,11),
(01)02:4‘17 12162)31742) 11))
(01732141352:42)31:22: 21)7
(01,22, 31,42,32,11, 12, 21),
(01,02, 41,12, 62,11, 52, 21),
(11:02731)32722121142; 41)’
(01,22,41, 32, 52, 31, 62, 21),
(01702)41762752)21342731)y
(31) 12,21,32,22, 11:62741)’
(01122’21)32,52) 11742)31)’
(01,09,41,12, 62,21, 52,31),
(11,09,31,62,42,21,32,41),
(01:22731)62:427 11752:41);
(01)02741) 12)527 11162)31))
(01)32721762:423 11:22741))
(01,12,31,42,32,11,02, 21),
(11,09,41,22, 12,24, 62, 31).

V={u]0<:<6}U{ia]|0<1<6} C as follows, cycled modulo

(51)12341:52)2%61,627 11)1
(31,62, 61,22,42,51,12,21),
(01,02,11,12, 22,21, 32, 41),
(01,12,41,32,42, 51,22, 61).

12

(01102: 117 12722721)32>31))
(01; 12521732722131>02> 11))

(01)029411 12:62731752721)1
(01)22)31’32:427217 12) 11):
(01122a41742;52;31:321 11);
(01,02,41, 12, 62,21, 52, 31),
(11,02,31,42,62,21,32,41),
(01)22731752y427217 12; 11),
(01,03,41,12,63,31,42,11),
(01,32, 21, 42,52, 11,22, 41),
(01,12,31,32,25, 21,02, 11),
(01,02,41,12, 62,21, 52, 11),
(11:02731722732)217 121 1):
(01)22)31;42)327217 123 11)1
(01,027413 12752a 11762121)7
(11102)31>32722)217421 41))
(01)22141)52742731732121)1
(01, 02,31, 32,62, 11, 52, 41),
(01$22;21752a42> 113 12741>

(62;41; 12,211 11)22761:02)a
(01; 02,14, 12> 2y, 21)32) 31))
(01, 02,11, 32, 52, 31, 62,21),

V = Z11. C as follows, cycled modulo 11:
(0)]‘)2) 37475)67 7)’ (0) 17273’4:’5’6’ 7)’ (07 2)4’ 6’375)1’8)’
(0,2,4,6,3,5,7,1), (0,2,8,3,5,10,4,9)
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V = Z13U {o0}. C as follows, cycled modulo 13:

(0,1,2,3,4,5,6,7),  (0,1,2,3,4,5,6,7),  (0,2,4,6,3,5,1,8),
(0,2,4,6,3,5,1,00),  (0,2,4,6,3,7,12,00), (0,3,9,4,5,10,2,00),
(0,5,11,6,7,12,4,00).

V = Zi5. C as follows, cycled modulo 15:

)31475)61 7)7 (0$1)273)47576)7)7 (072) 4$6?3757 118)7
,6,3,5,1,8),  (0,2,4,7,3,12,8,13), (0,5,11,6,7,12,3,13),
1,6,7,12,4,13).

(0,1,2
(0,2,4
(0,5,1

My

V = Z17U{oo}. C as follows, cycled modulo 17:

(0,1,2,3,4,5,6,7),  (0,1,2,3,4,5,6,7),  (0,2,4,6,3,5,1,8),
(0,2,4,6,3,5,1,8),  (0,2,4,7,3,8,15,11), (0,5,11,6,7,12,1,00),
(0,5,11,6,7,12,1,00), (0,5,13, '9,14,4,00), (0,6, 15,9,8,16,7,00).

b

)

V = Za3. C as follows, cycled modulo 23:

(0,1,2,3,4,5,6,7), (0,1,2,3,4,5,6,7), (0,2,4,6,3,5,1,8),
(0,2,4,6,3,5,1,8), (0,2,4,7,3,8,12,16),  (9,5,10,15,6,11,2,20),
(0,5,10,15,6,12,4,21), (0,6,13,7,8,15,1,16),  (0,7,15,8,9,16,2,18),
(0,7,19,8,10,20,9,21), (0,9,20,10,11,21,8,22).

?

V = Zyps U{oo}. C as follows, cycled modulo 25:

(0,1,2,3,4,5,6,7), (0,1,2,3,4,5,6,7), (0,2,4,6,3,5,1,8),
(0,2,4,6,3,5,1,8), (0,2,4,7,3,8,12,16),  (0,5,10,15,6,11,1,20),
(0,5,10,15,6,11,2,21),  (0,6,13,7,8,15,1,16), (0,7,15,8,9,16,1,17),
(0,7,15,8,9,16,1,00), (0,8,18,10,9,19,5,00), (0,8,21,10,12,22,9, 00),
(0,11,23,12,13,24, 10, 00).

V = Zor. C as follows, cycled modulo 27:

(0! 1‘72) b )5767 7)) (0 1 2 37475767 7)’ (03 27476)37 5’178)1
(0,2,4,6,3,5,1,8), (0,2,4,7,3,8,12,16),  (0,5,10,15,6,11,1,20),
(0,5,10,15,6,11,1,21),  (0,6,12,18,7,13,5,25), (0,7,15,8,9,16,1,17),
(0,8,17,9,10,18,1,19),  (0,8,18,10,11,19,4,21), (0,10,21,11,12,23,8,24),
(0,11,23,12,13,24,10,25).
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V = ZygU{o0}. C as follows, cycled modulo 29:

(0)172)374) 5)67 7)7 (07 1727 374) 5?6) 7)) (01 27 47673) 57]‘78))
(0,2,4,6,3,5,1,8), (0,2,4,7,3,8,12,16), (0,5,10,15,6, 11, 1,20),
(0,5,10,15,6,11,1,21),  (0,6,12,18,7,13,3,25),  (0,7,14,21,8, 16,6,28),
(0,8,17,9,10,18,1,19),  (0,8,17,9,10,18,1,20),  (0,8,22,11,12,23,5, c0),
(0,11,23,12,13,24,6,00), (0,12,25,13,14,26,9,00), (0,12,26,13,14,27,11,c0).

(Received 25/8/94)
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